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Abstract: A personal selection of 32 recent papsrpresented covering various
aspects of current developments in bioorganic csieynand novel natural products

such as svetamycin B fromSx eptomyces species.

Biosynthetic labelling studies have revealed that pireviously assigned structurkes
and?2 for phyllostictines A and B, fungal phytotoxin®in Phyllostica cirsii, should
be revised t@® and4, respectively. Phyllostictine A3 was shown to be derived from
a hexaketide and alanine. It is proposed that ddelpyrone5, a metabolite of

Trichoderma gamsii, is derived from two polyketide chaifs.
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Gastradefurphend, from Gastrodia elata, has a new 9,9-neolignan skeleton with the
addition of two 4-hydroxybenzyl unifsThe authors propose a biosynthetic pathway

to gastradefurphend. Several hydroquinone metabolites have been eblaom a



marine-derivedsliomastix species including gliomastin Athat appears to be formed

by a Diels-Alder cycloaddition of derivatives oftlho-metabolite8 and9.*
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The Antarctic soil-derived fungusspergillus ochraceopetaliformis produces several

sesquiterpenoid metabolites, including ochracene®)/fand B 11, that have new
skeletons. Biosynthetic pathways to ochracenes18 and B 11 from humulane
precursors have been proposed. XylopianE2As a dimeric guaiane sesquiterpenoid
from leaves ofXylopia vielana.® It is postulated that the caged structure of xigna

A 12 is formed by a Diels-Alder cycloaddition of guagaprecursors followed by a
[2+2]cycloaddition. Irradiation of the co-constitievielanin F13 produced xylopiana

A 12 which suggests that it may be formed in naturéieyaction of sunlight.
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Cinnamomol A14, a diterpenoid from leaves @innamomum cassia, has a novel
hexacyclic ring systerhVitepyrroloid A 15, from leaves oVitex trifolia, is a labdane
diterpenoid with an unusual cyano-substituted pgrring® The structures of both
cinnamomol Al4 and vitepyrroloid A15 were confirmed by X-ray analysis and
biosynthetic routes for their formation have beeoppsed. Neomacrophorin 26, a
metabolite of Trichoderma sp. 1212-03, is the first example of a natural
[4.4.3]propellane with a carbon framewdrkihe authors suggest a biosynthetic
pathway involving the coupling of a dihydroanthatpne derivative to a

meroterpenoid.

The structure of cimicifoetone A7, a black pigment isolated fror@imicifuga
foetida, was established by X-ray analy§isCimicifoetone A17 is the first example
of a dimeric indole alkaloid formed by the Dielsd&l addition of a prenyl side chain
of one unit with the aromatic ring of another. Mgine A 18, from Alstonia
scholaris, has a novel ring systethA biosynthetic pathway to melosline8 from a
stemmadenine derivative has been proposed. Cyaohititblol X 19, a metabolite of
Helminthosporium velutinum, contains an unusual fully substituted spirocycbpane
that appears to be formed by addition of an oxdliferm of the co-metabolite

cyclohelminthol V20 to a maleimide derivative.



Biosynthetic studies have established that crocagin2l, a metabolite of
Chondromyces crocatus, is formed from thre€-terminal amino acids of a precursor
peptide™® Aspochalazine 22, a metabolite oAAspegillus sp. Z4, is the first example
of an azabicyclic aspochalasihiThe structure of aspochalazine?2 was established
by X-ray analysis and a biosynthetic pathway ferfd@rmation has been proposed

involving the introduction of the bridging nitrogénom alanine by a-transaminase.

Several metabolites have been isolated from thédiascDidemnum molle with
repeating o-carboxyphenethylamide units such as mollecarban&te23.’® A
biosynthetic pathway ta-carboxyphenethylamine from shikimic acid has been
proposed. Seven halogenated peptides, such asngweataB 24, have been isolated

from a Strepotomyces species that include unusual amino acids sudkrasthylated



piperazic acid® Biosynthetic studies have demonstrated that drsthis the

precursor of piperazic acid and the methylatiotha®-position is SAM-dependent.
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The entire biosynthetic gene cluster of trichostad 25, an inhibitor of histone
deacetylase frorStreptomyces sp. RM72 has been report€dThis work has revealed
the enzymes responsible for formation of the teahihydroxamic acid, which
involves transfer of hydroxylamine from the nonginbgenic amino acid,-glutamic
acid y-monohydroxamate. In a study designed to invesigja¢ biosynthesis of the
naphthalenic neoansamycins, a disrupted faamtant strain has produced ten novel
benzenic ansamycins, such as Sé@b-neoansamycin A6.*® The authors propose
that these are the benzenic counterparts of newsegs and that a putative
hydroxylase, Nam7 interconverts these two classesompounds by naphthalenic

ring formation.
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The three enzymes involved in the biosynthesis i €4-alkyl side-chain of
neocarazostatin &7, a bacterial alkaloid and potent free radical scger have been
confirmed®® These include two pathway specific enzymes, NasfEee-standing acyl
carrier protein and NzsF, a homolog oB-&etoacyl-acyl carrier protein synthase Ill,
which catalyses a Claisen condensation. Investigaif the stereospecificity of four
Sadenosyl methionine-depende@tmethyltransferases frortrans-AT polyketides
synthases (PKS), including BonMT2 involved in borekic acid28 biosynthesis, all

showed exclusive production of theRj22-methyl-3-ketoacyl-ACP produét.

The dehydratase domain responsible for the dehgdraf the C17 hydroxy group
during the biosynthesis of iso-migrastafif, a 12-membered macrolide from the
glutarimide-containing polyketide family has beewealed?’ Systematic inactivation
of four of the dehydratase domains of the iso-nsian PKS and characterisation of
the wild-type and mutant enzymes in vivo, identfiBH10 as the enzyme which
catalyses the long range dehydration of the C17dxydgroup. A new set of natural
products, such as oxaleimide 20, formed through the interaction of a highly
reducing PKS (HRPKS) with a PKS-nonribosomal pepsgnthetase (PKS-NRPS),
have been isolated frorRenicillium specie$? The HRPKS produces an alkene

containing amino acid that is incorporated by tderg/lation domain of the PKS-



NRPS and forms thérans-decalin ring system via an intramolecular Dielsié

reaction with a diene-containing octaketide commbne

Genome mining has led to the discovery of six newatve biosynthetic genes of the
austinol/dehydroaustinol biosynthetic pathway ia flamentous fungu#spergillus
calidoustus.?® This allowed the characterisation of an unusualitecative diketide
synthase, which was used for the production of @& mesecticidal derivative,
calidodehydroausti®l. A new class of stigonematales cyclases thatys#ahe tri-
and tetracyclic core formation of indole alkaloisisch as 12pi-hapalindole U32
have been reportéd.In vitro reconstitution of the functional activés of this new
class of indole alkaloid cyclases show they catalygramolecular ring formation

through a cascade process, forming four new stereogentres.

The total synthesis of the fungal tetramate natpraduct, equisetir83 has been
reported using the Diels-Alderase Fsa2 to consthetrans-decalin ring systerft.
Unlike thermal or acid-mediated [4+2]cyclisation tife triene precursor, which
produced a mixture @ndo andexo products, the Fsa2 promoted Diels-Alder reaction
proceeded exclusively via tremdo-transition state to give equisetd#3 as the sole

product (Scheme 1). The substrate scope for intisular benzoin reactions with



benzaldehyde lyase (BAL) fronfPseudomonas fluorescens biovar 1 has been
established® A range of substituted benzaldehydes connecteal fbxe atom diether
linkage proved the most effective substrates, githe novel cyclic benzoin adducts

in high yields and enantioselectivities (Scheme 2).

0

NMe
OH

Me \ // \ NMe
MO”
(e}

O o
\ /
: BAL, it
_
67% yield
o Q 98% ee

Scheme 2

A bacterial acyltransferase has been shown to perboth Friedel-Crafts acylations
and Fries rearrangement-like reactions with resotcilerivatives’ Using readily
available O-acyl donors, such as isopropenyl acetate allowigh) regioselective
and efficientC-acylation reactions (Scheme 3). The hydroxyhalagen of alkenes
for the regioselective preparation of halohydrias been achieved using a vanadium-
dependent chloroperoxidase (VCPO) fr@urvularia inaequalis.®® The robust nature
of the enzyme against hydrogen peroxide enabledfffegent synthesis of a range of

halohydrins on preparative scale (Scheme 4).
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In an effort to overcome the limitations of aminehgidrogenases for preparative
reductive amination, a study has been conductedvistigate the effect of reaction
engineering, immobilised enzyme and stable engateeariants in solving these
issues® Using a biphasic system and an engineered amihgddegenase from
Caldalkalibacillus thermarum as a lyophilised whole-cell preparation, allowée t
efficient reductive amination of up to 400 mM ofeploxy-2-propanone (Scheme 5).
A new ©)-specific carbonyl reductas&RED) from the yeas€andida parapsilosis
ATCC 7330 has been purified and used for the reoluaif various aryl carbonyl
compounds® While minimal activity was observed with aldehydes substrates,

ketones were reduced with excellent enantioselec(i@cheme 6).
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5-Phenylfuran-2-yB-alanine ethyl esters have been efficiently resblugsing
immobilised lipases such as lipase PS (LPS-IM) frBorkholderia cepacia.®
Instability and solubility issues of the 5-phenyHn-2-yl{3-alanine ethyl esters were

overcome using stable hydrochloride salts that vexaellent substrates for kinetic



resolution (Scheme 7). A series of ratiometric faltehyde probe indicators have
been developed for the excitation-ratiometric fegmence imaging of formaldehyde
production in living system¥. On reaction with formaldehyde, the coumarin detive
homoallylamines (e.g34) are converted to an aldehyde congener throughzan

Cope rearrangement, resulting in an approximate nd® shift in excitation

wavelength. These probes demonstrated high satgdiov formaldehyde over other
reactive carbonyl species and were used to moridanaldehyde changes in

biological samples using live-cell imaging.
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