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We present a lattice quantum chromodynamics determination of the scalar and vector form factors
for the Bs → Dslν decay over the full physical range of momentum transfer. In conjunction with future
experimental data, our results will provide a new method to extract jVcbj, which may elucidate the
current tension between exclusive and inclusive determinations of this parameter. Combining the form
factor results at nonzero recoil with recent HPQCD results for the B → Dlν form factors, we determine

the ratios fBs→Ds
0 ðM2

πÞ=fB→D
0 ðM2

KÞ ¼ 1.000ð62Þ and fBs→Ds
0 ðM2

πÞ=fB→D
0 ðM2

πÞ ¼ 1.006ð62Þ. These
results give the fragmentation fraction ratios fs=fd ¼ 0.310ð30Þstatð21Þsystð6Þtheorð38Þlatt and fs=fd ¼
0.307ð16Þstatð21Þsystð23Þtheorð44Þlatt, respectively. The fragmentation fraction ratio is an important

ingredient in experimental determinations of Bs meson branching fractions at hadron colliders, in
particular for the rare decay BðBs → μþμ−Þ. In addition to the form factor results, we make the first
prediction of the branching fraction ratio RðDsÞ ¼ BðBs → DsτνÞ=BðBs → DslνÞ ¼ 0.301ð6Þ, where
l is an electron or muon. Current experimental measurements of the corresponding ratio for the
semileptonic decays of B mesons disagree with Standard Model expectations at the level of nearly
four standard deviations. Future experimental measurements of RðDsÞ may help understand this
discrepancy.

DOI: 10.1103/PhysRevD.95.114506

I. INTRODUCTION

Studies of B and Bs meson decays at the Large Hadron
Collider provide precision tests of the Standard Model of
particle physics and are an important tool in the search for
new physics. For example, the first observation of the rare
decay Bs → μþμ−, through a combined analysis by the
LHCb and CMS collaborations [1,2], tested the Standard
Model prediction of the branching fraction. This decay is
doubly suppressed in the Standard Model, but may have
large contributions from physics beyond the Standard
Model (see, for example, [3]). Although the observed
branching fraction is currently consistent with Standard
Model expectations, there is still considerable room for new
physics, given the experimental and theoretical uncertain-
ties. Both LHCb and CMS are expected to reduce their
errors significantly in Run II and tightening constraints on
possible new physics requires a corresponding improve-
ment in the theoretical determination of the StandardModel
branching fraction.
Extraction of the Bs meson branching fraction

BðBs → μþμ−Þ relies on the normalization channels

Bþ
u → J=Ψðμþμ−ÞKþ and B0

d → Kþπ− [4]. The branching
fraction can then be expressed as [1]

BðBs → μþμ−Þ ¼ BðBq → XÞ fq
fs

ϵX
ϵμμ

Nμμ

NX
; ð1Þ

where the fq are the fragmentation fractions, which give
the probability that a b-quark hadronizes into a Bq

meson. The ϵ factors in this equation represent detector
efficiencies and the N factors denote the observed
numbers of events.
The analysis of [1] used the value of fs=fd ¼ 0.259ð15Þ,

determined from LHCb experimental data [5–7]. The ratio
fs=fd depends on the kinematic range of the experiment,
leading to the introduction of an additional systematic
uncertainty in the value of fs=fd to account for the
extrapolation of the LHCb result to the CMS acceptance.
Reducing sources of systematic uncertainties in the value of
this ratio will improve the precision of the determination of
the Bs → μþμ− branching fraction. Indeed, an accurate
value for the fragmentation fraction ratio is necessary for
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improved measurements of other Bs meson decay branch-
ing fractions at the LHC [4].
The ratio of the fragmentation fractions, fs=fd, can be

expressed in terms of the ratios of form factors [8,9],

N F ¼
�
fðsÞ0 ðM2

πÞ
fðdÞ0 ðM2

KÞ

�2
and N 0

F ¼
�
fðsÞ0 ðM2

πÞ
fðdÞ0 ðM2

πÞ

�2
; ð2Þ

where fðqÞ0 ðM2Þ is the scalar form factor of the Bq → Dqlν
semileptonic decay at q2 ¼ M2. The first lattice calcula-
tions of the form factor ratios in Eq. (2) using heavy clover
bottom and charm quarks were published in [10]. In
addition, the form factors, fþðq2Þ and f0ðq2Þ, for the
semileptonic decay Bs → Dslν were determined with
twisted mass fermions for the region near zero recoil
in [11].
In this article we calculate the form factors, fþðq2Þ and

f0ðq2Þ, for the semileptonic decay Bs → Dslν. We present
a determination of these form factors over the full physical
range of momentum transfer, q2, using the modified
z-expansion for the chiral-continuum-kinematic extrapola-
tion. We combine these form factor results with recent
HPQCD results for the B → Dlν decay [12] to determine
the ratios of Bs → Dslν and B → Dlν form factors
relevant to the ratio of fragmentation fractions, fs=fd.
We use the nonrelativistic (NRQCD) action for the

bottom quarks and the highly improved staggered quark
(HISQ) action for the charm quarks. Our form factors for
B → Dlν have appeared already in [12]. Here we first
present Bs → Dslν form factor results and then proceed to
the form factor ratios. We find

fðsÞ0 ðM2
πÞ

fðdÞ0 ðM2
KÞ

¼ 1.000ð62Þ and
fðsÞ0 ðM2

πÞ
fðdÞ0 ðM2

πÞ
¼ 1.006ð62Þ:

ð3Þ
This leads to

fs
fd

¼ 0.310ð30Þstatð21Þsystð6Þtheorð38Þlatt ð4Þ

and

fs
fd

¼ 0.307ð16Þstatð21Þsystð23Þtheorð44Þlatt; ð5Þ

respectively. The uncertainties in these results are the
experimental statistical and systematic uncertainties; theo-
retical uncertainties [predominantly arising from a factor
that captures deviations from naive factorization and, in
Eq. (5), an electroweak correction factor]; and the uncer-
tainties in our lattice input. In quoting these results, we have
assumed that there are no correlations between the lattice
results and the other sources of uncertainty.

In addition to determining the fragmentation fraction
ratio relevant to the measurement of the branching fraction
for the rare decay, Bs → μþμ−, the semileptonic Bs →
Dslν decay provides a new method to determine the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element
jVcbj. There is a long-standing tension between determi-
nations of jVcbj from exclusive and inclusive measurements
of the semileptonic B meson decays (see, for example,
[13,14] and the review in [15]), although recent analyses
suggest that the tension has eased [16,17]. The Bs → Dslν
decay has yet to be observed experimentally and conse-
quently has received less theoretical attention than semi-
leptonic decays of the B meson. The studies that have been
undertaken for the Bs → Dslν decay include calculations
based on relativistic quark models [18,19], light-cone sum
rules [20], perturbative factorization [21] and estimates
using the Bethe-Salpeter method [22,23]. At present, there
is one unquenched lattice calculation of the form factor
Gð1Þ at zero recoil [11]. The FNAL/MILC Collaboration
has previously studied the ratio of the form factors of the
Bs → Dslν and B → Dlν decays [10].
We determine the form factor for the Bs → Dslν

semileptonic decay at zero momentum transfer to be
f0ð0Þ ¼ fþð0Þ ¼ 0.656ð31Þ and at zero recoil to be Gð1Þ ∝
fþðq2maxÞ ¼ 1.068ð40Þ. Although experimental data are
frequently presented in the form jVcbjGð1Þ, the additional
information provided by our calculation of the shape of the
form factors throughout the kinematic range will, when
combined with future experimental data, provide a new
method to extract jVcbj and may elucidate the puzzle of the
tension between inclusive and exclusive determinations of
this CKM matrix element.
In the next section we briefly outline the details of the

calculation, including the gauge ensembles, bottom-charm
currents and two- and three-point correlator construction.
Our calculation closely parallels that presented in [12] for
the B → Dlν semileptonic decay and we refer the reader to
that work for further details. In Sec. III we discuss cor-
relator fits to our lattice data and Sec. IV covers the chiral-
continuum-kinematic extrapolations, which follows closely
the methodology of [12]. We explain how some of the
correlations between the new Bs → Dslν data and the B →
Dlν data are incorporated into the chiral-continuum-
kinematic expansion. Section V presents our final results

for the Bs → Dslν form factors, for N F and ~N F, and for
fs=fd and RðDsÞ. We summarize in Sec. VI and in the
Appendix we give the information necessary to reconstruct
the Bs → Dslν form factors. The analogous details for B →
Dlν form factors were summarized in Appendix A of [12].

II. ENSEMBLES, CURRENTS
AND CORRELATORS

Our determination of the form factors for the Bs → Dslν
semileptonic decay closely parallels the analysis presented
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in [12]. Here we simply sketch the key ingredients of the
analysis and refer the reader to Secs. II and III of [12] for
more details of the lattice calculation.
We use five gauge ensembles, summarized in Table I,

generated by the MILC Collaboration [24]. These ensem-
bles include three “coarse” (with lattice spacing
a ≈ 0.12 fm) and two “fine” (with a ≈ 0.09 fm) ensem-
bles and incorporate nf ¼ 2þ 1 flavors of AsqTad sea
quarks. In addition, we tabulate the light pseudoscalar
masses on these ensembles, for both AsqTad and HISQ
valence quarks, in Table II. The difference in these
masses captures discretization effects arising from partial
quenching. We account for these effects in the chiral-
continuum-kinematic expansion, which we discuss in
more detail in Sec. IV.
In Table III we list the valence quark masses for the

NRQCD bottom quarks and HISQ charm quarks [25,26].
For completeness and ease of reference, we include
both the tree-level wave function renormalization for
the massive HISQ quarks [27] and the spin-averaged
ϒ mass, corrected for electroweak effects, determined
in [26].
To study Bs → Ds semileptonic decays, we evaluate the

matrix element of the bottom-charm vector current, Vμ,
between the Bs and Ds states. We express this matrix
element in terms of the form factors fþðq2Þ and f0ðq2Þ as

hDsðpDs
ÞjVμjBsðpBs

Þi

¼ f0ðq2Þ
M2

Bs
−M2

Ds

q2
qμ

þ fþðq2Þ
�
pμ
Bs
þ pμ

Ds
−
M2

Bs
−M2

Ds

q2
qμ
�
; ð6Þ

where the momentum transfer is qμ ¼ pμ
Bs
− pμ

Ds
. In

practice it is simpler to work with the form factors f∥
and f⊥, which are related to fþðq2Þ and f0ðq2Þ via

fðsÞþ ðq2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBðsÞ

q ½fðsÞ∥ ðq2Þ þ ðMBðsÞ − EDðsÞ ÞfðsÞ⊥ ðq2Þ�;

ð7Þ

fðsÞ0 ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBðsÞ

q
M2

BðsÞ −M2
DðsÞ

½ðMBðsÞ − EDðsÞ ÞfðsÞ∥ ðq2Þ

þ ðE2
DðsÞ −M2

DðsÞ Þf
ðsÞ
⊥ ðq2Þ�: ð8Þ

Here EDs
is the energy of the daughterDs meson in the rest

frame of the Bs meson. In the following, we work in the rest
frame of the Bs meson and when we refer to the spatial
momentum, p⃗, we mean the momentum of the Ds meson.
NRQCD is an effective theory for heavy quarks and

results determined using lattice NRQCD must be matched
to full QCD to make contact with experimental data. We
match the bottom-charm currents, Jμ, at one loop in
perturbation theory through Oðαs;ΛQCD=mb; αs=ambÞ,
where amb is the bare lattice mass [27]. We rescale all
currents by the nontrivial massive wave function renorm-
alization for the HISQ charm quarks, tabulated in Table III,
and taken from [12,27].
We calculate Bs and Ds meson two-point correlators

and three-point correlators of the bottom-charm currents,
Jμ. We use smeared heavy-strange bilinears to represent
the Bs meson and incorporate both delta-function and
Gaussian smearing, with a smearing radius of r0=a ¼ 5
and r0=a ¼ 7 on the coarse and fine ensembles, respec-
tively. Three-point correlators are computed with the
setup illustrated in Fig. 1. The Bs meson is created at
time t0 and a current Jμ inserted at time slice t, between
t0 and t0 þ T. The daughter Ds meson is then annihilated
at time slice t0 þ T. We use four values of T: 12, 13, 14,
and 15 on the coarse lattices and 21, 22, 23, and 24
on the fine lattices. We implement spatial sums at the
source through the Uð1Þ random wall sources ξðxÞ and
ξðx0Þ [28]. We generate data for four different values
of the Ds meson momenta, p⃗ ¼ 2π=ðaLÞð0; 0; 0Þ;

TABLE I. Simulation details on three coarse and two fine nf ¼
2þ 1 MILC ensembles.

Set r1=a ml=ms (sea) Nconf Ntsrc L3 × Nt

C1 2.647 0.005=0.050 2096 4 243 × 64
C2 2.618 0.010=0.050 2256 2 203 × 64
C3 2.644 0.020=0.050 1200 2 203 × 64
F1 3.699 0.0062=0.031 1896 4 283 × 96
F2 3.712 0.0124=0.031 1200 4 283 × 96

TABLE II. Meson masses on MILC ensembles for both AsqTad [24] and HISQ valence quarks [25]. The aMηs
values are determined with HISQ valence quarks in [25].

Set MAsqTad
π aMHISQ

π aMAsqTad
K aMHISQ

K
aMηs

C1 0.15971(20) 0.15990(20) 0.36530(29) 0.31217(20) 0.41111(12)
C2 0.22447(17) 0.21110(20) 0.38331(24) 0.32851(48) 0.41445(17)
C3 0.31125(16) 0.29310(20) 0.40984(21) 0.35720(22) 0.41180(23)
F1 0.14789(18) 0.13460(10) 0.25318(19) 0.22855(17) 0.294109(93)
F2 0.20635(18) 0.18730(10) 0.27217(21) 0.24596(14) 0.29315(12)
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p⃗ ¼ 2π=ðaLÞð1; 0; 0Þ; p⃗ ¼ 2π=ðaLÞð1; 1; 0Þ; and p⃗ ¼
2π=ðaLÞð1; 1; 1Þ, where L is the spatial lattice extent.
We fit Bs meson two-point functions to a sum of

decaying exponentials in Euclidean time, t,

Cβ;α
Bs
ðtÞ ¼

XNBs−1

i¼0

bβi b
α�
i e−E

Bs;sim
i t

þ
XN0
Bs
−1

i¼0

b0βi b
0α�
i ð−1Þte−E0Bs;sim

i t: ð9Þ

Here the superscripts α and β indicate the smearing
associated with the Bs meson source (delta function or
Gaussian); the bi and b0i are amplitudes associated with the
ordinary nonoscillatory states and the oscillatory states that
arise in the staggered quark formalism; the meson energies
are EBs;sim

i and E0Bs;sim
i for the nonoscillatory and oscillatory

states, respectively; and Nð0Þ
Bs

is the number of exponentials
included in the fit.
The ground state Bs energy in NRQCD, E

Bs;sim
0 , is related

to the true energy in full QCD, EBs
0 , by

EBs
0 ≡MBs

¼ 1

2
½M̄exp

bb̄
− Esim

bb̄
� þ EBs;sim

0 ; ð10Þ

because the b-quark rest mass has been integrated out in
NRQCD. Here M̄exp

bb̄
is the spin-averaged ϒ mass used to

tune the b-quark mass and aEsim
bb̄

was determined in [26].
We tabulate the values for aEsim

bb̄
in Table III.

We fit the Ds meson two-point functions to the form

CDs
ðt; p⃗Þ ¼

XNDs−1

i¼0

jdij2½e−E
Ds
i t þ e−E

Ds
i ðNt−tÞ�

þ
XN0
Ds
−1

i¼0

jd0ij2ð−1Þt½e−E
0Ds
i t þ e−E

0Ds
i ðNt−tÞ�:

ð11Þ

For the three-point correlator we use the fit Ansatz

Cα
Jðt; T; p⃗Þ ¼

XNDs−1

i¼0

XNBs−1

j¼0

Aα
ije

−EDs
i te−E

Bs;sim
j ðT−tÞ

þ
XN0
Ds
−1

i¼0

XNBs−1

j¼0

Bα
ijð−1Þte−E

0Ds
i te−E

Bs;sim
j ðT−tÞ

þ
XNDs−1

i¼0

XN0
Bs
−1

j¼0

Cα
ijð−1Þte−E

Ds
i te−E

0Bs;sim
j ðT−tÞ

þ
XN0
Ds
−1

i¼0

XN0
Bs
−1

j¼0

Dα
ijð−1ÞTe−E

0Ds
i te−E

0Bs;sim
i ðT−tÞ:

ð12Þ

The amplitudes Aα
ij for energy levels ði; jÞ depend on the

current Jμ, the daughter Ds meson momentum p⃗, and the
smearing of the Bs meson source, α.
The hadronic matrix element between Bs and Ds meson

states is then given in terms of the ground state energies and
amplitudes extracted from two- and three-point correlator
fits by the relation

hDsðp⃗ÞjVμjBsi ¼
Aα
00

d0bα�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3EDs

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3MBs

q
: ð13Þ

For more details on this relation, see Sec. III of [12].

III. CORRELATOR FIT AND FORM
FACTOR RESULTS

We employ a Bayesian multiexponential fitting pro-
cedure, based on the python packages lsqfit [29] and
corrfitter [30], that has been used by the HPQCD
Collaboration for a wide range of lattice calculations.
Statistical correlations between data points, and correla-
tions between data and priors, are automatically captured
with the gvar class [31], which facilitates the straight-
forward manipulation of Gaussian-distributed random
variables.

TABLE III. Valence quark masses amb for NRQCD bottom
quarks and ams and amc for HISQ strange and charm quarks.

The fifth column gives Zð0Þ
2 ðamcÞ, the tree-level wave function

renormalization constant for massive (charm) HISQ quarks. The
sixth column lists the values of the spin-averaged ϒ mass,
corrected for electroweak effects.

Set amb ams amc Zð0Þ
2 ðamcÞ aEsim

bb̄

C1 2.650 0.0489 0.6207 1.00495618 0.28356(15)
C2 2.688 0.0492 0.6300 1.00524023 0.28323(18)
C3 2.650 0.0491 0.6235 1.00504054 0.27897(20)
F1 1.832 0.0337 0.4130 1.00103879 0.25653(14)
F2 1.826 0.0336 0.4120 1.00102902 0.25558(28)

FIG. 1. Lattice setup for the three-point correlators. See
accompanying text for details.
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In this Bayesian multiexponential approach, one uses a
number of indicators of fit stability, consistency, and
goodness of fit to check the fit results. For example, we
check that, beyond a minimum number of exponentials, the
fit results are independent of the number of exponentials
included in the fit. Figure 2 illustrates the results of this test
for the Ds meson two-point fits on ensemble set F1. The
upper panel presents our results for four values of the
spatial momentum, plotted as a function of the number of
exponentials included in the plot. The lower panel shows
the results obtained from three types of fits: a simultaneous
fit to correlator data for all four spatial momenta, plotted
with blue diamonds; a chained fit (discussed in detail in
Appendix A of [25]) to correlator data for all four spatial
momenta simultaneously, shown with red squares; and an
“individual” fit, plotted with purple circles. These individ-
ual fits include the correlator data for just a single daughter
meson momentum in each fit.
We take the result for Nexp ¼ 5 from the chained fit as

our final result for each momentum. These results are

tabulated in Table IV and shown in Fig. 2 as shaded bands
in each plot. All three fit approaches give consistent results,
as seen in the lower panel of Fig. 2, but the simultaneous
fits, with or without chaining, have the advantage that they
capture the correlations between momenta, which is then
reflected in the uncertainty quoted in the fit results. The
chained fits give slightly better values of reduced χ2. For
example, for the ground state results plotted in the lower
panel, the chained fits give χ2=dof ¼ 0.88 for Nnexp ¼ 5,
while the simultaneous fits give χ2=dof ¼ 1.1. Both fits
include 164 degrees of freedom. In addition, the chained
fits are about 10% faster than the simultaneous fits—14.6s
to generate all the data in the lower plot for the chained fit
compared to 16.4s for the simultaneous fit. This is not an
important consideration for the two-point fits, but becomes
relevant for the larger three-point fits, which can take many
hours. Choosing to use chained fits for both two- and three-
point fits ensures a consistent approach throughout the
fitting procedure.
As a further test of the two-point fits for theDs meson we

determine the ratio ðM2
Ds

þ p⃗2Þ=E2
Ds

on each ensemble. We
plot the results in Fig. 3. The shaded region corresponds to
1� αsðap=πÞ2, where we set αs ¼ 0.25. In general, the
data lie systematically above the relativistic value of unity,
indicating that the statistical uncertainties of the fit results

FIG. 2. Fit results for the Ds meson two-point correlator as a
function of the number of exponentials included in the fit on
ensemble F1. The upper plot includes data for all four values of
the spatial momentum of the Ds meson. The lower plot compares
the values for the ground state energy from the simultaneous fit
with two alternative fitting strategies, which are described in the
text, at zero spatial momentum. Note the magnified scale on the
vertical axis in the lower panel.

TABLE IV. Fit results for the ground state energies of the Ds
meson at each spatial momentum p⃗. We take Nexp ¼ 5 and fit all
two-point correlator data simultaneously.

Set aMDs
aEDs

ð1; 0; 0Þ aEDs
ð1; 1; 0Þ aEDs

ð1; 1; 1Þ
C1 1.18755(22) 1.21517(34) 1.24284(33) 1.27013(39)
C2 1.20090(30) 1.24013(56) 1.27822(61) 1.31543(97)
C3 1.19010(33) 1.23026(53) 1.26948(54) 1.30755(79)
F1 0.84674(12) 0.87559(19) 0.90373(20) 0.93096(26)
F2 0.84415(14) 0.87348(25) 0.90145(25) 0.92869(33)

FIG. 3. Dispersion relation for each ensemble. The shaded
region corresponds to 1� αsðap=πÞ2 where we take αs ¼ 0.25.
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are sufficiently small that we can resolve discretization
effects at Oðαsðap=πÞ2Þ. These discretization effects are
less than 0.5% in the dispersion relation.
Figure 4 shows the corresponding two-point fit results

for the ground state of the Bs meson for ensemble sets C2
and F1. These ensemble sets have the same sea quark mass
ratios, ml=ms ¼ 1=5 (see Table I) and the difference
between the results stems almost entirely from the lattice
spacing. We take the values with Nexp ¼ 5 as our final
results, highlighted in the figure by the square data points
and the shaded bands. We tabulate our final results in
Table V.
For the three-point correlator fits, we use a fitting

procedure that diverges slightly from the approach taken
in [12] and do not employ a “mixed” fitting strategy.
Instead of combining “individual” and “master” fits (see
[12] for full details), we use chained fits to correlators at all
spatial momenta. This fitting approach ensures that we
keep track of all statistical correlations between data at
different momenta while maintaining fit stability, which
was an issue for the simultaneous fits attempted in [12].
To improve stability and goodness of fit, we thin the

three-point correlator data on the fine ensembles by keep-
ing every third time slice. We illustrate the stability of these
fits with the number of exponentials in the fit in Fig. 5.
We test our choice by comparing fit results for the three-

point amplitudes with thinning (keeping both every third
and every fifth time slice) and without thinning and plot the

results in Fig. 6. We do not consider thinning by an even
integer, which removes information about the oscillatory
states generated by the staggered quark action.
In Fig. 7 we present results for the three-point fits

when different combinations of source-sink separations,
T, are used. For our final results we take the full set, T ¼
ð12; 13; 14; 15Þ on the coarse ensembles and T ¼
ð21; 22; 23; 24Þ on the fine ensembles. We fit the three-
point correlator data after matching the bottom-charm
currents to full QCD, as described briefly in Sec. II and
in more detail in [12]. In [12] this approach was compared
with fitting the data first and then matching to full QCD
and, as expected, the results are in good agreement within
errors.
We summarize our final results for the form factors,

f0ðp⃗Þ and fþðp⃗Þ, for each ensemble and Ds momentum in
Tables VI and VII. We represent the correlations between
form factors at different momenta as a heat map in Fig. 8 for
ensemble set F2.

IV. CHIRAL, CONTINUUM AND KINEMATIC
EXTRAPOLATIONS

The form factor results presented in the previous section
are determined at finite lattice spacing, with sea quark
masses that are heavier than their physical values. These
form factors are therefore functions of the momentum
transfer, the lattice spacing, and the sea quark masses. The
form factors determined from experimental data are func-
tions of a single kinematic variable only. Typically this

FIG. 4. Fit results for the Bs meson two-point correlator as a
function of the number of exponentials included in the fit on two
ensemble sets, C2 and F1. We plot our final results, for which
Nexp ¼ 5, as a green hexagon for C2 and a purple square for F1,
with corresponding shaded bands.

TABLE V. Fit results for the ground state aEBs;sim
0 , on each ensemble set, with Nexp ¼ 5.

C1 C2 C3 F1 F2

0.53714(60) 0.54332(65) 0.53657(86) 0.40873(53) 0.40819(44)

FIG. 5. Fit results for the three-point amplitudes as a function of
the number of exponentials on two ensemble sets, C2 and F1. We
fit to correlator data for all values of the spatial momentum
simultaneously and thin by keeping every third time slice. We
plot our final results, for which Nexp ¼ 5, as a green hexagon for
C2 and a purple square for F1, with corresponding shaded bands.
Note that the amplitudes on set C2 are approximately three times
larger than the amplitudes on set F1, as indicated by the left (F1)
and right (C2) vertical axes.
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variable is the momentum transfer, q2, or the daughter
meson energy, EDs

, but the form factors can also be
expressed in terms of the w-variable, defined by

wðq2Þ ¼ 1þ q2max − q2

2MBs
MDs

; ð14Þ

where q2max¼ðMBs
−MDs

Þ2≃11.54GeV2, or the z-variable,

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð15Þ

Here tþ ¼ ðMBs
þMDs

Þ2 and t0 is a free parameter, which
we take to be t0 ¼ q2max to ensure consistency with the
analysis of [12]. In Fig. 9 we compare our results for the
form factors, f0ðq2Þ and fþðq2Þ, with the corresponding
form factors for the B → Dlν decay, taken from [12], as a
function of the z-variable. From the plot, we see that there is
little dependence on the light spectator quark species in the
form factor results.
To relate the form factor results determined at finite

lattice spacing and unphysical sea quark masses to exper-
imental data, we must therefore perform continuum and
chiral extrapolations, along with a kinematic extrapolation
in terms of one of the choices of the kinematic variable.
We combine these extrapolations through the modified

FIG. 6. Fit results for the three-point amplitudes as a function of
the number of exponentials for different choices of data thinning:
no thinning, represented by turquoise triangles; keeping every
third time slice, represented by blue circles and the label
“Thinning ¼ 3”; and keeping every fifth time slice, shown by
yellow pentagons and the label “Thinning ¼ 5”. Our final result,
for which we use thinning by every third time slice and Nexp ¼ 5,
is shown as a purple square and the corresponding purple
shaded band.

FIG. 7. Fit results for the three-point amplitude A00 as a
function of the number of source-sink separations, T, incorpo-
rated in the fit on ensemble set F1. We fit to correlator data for all
values of the spatial momentum simultaneously and thin by
keeping every third time slice. For our final results we take the
full set, T ¼ ð12; 13; 14; 15Þ on the coarse ensembles and T ¼
ð21; 22; 23; 24Þ on the fine ensembles, indicated by the first point,
the purple square, and the purple shaded band. Fit results from
other combinations of source-sink separations are plotted as blue
circles.

TABLE VI. Final results for the form factor f0ðp⃗Þ.
Set f0ð0; 0; 0Þ f0ð1; 0; 0Þ f0ð1; 1; 0Þ f0ð1; 1; 1Þ
C1 0.8885(11) 0.8754(14) 0.8645(13) 0.8568(13)
C2 0.8822(13) 0.8663(15) 0.8524(16) 0.8418(18)
C3 0.8883(13) 0.8723(16) 0.8603(16) 0.8484(21)
F1 0.90632(98) 0.8848(13) 0.8674(13) 0.8506(17)
F2 0.9047(12) 0.8855(16) 0.8667(15) 0.8487(19)

TABLE VII. Final results for the form factor fþðp⃗Þ.
Set fþð1; 0; 0Þ fþð1; 1; 0Þ fþð1; 1; 1Þ
C1 1.1384(35) 1.1081(20) 1.0827(21)
C2 1.1137(29) 1.0795(22) 1.0470(21)
C3 1.1260(34) 1.0912(24) 1.0552(28)
F1 1.1453(29) 1.0955(24) 1.0549(24)
F2 1.1347(42) 1.0905(26) 1.0457(33)

FIG. 8. Correlations between form factors at different momenta
for the ensemble set F2.
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z-expansion, introduced in [28,32], and applied to BðsÞ
heavy-light decays in [25,33,34]. Our analysis of the chiral-
continuum-kinematic extrapolation for Bs → Dslν decay
closely parallels that for the B → Dlν decay in [12], so we
only briefly outline the key components and refer the reader
to [12] for details.
We express the dependence of the form factors on

the z-variable through a modification of the Bourrely-
Caprini-Lellouch (BCL) parametrization [35]

f0ðq2ðzÞÞ ¼
1

P0

XJ−1
j¼0

að0Þj ðml;msea
l ; aÞzj; ð16Þ

fþðq2ðzÞÞ ¼
1

Pþ

XJ−1
j¼0

aðþÞ
j ðml;msea

l ; aÞ

×

�
zj − ð−1Þj−J j

J
zJ
�
: ð17Þ

Here the P0;þ are Blaschke factors that take into account the
effects of expected poles above the physical region,

P0;þðq2Þ ¼
�
1 −

q2

M2
0;þ

�
; ð18Þ

where we take Mþ ¼ MB�
c
¼ 6.330ð9Þ GeV [36], and

M0 ¼ 6.42ð10Þ GeV. We find little dependence on the
value of M0, in line with the results of [12]. The expansion

coefficients að0;þÞ
j include lattice spacing and light quark

mass dependence and can be written as

að0;þÞ
j ðml;msea

l ; aÞ ¼ ~að0;þÞ
j

~Dð0;þÞ
j ðml;msea

l ; aÞ; ð19Þ

where the ~Dð0;þÞ
j include all lattice artifacts and chiral

logarithms. These coefficients are given by

~Dj ¼ 1þ cð1Þj xπ þ cð2Þj xπ logðxπÞ þ dð1Þj

�
δxπ
2

þ δxK

�

þ dð2Þj δxηs þ eð1Þj

�
aEDs

π

�
2

þ eð2Þj

�
aEDs

π

�
4

þmð1Þ
j ðamcÞ2 þmð2Þ

j ðamcÞ4;
ð20Þ

where

xπ;K;ηs ¼
M2

π;K;ηs

ð4πfπÞ2
; ð21Þ

δxπ;K ¼ ðMAsqTad
π;K Þ2 − ðMHISQ

π;K Þ2
ð4πfπÞ2

; ð22Þ

δxηs ¼
ðMHISQ

ηs Þ2 − ðMphys
ηs Þ2

ð4πfπÞ2
; ð23Þ

and the cðiÞj , dðiÞj , eðiÞj , andmðiÞ
j are fit parameters, along with

the ~að0;þÞ
j . We use the fit function form of [12], with a new

fit parameter, dð2Þj , to account for the tuning of the valence
strange quark mass on each ensemble. The actions we use
are highly improved and Oða2Þ tree-level lattice artifacts
have been removed. The Oðαsa2Þ and Oða4Þ corrections
are dominated by powers of ðamcÞ and ðaEDs

Þ, rather than
those of the spatial momenta ðapiÞ. Thus, we do not
incorporate terms involving hypercubic invariants
constructed from the spatial momentum api [37]. In
Table II we tabulate the meson masses required to calculate
δxπ;K;ηs .
We further modify the z-expansion parametrization of

the form factors to accommodate the systematic uncertainty
associated with the truncation of the matching procedure at
Oðαs;ΛQCD=mb; αs=ðambÞÞ. We introduce fit parameters
m∥ and m⊥, with central value zero and width δm∥;⊥ and
rescale the form factors, f∥ and f⊥, according to

FIG. 9. Form factor results for the Bs → Dslν decay, compared
to those for the B → Dlν decay from [12], as function of z. We
plot four sets of results, for f0ðq2ðzÞÞ and fþðq2ðzÞÞ for both B
and Bs meson decays. We distinguish the data in four ways. First,
the shape of each data marker indicates the corresponding
ensemble set, as shown in the legend in the upper left corner:
squares represent set C1; diamonds set C2; circles C3; left-
pointing triangles F1; and up-pointing triangles F2. Second, the
upper set of points are those for fþðq2ðzÞÞ and the lower set of
points show the data for f0ðq2ðzÞÞ, as indicated by the annota-
tions. Third, the colors of the points distinguish the data as
follows: the turquoise-green points represent fBs→Dsþ ðq2ðzÞÞ; the
light purple points are fB→Dþ ðq2ðzÞÞ; the blue points are
fBs→Ds
0 ðq2ðzÞÞ; and the orange-yellow points are fB→D

0 ðq2ðzÞÞ.
Finally, we distinguish the data by size: the larger markers
represent the B → Dlν decay, while the smaller points are from
those for the Bs → Dslν decay.

CHRISTOPHER J. MONAHAN et al. PHYSICAL REVIEW D 95, 114506 (2017)

114506-8



f∥;⊥ → ð1þm∥;⊥Þf∥;⊥: ð24Þ

We take the systematic uncertainties in these fit parameters
as 3% and refer the reader to the detailed discussion of this
approach in [12].
In Fig. 10 we plot our fit results for f0ðzÞ, fþðzÞ as a

function of the z-variable. We obtain a reduced χ2 of
χ2=dof ¼ 1.2 with 36 degrees of freedom (dof), with a
quality factor of Q ¼ 0.24. The Q-value (or p-value)
corresponds to the probability that the χ2=dof from the
fit could have been larger, by chance, assuming the data are
all Gaussian and consistent with each other. We plot the
lattice data and the results of the chiral-continuum-
kinematic extrapolation for fþðzÞ as the upper, red shaded
band and for f0ðzÞ as the lower, purple shaded band. We
use the fit Ansatz outlined above, including terms up to z3

in the modified z-expansion, and refer to these results as the
“standard extrapolation.” We tabulate our choice of priors
and the fit results in the Appendix, and provide the
corresponding z-expansion coefficients and their correla-
tions. Following [12] and the earlier work of [28,32], we
group the priors into Group I and Group II variables, and
add a third group. Broadly speaking, Group I priors are the
typical fit parameters, Group II includes the input lattice
scales and masses, and Group III priors are physical input
masses. See the appendix of [12] for more details. To test
the convergence of our fit Ansatz, we follow a procedure
similar to that outlined in [12]. This can be summarized as
modifying the fit Ansatz in the following ways:
(1) include terms up to z2 in the z-expansion;
(2) include terms up to z4 in the z-expansion;
(3) add light-quark mass dependence to the fit param-

eters mðiÞ
j ;

(4) add strange-quark mass dependence to the fit

parameters mðiÞ
j ;

(5) add bottom-quark mass dependence to the fit param-
eters mðiÞ

j ;
(6) include discretization terms up to ðamcÞ2;
(7) include discretization terms up to ðamcÞ6;
(8) include discretization terms up to ðaEDs

=πÞ2;
(9) include discretization terms up to ðaEDs

=πÞ6;
(10) omit the xπ logðxπÞ term;
(11) incorporate a 2% uncertainty for higher-order

matching contributions;
(12) incorporate a 4% uncertainty for higher-order

matching contributions;
(13) incorporate 4% and 2% uncertainties on coarse and

fine ensembles, respectively, for higher-order match-
ing contributions.

We show the results of these modifications in Fig. 11. This
plot demonstrates that the fit has converged with respect to
a variety of modifications of the chiral-continuum-kin-
ematic extrapolation Ansatz. As part of this process, we
also tested the significance of the Blaschke factor in the fit
results. In line with the results of [12], we found that, while
the results agreed within uncertainties, removing the
Blaschke lowered the central value and increased the
uncertainty of the result. This test is not strictly a test of
convergence and is therefore not included in Fig. 11.
To determine the ratio of form factors, we simultane-

ously fit the lattice form factor data for the Bs → Dslν and
B → Dlν decays in a single script. We take the form factor
results from Table III of [12] for the B → Dlν decay.
Fitting the results simultaneously ensures that statistical

FIG. 10. Fit results from the standard extrapolation fit Ansatz
detailed in the text. The purple data points show the fit results at
finite lattice spacing and the red and purple shaded bands are the
physical extrapolations, which include all sources of statistical
and systematic uncertainty.

FIG. 11. Fit results from modifications to the standard extrapo-
lation fit Ansatz, plotted as blue circles representing the form
factor f0 at q2 ¼ 0 (the lower set of data points) and at q2 ¼ q2max
(the upper set of points). The test numbers labeling the horizontal
axis correspond to the modifications listed in the text. The first
data point, the purple square for f0ðq2 ¼ 0Þ and turquoise
diamond for f0ðq2maxÞ, are the standard extrapolation fit results,
which are also represented by the purple and turquoise shaded
bands, respectively.
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correlations between the two data sets, such as those
stemming from the lattice spacing determination on each
ensemble set, are included in the final result for the ratio at
zero momentum transfer. We do not reanalyze the B →
Dlν to account for statistical correlations between the
correlators themselves, which have negligible effect on the
final result, given the current precision. This analysis would
require fitting both B → Dlν and Bs → Dslν two- and
three-point correlators simultaneously. To ensure that these
statistical correlations are not important, we tested the
correlations between the three-point correlators on different
ensemble sets. We show an example of the corresponding
correlations as a heat map in Fig. 12, from which one can
see that statistical correlations are less than ∼0.6. We have
found that correlations of this size have negligible impact at
our current level of precision.
We fit the form factor data using the standard extrapo-

lation Ansätze for both the B → Dlν and Bs → Dslν
data. For the Bs → Dslν decay, we choose the priors for
the coefficients in the modified z-expansion to be equal
to those for the corresponding expression for the B →
Dlνz-expansion. These priors reflect the close agreement

between the values for the B → Dlν and Bs → Dslν
decays, illustrated in Fig. 9. We list our choice of priors
and the fit results for the ratio of form factors in the
Appendix, and provide the corresponding z-expansion
coefficients and their correlations.

V. RESULTS

A. Form factors

We plot our final results for the form factors, f0ðq2Þ and
fþðq2Þ, as a function of the momentum transfer, q2,
in Fig. 13.
Our final result for the form factor at zero momentum

transfer is

fBs→Ds
0 ð0Þ ¼ fBs→Dsþ ð0Þ ¼ 0.656ð31Þ: ð25Þ

We provide an estimate of the error budget for this result in
Table VIII. For the ratio of form factors, we find

fBs→Ds
0 ðM2

πÞ
fB→D
0 ðM2

KÞ
¼ 1.000ð62Þ; ð26Þ

and

fBs→Ds
0 ðM2

πÞ
fB→D
0 ðM2

πÞ
¼ 1.006ð62Þ; ð27Þ

with corresponding error budgets in Table IX. We show the
extrapolation bands as a function of momentum transfer for
both Bs → Ds (purple hatched band) and B → D (plain
turquoise band) semileptonic decays in Fig. 14.
We find agreement, within errors, with the results of

[10], which are

TABLE VIII. Error budget for the form factors at zero mo-
mentum transfer, f0ð0Þ ¼ fþð0Þ, for the Bs → Dslν semilep-
tonic decay. We describe each source of uncertainty in more detail
in the accompanying text.

Type Partial uncertainty (%)

Statistical 1.22
Chiral extrapolation 0.80
Quark mass tuning 0.66
Discretization 2.47
Kinematic 0.71
Matching 2.21
Total 3.70

FIG. 12. Correlations between B → Dlν and Bs → Dslν
ensemble-averaged, three-point correlators for ensemble set
C1. The data correspond to a single BðsÞ meson source with
Gaussian smearing r0=a ¼ 5, a source-sink separation of T ¼ 13
and with ap⃗DðsÞ ¼ ð0; 0; 0Þ.

FIG. 13. Chiral and continuum extrapolated form factors,
f0ðq2Þ (lower band) and fþðq2Þ (upper band), as a function
of the momentum transfer. The extrapolated form factor results
include all sources of statistical and systematic uncertainty.
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fBs→Ds
0 ðM2

πÞ
fB→D
0 ðM2

KÞ
½FNAL=MILC� ¼ 1.046ð46Þ ð28Þ

fBs→Ds
0 ðM2

πÞ
fB→D
0 ðM2

πÞ
½FNAL=MILC� ¼ 1.054ð50Þ: ð29Þ

Here we have combined the uncertainties quoted in [10],
which are statistical and systematic, in quadrature.
For the form factor at zero recoil, fþðq2maxÞ, which is

often quoted as

Gð1Þ ¼ 2
ffiffiffi
κ

p
1þ κ

fþðq2maxÞ; ð30Þ

where κ ¼ MDs
=MBs

, we find

Gð1Þ ¼ 1.068ð40Þ: ð31Þ

This result is in good agreement with the value of Gð1Þ ¼
1.052ð46Þ determined in [11], with a slightly smaller
uncertainty. The corresponding values for the B → Dlν
form factors are GB→Dð1Þ¼1.035ð40Þ [12] and GB→Dð1Þ ¼
1.058ð9Þ [10] (where the quoted uncertainty includes only
statistical uncertainties).
The slope of the form factor, fþðq2Þ, is given by

ρ2ðwÞ ¼ −
G0ðwÞ
GðwÞ ; ð32Þ

where the derivative is with respect to the w-variable of
Eq. (14). In the Caprini-Lellouch-Neubert (CLN) para-
metrization, [38], the form factor is then parametrized by

GðwÞ ¼ Gð1Þ½1 − 8ρ2zþ ð51ρ2 − 10Þz2
− ð252ρ2 − 84Þz3�; ð33Þ

with z ¼ zðwÞ the z-variable of the previous section:

zðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p : ð34Þ

We obtain

ρ2ð1Þ ¼ 1.244ð76Þ ð35Þ

for the slope of the form factor.
Experimental data for the B → Dlν decay are typically

presented in the form jVcbjGð1Þ, since the differential decay
rate for the BðsÞ → DðsÞlν decay can be written as

dΓðBðsÞ → DðsÞlνÞ
dw

¼ G2
F

48π3
M3

DðsÞ ðMBðsÞ þMDðsÞ Þ2

× ðw2 − 1Þ3=2jVcbj2jGðwÞj2; ð36Þ

where GF is the Fermi constant. In this form, lattice results
for the form factor Gð1Þ provide the normalization required
to extract jVcbj from experimental data. Incorporating the
slope of the form factor, ρ2ðwÞ, helps further tighten
experimental determinations of jVcbj. An even more power-
ful approach incorporates the full kinematic dependence on
the scalar and vector form factors, in combination with
experimental data over a range of momentum transfer
[12,39]. When combined with our form factor results,
future experimental data for the Bs → Dslν decay will
provide a new method to extract jVcbj and may shed light
on the long-standing tension between exclusive and inclu-
sive determinations of jVcbj.

TABLE IX. Error budget for the ratio of the form factors,
fBs→Ds
0 ðM2

πÞ=fB→D
0 ðM2

KÞ (second column) and fBs→Ds
0 ðM2

πÞ=
fB→D
0 ðM2

πÞ (third column). We describe each source of uncer-
tainty in more detail in the accompanying text.

Partial uncertainty (%)

Type
fBs→Ds
0

ðM2
πÞ

fB→D
0

ðM2
KÞ

fBs→Ds
0

ðM2
πÞ

fB→D
0

ðM2
πÞ

Statistical 2.28 2.32
Chiral extrapolation 1.22 1.22
Quark mass tuning 0.81 0.81
Discretization 3.48 3.49
Kinematic 1.38 1.43
Matching 0.07 0.05
Total 6.15 6.18

FIG. 14. Chiral and continuum extrapolated form factors,
f0ðq2Þ (lower band) and fþðq2Þ (upper band), as a function
of the momentum transfer, for both Bs → Ds (purple hatched
band) and B → D (plain turquoise band) semileptonic decays,
including all sources of statistical and systematic uncertainty. The
lattice data for each decay cannot be distinguished on this plot
and are therefore not included. See Fig. 10 for a detailed plot of
the results for the form factors at finite lattice spacing for both
decays.
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B. Form factor error budget

We tabulate the errors in the form factors at zero
momentum transfer, Eq. (25), in Table VIII. The sources
of uncertainty listed in Table VIII are
(a) Statistical. The statistical uncertainties include the

two- and three-point correlator fit errors and those
associated with the lattice spacing determination, r1
and r1=a.

(b) Chiral extrapolation. This uncertainty includes the
valence and sea quark mass extrapolation errors and
chiral logarithms in the chiral-continuum extrapola-
tion. These effects correspond to the fit parameters cij
in Eq. (20).

(c) Quark mass tuning. Uncertainties arising from tuning
errors in the light and strange quark masses at finite
lattice spacing, including partial quenching effects
between the HISQ valence and AsqTad sea quarks.
These uncertainties are generally very small.

(d) Discretization. Discretization effects incorporate
the ðamcÞn and ðaEDs

=πÞn terms in the modified z-
expansion. These effects are the dominant source of
uncertainty in our results.

(e) Kinematic. These uncertainties stem from the z-
expansion coefficients and the locations of the poles
in the Blaschke factors.

(f) Matching. Matching errors arise from the m⊥;∥ fit
parameters discussed in the previous section. Pertur-
bative matching uncertainties are the second-largest
source of uncertainty in our final results. We propagate
these uncertainties from the large momentum-transfer
region, for which we have lattice results, to zero
momentum transfer.

The uncertainties associated with physical meson mass
input errors and finite volume effects, which are both less
than 0.01%, are not included in these estimates, because
they are negligible contributions to the final error budget. In
our error budget, we also neglect uncertainties from
electromagnetic effects, isospin breaking, and the effects
of quenching in the charm quark in the gauge ensembles.
In Table IX we list the uncertainties in the form factor

ratios, Eqs. (26) and (27). These uncertainties are domi-
nated by those coming from the B → Dlν decay [12].

C. Semileptonic decay phenomenology

With our results for the ratio of the form factors,
fBs→Ds
0 =fB→D

0 , in Eqs. (26) and (27), we can now determine
the ratio of fragmentation fractions. LHCb presents their
measurement of these ratios in the form [40]

fs
fd

¼ 0.310ð30Þstatð21Þsyst
1

N aN F
; ð37Þ

fs
fd

¼ 0.307ð17Þstatð23Þsyst
1

N aN eN 0
F
; ð38Þ

where the N a parametrize deviations from naive factori-
zation and N e is an electroweak correction factor to
account for W-exchange. The dependence on the form
factors is expressed in N F and N 0

F, which are given in
Eq. (2). For convenience, we repeat those expressions here:

N F ¼
�
fðsÞ0 ðM2

πÞ
fðdÞ0 ðM2

KÞ

�2
and N 0

F ¼
�
fðsÞ0 ðM2

πÞ
fðdÞ0 ðM2

πÞ

�2
: ð39Þ

These ratios are relevant to the extraction of the fragmen-
tation fraction ratios from the branching fraction ratios

BðB̄0
s → Dþ

s π
−Þ

BðB̄0 → DþK−Þ and
BðB̄0

s → Dþ
s π

−Þ
BðB̄0 → Dþπ−Þ ; ð40Þ

respectively.
Using our results in Eqs. (26) and (27), we obtain

N F ¼ 1.00ð12Þ; ð41Þ

N 0
F ¼ 1.01ð12Þ: ð42Þ

These results are uncorrelated with the other factors in
Eqs. (37) and (38), so that we can update the LHCb result
for the fragmentation ratio directly. Using the values of
N a ¼ 1.00ð2Þ and N e ¼ 0.966ð75Þ [8,9], we find

fs
fd

¼ 0.310ð30Þstatð21Þsystð6Þtheorð38Þlatt ð43Þ

by using N F for the BðB̄0
s → Dþ

s π
−Þ=BðB̄0 → DþK−Þ

channel. The uncertainties in this result are the experi-
mental statistical and systematic uncertainties; the uncer-
tainty associated with N a; and the uncertainties in our
lattice input, N F. We assume no correlations in these
uncertainties. For the BðB̄0

s → Dþ
s π

−Þ=BðB̄0 → Dþπ−Þ
channel, we obtain

fs
fd

¼ 0.307ð16Þstatð21Þsystð23Þtheorð44Þlatt ð44Þ

from N 0
F.

These results are in agreement with the result determined
in [10],

fs
fd

¼ 0.286ð16Þstatð21Þsystð26Þlattð22ÞNe: ð45Þ

Both of these lattice results are a little higher than that
quoted in [1] of fs=fd ¼ 0.259ð15Þ or the average value of
fs=fd ¼ 0.267þ22

−20 determined in [5], but all results agree
within the quoted uncertainties.
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The ratio

RðDÞ ¼ BðB → DτνÞ
BðB → DlνÞ ð46Þ

measures the ratio of the branching fraction of the semi-
leptonic decay to the τ lepton to the branching fraction to an
electron or muon (represented by l). The experimental
measurements of this branching fraction ratio are currently
in tension with the Standard Model result. The global
experimental average is [39,41–43]

RðDÞexp ¼ 0.391ð41Þstatð28Þsys; ð47Þ

a value that is approximately 4σ from the theoretical
expectation

RðDÞtheor ¼ 0.299ð7Þ; ð48Þ
where we have taken the mean of the results in [10,12,44],
and combined uncertainties in quadrature, neglecting any
correlations for simplicity, because a full analysis of this
result is beyond the scope of this work.
We present the first calculation from lattice QCD of

the corresponding ratio for the semileptonic Bs → Dslν
decay,

RðDsÞ ¼
BðBs → DsτνÞ
BðBs → DslνÞ

: ð49Þ

This ratio has not been experimentally measured and this
provides an opportunity for lattice QCD to make a clear
prediction of the value expected from the Standard Model.
Using the form factor results of the previous section, we
find

RðDsÞ ¼ 0.301ð6Þ: ð50Þ

We provide a complete error budget for this ratio in Table X
and plot the differential branching fractions for Bs → Dsμν

and Bs → Dsτν as functions of the momentum transfer in
Fig. 15. This result is larger, and about three times more
precise, than the prediction of RðDsÞ ¼ 0.274þ20

−19 [19],
where the form factors were determined from a relativistic
quark model.

VI. SUMMARY

We have presented a lattice study of the Bs → Dslν
semileptonic decay over the full kinematic range of
momentum transfer and determined the form factors,
fBs→Ds
0 ðq2Þ and fBs→Dsþ ðq2Þ. Combining these results with

a previous determination of the corresponding form factors
for the B → Dlν decay [12], we extracted the ratios
fBs→Ds
0 ðM2

πÞ=fB→D
0 ðM2

KÞ and fBs→Ds
0 ðM2

πÞ=fB→D
0 ðM2

πÞ.
From these ratios we computed the fragmentation fraction
ratio fs=fd, an important ingredient in experimental
determinations of Bs meson branching fractions at hadron
colliders, particularly for the rare decay BðBs → μþμ−Þ. In
addition, we predict RðDsÞ, the ratio of the branching
fractions of the semileptonic Bs decay to tau and to
electrons and muons.
There are a number of tensions between experimental

measurements and theoretical expectations for semilep-
tonic decays of the B meson. These tensions include the
branching fraction ratios, RðDð�ÞÞ, and determinations of
jVcbj from exclusive and inclusive decays. Future exper-
imental measurements of semileptonic decays of Bs mes-
ons, in conjunction with our results for the form factors and
for RðDsÞ, may provide some insight into these tensions.
Our result for the form factor at zero recoil, Gð1Þ,

presented in Eq. (31), is consistent with an earlier deter-
mination by the ETM Collaboration [11]. Moreover, our
results for the form factor ratios fBs→Ds

0 ðM2
πÞ=fB→D

0 ðM2
KÞ

and fBs→Ds
0 ðM2

πÞ=fB→D
0 ðM2

πÞ, given in Eqs. (26) and (27),

TABLE X. Error budget for the branching fraction ratio RðDsÞ.
We describe each source of uncertainty in more detail in the
accompanying text. The uncertainties associated with discretiza-
tion effects are no longer the dominant source of uncertainty,
because the discretization effects largely cancel in the ratio.

Type Partial uncertainty (%)

Statistical 0.90
Chiral extrapolation 0.16
Quark mass tuning 0.19
Discretization 0.84
Kinematic 1.13
Matching 1.05
Total 1.94

FIG. 15. Differential branching fractions for the Bs → Dsμν
(hatched magenta band) and Bs → Dsτν (purple band) decays.
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are in agreement with the values obtained by the FNAL/
MILC collaborations. Our determination of this ratio
incorporates correlations between the form factors for both
decay channels, but the quoted uncertainty does not include
the statistical correlations between the raw correlator data,
which are negligible at the current level of precision. We
determine values for the fragmentation fraction ratio,
fs=fd, Eqs. (43) and (44). These results have larger
uncertainties associated with the form factor inputs than
those determined in [10]. Finally, we give the branching
fraction ratio, RðDsÞ, in Eq. (50).
The dominant uncertainty in the form factors for the

Bs → Dslν decay arises from the discretization effects,
with a significant contribution from the matching to full
QCD. Higher order calculations in lattice perturbation
theory with the highly improved actions employed in this
calculation are currently unfeasible, so we are exploring
ways to reduce matching errors by combining results
calculated using NRQCD with those determined with an
entirely relativistic formulation for the b-quark. This
approach is outlined in [12,25].
The LHC is scheduled to significantly improve the

statistical uncertainties in experimental measurements of
Bs decays with more data over the next decade. Currently,
the most precise determinations of the fragmentation
fraction ratio, fs=fd, are those measured in situ at the
LHC. To improve the theoretical calculations of this ratio
requires several advances. At present the lattice form factor
results are the largest source of uncertainty in the theoreti-
cal result for the ratio, but this could be improved with a
suitable global averaging procedure, such as that under-
taken in [45].

Further improvements in the uncertainty in the Standard
Model expectation of the ratio of the fragmentation fractions
will ultimately require concerted effort to reduce all sources
of uncertainty, not just those from lattice QCD. Improved
theoretical determinations of the fragmentation fraction ratio
will benecessary to take full advantageof thebetter statistical
precision of future experimental results and shed light on
current tensions in the heavy quark flavor sector.
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APPENDIX: RECONSTRUCTING
FORM FACTORS

In this Appendix we provide our fit results for the
coefficients of the z-expansion, for both the Bs → Dslν
decay in Table XI, and for the ratio of the B → Dlν and
Bs → Dslν decays in Table XII. We also tabulate our
choice of priors for the chiral-continuum extrapolation for
the Bs → Dslν decay in Tables XIII, XIV, and XV, and for
the ratio of the decays in Tables XVI, XVII, and XVIII.

TABLE XI. Coefficients of z-expansion and the corresponding Blaschke factors (first row), and their covariances, for the Bs → Dslν
decay. The rows correspond to the columns, moving from top to bottom and left to right, respectively.

að0Þ0 að0Þ1 að0Þ2
P0 aðþÞ

0 aðþÞ
1 aðþÞ

2
Pþ

0.658(31) −0.10ð30Þ 1.3(2.8) 6.330(9) 0.858(32) −3.38ð41Þ 0.6(4.7) 6.43(10)
9.53401×10−4 −3.03547×10−3 −5.42391×10−3 8.76501×10−4 5.94503×10−4 1.58251×10−3 1.60091×10−2 6.15598×10−6

9.03097×10−2 −0.101760 −1.69040×10−2 4.46248×10−4 2.36283×10−2 4.56659×10−2 −1.29286×10−4
8.02283 3.96101×10−3 8.48079×10−3 0.104246 0.760797 −8.23960×10−7

1.06275×10−2 −3.65165×10−5 −1.30241×10−3 −3.70251×10−3 8.06159×10−5

1.00761×10−3 −4.23358×10−3 −2.64511×10−2 9.42502×10−6

0.165251 −0.617234 −1.88031×10−4
22.49292 6.83236×10−5

8.09911×10−5
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TABLE XIV. Group II priors and fit results for the parameters
in the modified z-expansion for the Bs → Dslν decay.

Quantity Prior Fit result

r1=a 2.6470(30) 2.6474(30)
2.6180(30) 2.6179(30)
2.6440(30) 2.6437(30)
3.6990(30) 3.6992(30)
3.7120(40) 3.7116(39)

aMB 3.23019(25) 3.23018(25)
3.26785(33) 3.26783(33)
3.23585(38) 3.23579(38)
2.30884(17) 2.30885(17)
2.30163(23) 2.30162(22)

aEDð0; 0; 0Þ 1.18750(15) 1.18750(15)
1.20126(21) 1.20125(20)
1.19031(24) 1.19028(24)
0.84680(10) 0.84680(10)
0.84410(12) 0.84410(12)

aEDð1; 0; 0Þ 1.21497(19) 1.21506(19)
1.24055(30) 1.24075(28)
1.23055(35) 1.23060(31)
0.87579(16) 0.87582(15)
0.87340(19) 0.87338(19)

aEDð1; 1; 0Þ 1.24264(19) 1.24276(19)
1.27942(29) 1.27953(27)
1.26974(35) 1.26948(32)
0.90397(16) 0.90399(15)
0.90138(18) 0.90135(18)

aEDð1; 1; 1Þ 1.26988(22) 1.26999(22)
1.31755(46) 1.31737(40)
1.30768(48) 1.30738(41)
0.93131(21) 0.93132(20)
0.92861(24) 0.92864(23)

aMπ 0.15990(20) 0.15990(20)
0.21110(20) 0.21110(20)
0.29310(20) 0.29310(20)
0.13460(10) 0.13460(10)
0.18730(10) 0.18730(10)

aMηs 0.41113(18) 0.41113(18)
0.41435(22) 0.41435(22)
0.41185(22) 0.41185(22)
0.29416(12) 0.29416(12)
0.29311(18) 0.29311(18)

aMK 0.31217(20) 0.31217(20)
0.32851(48) 0.32850(48)
0.35720(22) 0.35721(22)
0.22855(17) 0.22855(17)
0.24596(14) 0.24596(14)

aMMILC
K 0.36530(29) 0.36530(29)

0.38331(24) 0.38331(24)
0.40984(21) 0.40984(21)
0.25318(19) 0.25318(19)
0.27217(21) 0.27217(21)

aMMILC
π 0.15971(20) 0.15971(20)

0.22447(17) 0.22447(17)
0.31125(16) 0.31125(16)
0.14789(18) 0.14789(18)
0.20635(18) 0.20635(18)

1þm∥ 1.000(30) 1.001(30)
1þm⊥ 1.000(30) 1.000(30)

TABLE XII. Coefficients and Blaschke factors for the z-
expansions for the ratio of the Bs → Dslν and B → Dlν decays.
Note that the Blaschke factors are common to both expansions.

Fit value

Coefficient Bs → Dslν B → Dlν

að0Þ0
0.663(32) 0.639(32)

að0Þ1
−0.10ð30Þ 0.18(33)

að0Þ2
1.3(2.8) −0.2ð2.9Þ

P0 6.43(10) 6.43(10)

aðþÞ
0

0.868(34) 0.870(38)

aðþÞ
1

−3.35ð43Þ −3.27ð59Þ
aðþÞ
2

0.6(4.7) 0.5(4.8)

Pþ 6.330(9) 6.330(9)

TABLE XIII. Group I priors and fit results for the parameters in
the modified z-expansion for the Bs → Dslν decay.

Prior ½f0� Fit result ½f0� Prior ½fþ� Fit result ½fþ�
a0 0.0(3.0) 0.663(32) 0.0(5.0) 0.868(34)
a1 0.0(3.0) −0.10ð30Þ 0.0(5.0) −3.35ð43Þ
a2 0.0(3.0) 1.3(2.8) 0.0(5.0) 0.6(4.7)

cð1Þ1
0.0(1.0) 0.28(15) 0.0(1.0) 0.43(15)

cð2Þ1
0.0(1.0) −0.20ð1.0Þ 0.0(1.0) 0.48(62)

cð3Þ1
0.0(1.0) 0.03(1.0) 0.0(1.0) −0.003ð1.0Þ

cð1Þ2
0.00(30) 0.20(13) 0.00(30) 0.31(13)

cð2Þ2
0.00(30) 0.02(30) 0.00(30) −0.05ð29Þ

cð3Þ2
0.00(30) −0.005ð0.3Þ 0.00(30) 0.0002(0.3)

dð1Þ1
0.00(30) −0.19ð28Þ 0.00(30) −0.02ð29Þ

dð2Þ1
0.00(30) −0.003ð0.3Þ 0.00(30) −0.002ð0.3Þ

dð3Þ1
0.00(30) 0.002(0.3) 0.00(30) −7 × 10−5ð0.3Þ

dð1Þ2
0.00(30) 0.04(30) 0.00(30) 0.05(30)

dð2Þ2
0.00(30) −0.0002ð0.3Þ 0.00(30) 0.003(0.3)

dð3Þ2
0.00(30) 2 × 10−5ð0.3Þ 0.00(30) −1 × 10−5ð0.3Þ

eð1Þ1
0.00(30) 0.22(24) 0.00(30) 0.08(24)

eð2Þ1
0.00(30) −0.005ð0.3Þ 0.00(30) −0.02ð30Þ

eð3Þ1
0.00(30) 0.004(0.3) 0.00(30) −0.0001ð0.3Þ

eð1Þ2
0.0(1.0) 1.42(53) 0.0(1.0) 0.70(73)

eð2Þ2
0.0(1.0) −0.02ð1.0Þ 0.0(1.0) −0.07ð99Þ

eð3Þ2
0.0(1.0) 0.009(1.0) 0.0(1.0) −0.0002ð1.0Þ

mð1Þ
1

0.00(30) −0.007ð0.236Þ 0.00(30) −0.05ð22Þ
mð2Þ

1
0.00(30) −0.001ð0.3Þ 0.00(30) −0.10ð29Þ

mð3Þ
1

0.00(30) 0.009(0.3) 0.00(30) −0.0002ð0.3Þ
mð1Þ

2
0.0(1.0) −0.43ð42Þ 0.0(1.0) −0.17ð38Þ

mð2Þ
2

0.0(1.0) 0.0003(1.0) 0.0(1.0) −0.77ð85Þ
mð3Þ

2
0.0(1.0) 0.04(1.0) 0.0(1.0) −0.0004ð1.0Þ
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TABLE XV. Group III priors and fit results for the parameters in the modified z-expansion for the Bs → Dslν decay.

Quantity Prior (GeV) Fit result (GeV)

r1 0.3133(23) 0.3130(23)

mphys
ηs

0.6858(40) 0.6858(40)

mphys
π 0.13500000(60) 0.13500000(60)

mphys
Bs

5.36679(23) 5.36679(23)

mphys
Ds

1.96830(10) 1.96830(10)

mphys
Ks

0.4957(20) 0.4957(20)

Mþ 6.3300(90) 6.3300(90)
M0 6.398(99) 6.42(10)

TABLE XVI. Group I priors and fit results for the parameters in the modified z-expansion for the ratio of the form factors for the
Bs → Dslν decay, indicated by the superscript Bs, and B → Dlν decay, labeled by the superscript B.

Prior ½fBs
0 � Fit result ½fBs

0 � Prior ½fBsþ � Fit result ½fBsþ � Prior ½fB0 � Fit result ½fB0 � Prior ½fBþ� Fit result ½fBþ�
a0 0.0(3.0) 0.663(32) 0.0(5.0) 0.639(32) 0.0(3.0) 0.868(34) 0.0(5.0) 0.870(38)
a1 0.0(3.0) −0.10ð30Þ 0.0(5.0) 0.18(33) 0.0(3.0) −3.35ð43Þ 0.0(5.0) −3.27ð59Þ
a2 0.0(3.0) 1.3(2.8) 0.0(5.0) −0.2ð2.9Þ 0.0(3.0) 0.6(4.7) 0.0(5.0) 0.5(4.8)

cð1Þ1
0.0(1.0) 0.28(15) 0.0(1.0) −0.10ð23Þ 0.0(1.0) 0.43(15) 0.0(1.0) 0.50(25)

cð2Þ1
0.0(1.0) −0.2ð1.0Þ 0.0(1.0) −0.08ð1.0Þ 0.0(1.0) 0.48(62) 0.0(1.0) −1.13ð79Þ

cð3Þ1
0.0(1.0) 0.03(1.0) 0.0(1.0) 0.002(1.0) 0.0(1.0) −0.003ð1.0Þ 0.0(1.0) 0.004(1.0)

cð1Þ2
0.00(30) 0.20(13) 0.00(30) −0.11ð19Þ 0.00(30) 0.31(13) 0.00(30) 0.38(20)

cð2Þ2
0.00(30) 0.02(30) 0.00(30) 0.008(0.3) 0.00(30) −0.05ð29Þ 0.00(30) 0.13(29)

cð3Þ2
0.00(30) −0.005ð0.3Þ 0.00(30) −0.0003ð0.3Þ 0.00(30) 0.0002(0.3) 0.00(30) −0.0005ð0.3Þ

dð1Þ1
0.00(30) −0.19ð28Þ 0.00(30) 0.01(28) 0.00(30) −0.02ð29Þ 0.00(30) −0.06ð28Þ

dð2Þ1
0.00(30) −0.003ð0.3Þ 0.00(30) 0.0005(0.3) 0.00(30) −0.002ð0.299Þ 0.00(30) −0.02ð0.3Þ

dð3Þ1
0.00(30) 0.002(0.3) 0.00(30) 2 × 10−5ð0.3Þ 0.00(30) −7 × 10−5ð0.3Þ 0.00(30) 9 × 10−5ð0.3Þ

dð1Þ2
0.00(30) 0.04(30) 0.00(30) −0.02ð30Þ 0.00(30) 0.05(30) 0.00(30) 0.06(30)

dð2Þ2
0.00(30) −0.0002ð0.3Þ 0.00(30) −0.0003ð0.3Þ 0.00(30) 0.003(0.3) 0.00(30) −0.002ð0.3Þ

dð3Þ2
0.00(30) 2 × 10−5ð0.3Þ 0.00(30) 3 × 10−6ð0.3Þ 0.00(30) 2 × 10−5ð0.3Þ 0.00(30) −1 × 10−6ð0.3Þ

eð1Þ1
0.00(30) 0.22(24) 0.00(30) 0.27(25) 0.00(30) 0.08(24) 0.00(30) 0.05(25)

eð2Þ1
0.00(30) −0.005ð0.3Þ 0.00(30) 0.006(0.3) 0.00(30) −0.02ð0.3Þ 0.00(30) −0.01ð30Þ

eð3Þ1
0.00(30) 0.004(0.3) 0.00(30) −8 × 10−5ð0.3Þ 0.00(30) −0.0001ð0.3Þ 0.00(30) 4 × 10−5ð0.3Þ

eð1Þ2
0.0(1.0) 1.42(53) 0.0(1.0) 1.49(66) 0.0(1.0) 0.70(73) 0.0(1.0) 0.12(82)

eð2Þ2
0.0(1.0) −0.02ð1.0Þ 0.0(1.0) 0.02(1.0) 0.0(1.0) −0.07ð1.0Þ 0.0(1.0) −0.02ð99Þ

eð3Þ2
0.0(1.0) 0.009(1.0) 0.0(1.0) −0.0003ð1.0Þ 0.0(1.0) −0.0002ð1.0Þ 0.0(1.0) 3 × 10−5ð1.0Þ

mð1Þ
1

0.00(30) −0.007ð0.236Þ 0.00(30) −0.10ð24Þ 0.00(30) −0.05ð22Þ 0.00(30) 0.03(24)

mð2Þ
1

0.00(30) −0.001ð0.3Þ 0.00(30) 0.02(30) 0.00(30) −0.10ð29Þ 0.00(30) −0.03ð29Þ
mð3Þ

1
0.00(30) 0.009(0.3) 0.00(30) −0.0003ð0.3Þ 0.00(30) −0.0002ð0.3Þ 0.00(30) 5 × 10−5ð0.3Þ

mð1Þ
2

0.0(1.0) −0.43ð42Þ 0.0(1.0) −0.31ð44Þ 0.0(1.0) −0.17ð38Þ 0.0(1.0) −0.19ð40Þ
mð2Þ

2
0.0(1.0) 0.0003(1.0) 0.0(1.0) 0.1(1.0) 0.0(1.0) −0.77ð85Þ 0.0(1.0) −0.12ð89Þ

mð3Þ
2

0.0(1.0) 0.04(1.0) 0.0(1.0) −0.002ð1.0Þ 0.0(1.0) −0.0004ð1.0Þ 0.0(1.0) 5 × 10−5ð1.0Þ
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TABLE XVIII. Shared (Group II and III) priors and fit results for the parameters in the modified z-expansion for the ratio of the form
factors for the Bs → Dslν and B → Dlν decays. These priors are common to both fits to the Bs → Dslν and B → Dlν decays, which
are fitted in the same script to account for correlations between form factor results. Values for Group III priors are given in GeV.

Quantity Prior Fit result

r1=a 2.6470(30) 2.6474(30)
2.6180(30) 2.6174(30)
2.6440(30) 2.6442(30)
3.6990(30) 3.6990(30)
3.7120(40) 3.7121(39)

1þm∥ 1.000(30) 0.998(30)
1þm⊥ 1.000(30) 1.003(30)

Quantity Prior (GeV) Fit result (GeV)
r1 0.3132(23) 0.3130(23)
mphys

ηs
0.6858(40) 0.6858(40)

mphys
π 0.13500000(60) 0.13500000(60)

mphys
Bs

5.36679(23) 5.36679(23)

mphys
Ds

1.96830(10) 1.96830(10)

mphys
Ks

0.4957(20) 0.4957(20)

mphys
B

5.27941(17) 5.27942(17)

mphys
D

1.86690(40) 1.86690(40)
Mþ 6.3300(90) 6.3300(90)
M0 6.42(10) 6.42(10)

TABLE XVII. Group II priors and fit results for the parameters in the modified z-expansion for the ratio of the form factors for the
Bs → Dslν and B → Dlν decays.

Quantity Prior ½Bs → Dslν� Fit result ½Bs → Dslν� Prior ½B → Dlν� Fit result ½B → Dlν�
aMBðsÞ 3.23019(25) 3.23017(25) 3.18937(62) 3.18933(62)

3.26781(33) 3.26782(33) 3.23194(88) 3.23211(87)
3.23575(38) 3.23578(38) 3.21199(77) 3.21193(77)
2.30906(26) 2.30905(26) 2.28120(49) 2.28117(48)
2.30122(16) 2.30122(16) 2.28102(40) 2.28112(40)

aEDðsÞ ð0; 0; 0Þ 1.18750(15) 1.18750(15) 1.13904(97) 1.13927(84)
1.20126(21) 1.20126(20) 1.16001(73) 1.16026(71)
1.19031(24) 1.19026(24) 1.16339(54) 1.16333(54)
0.84675(12) 0.84674(10) 0.81448(35) 0.81444(35)
0.84419(10) 0.84421(10) 0.81995(27) 0.82005(26)

aEDðsÞ ð1; 0; 0Þ 1.21497(19) 1.21505(19) 1.1682(10) 1.16794(90)
1.24055(30) 1.24076(28) 1.19896(99) 1.19915(94)
1.23055(35) 1.23058(31) 1.20399(76) 1.20448(69)
0.87579(16) 0.87580(15) 0.84377(56) 0.84399(50)
0.87353(16) 0.87344(15) 0.85102(40) 0.85086(38)

aEDðsÞ ð1; 1; 0Þ 1.24264(19) 1.24275(19) 1.19863(85) 1.19853(82)
1.27942(29) 1.27953(27) 1.24009(87) 1.23987(83)
1.26974(35) 1.26945(32) 1.24476(78) 1.24471(72)
0.90397(16) 0.90398(15) 0.87274(56) 0.87267(52)
0.90144(16) 0.90146(15) 0.87943(38) 0.87950(36)

aEDðsÞ ð1; 1; 1Þ 1.26988(22) 1.26998(22) 1.22850(85) 1.22833(83)
1.31755(46) 1.31732(40) 1.27838(93) 1.27815(91)
1.30768(48) 1.30751(42) 1.28312(97) 1.28316(90)
0.93126(24) 0.93126(24) 0.89996(74) 0.90037(66)
0.92873(24) 0.92879(20) 0.90647(50) 0.90645(47)
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