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Abstract 34 

Systemic inflammation in end-stage renal disease (ESRD) is an established risk factor for mortality 35 

and a catalyst for other complications which are related to a premature aging phenotype, including 36 

muscle wasting, vascular calcification and other forms of premature vascular disease, depression, 37 

osteoporosis and frailty. Uremic inflammation is also mechanistically related to mechanisms involved 38 

in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered  nutrient 39 

sensing, which can have direct effect on cellular and tissue function. In addition to uremia-specific 40 

causes such as abnormalities in the phosphate- Klotho axis, there are remarkable similarities 41 

between the pathophysiology of uremic inflammation and so-called “inflammaging” in the general 42 

population.  Potentially relevant, but still somewhat unexplored in this respect are abnormal or 43 

misplaced protein structures as well as abnormalities in tissue homeostasis, which evoke danger 44 

signals through damage associated molecular patters (DAMPS) as well as the senescence associated 45 

secretory phenotype (SASP). Systemic inflammation, in combination with the loss of kidney function, 46 

can impair the resilience of the body to external and internal stressors by reduced functional and 47 

structural tissue reserve, and by impairing normal organ crosstalk, thus providing an explanation for 48 

the greatly increased risk of homeostatic breakdown in this population. In this review, the relation 49 

between uremic inflammation and a premature aging phenotype, as well as potential causes and 50 

consequences are discussed.  51 

 52 

  53 
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Introduction 54 

End-stage renal disease (ESRD) is characterized by a greatly increased risk of cardiovascular and 55 

infectious mortality, as well as by structural and functional abnormalities of various organ systems, 56 

most notably the cardiovascular, the immune, and the musculoskeletal system. Substantial 57 

similarities in phenotype exist between ESRD and the aging process. About 30-50% of pre-dialysis, 58 

hemodialysis (HD), and peritoneal dialysis (PD) patients have serologic evidence of an active 59 

inflammatory response that is related to adverse outcomes (17, 18, 132). Persistent “uremici 60 

inflammation”, as this phenomenon has been coined in the literature (148),  resembles that observed 61 

in various chronic diseases as well as in the aging process in the general population (“inflammaging”).  62 

(68, 137).  63 

Although several reviews already have addressed the causes and nature of uremic 64 

inflammation in detail (18, 60, 132), recent findings have revealed novel causes and mechanisms of 65 

uremic inflammation as well as the catalytic role of systemic inflammation changing the risk factor 66 

profile. Since systemic inflammation may be both a cause and consequence of (premature) aging this 67 

may be of relevance for the marked discrepancy between chronological and biological age observed 68 

ESRD (68, 137). The aim of this review is to discuss potential similarities between the 69 

pathophysiology of inflammaging and systemic uremic inflammation, as well as on the putative 70 

relation between uremic inflammation and premature aging.  71 

 72 

Mechanisms of uremic inflammation 73 

Premature aging of the immune system 74 

The immune system is a complex orchestration of cells, cytokines and other molecules that act in a 75 

paracrine, autocrine, or endocrine manner to protect the human organism primarily against 76 

infectious disease (114). Whereas this mechanisms is essential for survival, when chronically 77 
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stimulated, it can become maladaptive and is in this sense an example of antagonistic pleiotropy 78 

(142). In the uremic milieu, abnormalities in the immune response are characterized by an abnormal 79 

activation and a reduced functioning of components of the innate and adaptive immune system, 80 

which contributes to systemic inflammation and increased susceptibility for infectious complications 81 

(58). Various abnormalities, such as an impaired neutrophilic phagocytic capacity, depletion of B-cells 82 

and naïve T-cells as well as depletion of dendritic cells contribute to reduced functioning of the 83 

immune system  (“immunosenescence”)  (8, 58, 155).  Important similarities exist between the 84 

effects of aging and ESRD on the adaptive immune response (8, 9), whereas a comparable systemic 85 

activation of the innate immune response may also be observed during aging (“inflammaging”) (68). 86 

Both factors argue for a premature aging process of the uremic immune system (9). 87 

Activation of the innate immune system 88 

The activation of the innate immune system in uremia is characterized by an increase in pro-89 

inflammatory cytokines, such as TNF and interleukin (IL)-6. Activation of transmembranous Toll-like 90 

receptors (TLR4), classically by pathogen-associated molecular patterns (PAMPS), induces 91 

transcription factors, such as nuclear factor-κB (NFκB) (89, 96), which is a master regulator of 92 

cytokine secretion. Moreover, IL-6 stimulates hepatic C-reactive protein (CRP) production (28). 93 

Importantly, NFκB is also upregulated by oxidative stress, and can be stimulated by cytokines, such as 94 

TNF, leading to self-stimulation of the inflammatory process (116) [Figure 1].  95 

NLPR (NACHT, LRR and PYD domains-containing protein) inflammasomes form another class of 96 

pattern recognition receptors (PRR). These lead to upregulation of IL-1B and IL-18 expression through 97 

caspase 1. Inflammasomes are intracellular protein complexes, which are activated by a variety of 98 

triggers, including cytokines, reactive oxygen species (ROS) as well and damage-associated molecular 99 

patterns (DAMPS) (76) [Figure 1]. An increase in NLRP3 mRNA expression, as well as upregulation of 100 

caspase 1, IL-1B and IL-18 was observed in peripheral blood mononuclear cells of HD patients 101 
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compared to controls (42). Whereas circulating myeloid cells and M1 macrophages are the primary 102 

effector cells of uremic inflammation (42), the inflammatory response can also be triggered in other 103 

cell types, such as vascular endothelium and vascular smooth muscle cells (14, 42, 89, 147). 104 

Defective regulation of the inflammatory process  105 

The inflammatory process is, under physiological circumstances, meticulously regulated, with an 106 

intricate balance between pro- and anti-inflammatory parameters (135). For the regulation of innate 107 

immune system, the sirtuin family, and most notably Sirtuin-1, plays an important role, modulated by 108 

Nf-kB inhibition through different pathways, such as AMPK, PGC-1 and PPAR (160). Sirtuin-1 down-109 

regulation may also lead to an imbalance between M1 pro-inflammatory and M2 anti-inflammatory 110 

macrophages in favor of the former. Sirtuin-1 downregulation has been observed in aging and 111 

metabolic syndrome and relates to inflammatory markers (59). Reduced sirtuin 3 expression also 112 

relates to mitochondrial damage and increased oxidative stress in animal models of acute kidney 113 

injury (102). Noteworthy in this context are recent observations indicating that at least two miRNAs 114 

(hsa-mir-217 and hsa-mir-125b) regulate sirtuin and AKT activity, as well as the mTOR pathways 115 

involved in regulating aging processes across taxa (91), providing a biochemical link between cellular 116 

ageing, stress and damage responses. Although its role in the pathogenesis of uremic inflammation 117 

needs to be established hsa-miR-125b is a critical component of a range of immunological 118 

phenomena, including host-defense responses, autoimmunity, immune cell differentiation and IL-4 119 

and INF-ƴ expression (145). A study using genome-wide gene expression profiling identified a 120 

differential expression of 80 genes between 10 hemodialysis (HD) patients and controls; variations of 121 

these genes are linked to pro-inflammatory pathways, such as the TLR pathways. Using interaction 122 

network analysis, 68 differentially expressed miRNA were connected to 47 genes suggesting an 123 

important role for miRNA in the regulation of uremic inflammation (170). 124 

 125 
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Arguments for a premature aging process in ESRD in relation to systemic inflammation  126 

The first argument for an uremic premature aging process is the increase in age-adjusted mortality, 127 

which is an aspecific marker of ageing. A recent editorial argued against the indiscriminate use of the 128 

term premature aging and proposed four domains of the aging phenotype (87) i.e. 1) changes in 129 

body composition, 2) impaired energy balance, 3) impaired homeostatic mechanisms and 4) 130 

neurodegeneration. A reduced lean tissue mass mass and an increase in fat mass (sarcopenic 131 

obesity) have been reported in ESRD (85, 86); both relate to the expression of inflammatory markers 132 

(50).  A low bone density is another prevalent feature of ESRD that relate to inflammation and 133 

adverse outcomes (22). Regarding energy balance, both maximum aerobic excercise as well as tissue 134 

glucose uptake are reduced in CKD (20, 153). While energetic efficiency appears to be reduced, 135 

resting energy expenditure are increased in ESRD, in relation to inflammation (158). Also, there is an 136 

inverse relation between physical activity (or physical capacity) with inflammatory markers (33). 137 

Except from anemia with high erythropoietin, the impaired homeostatic mechanisms mentioned by 138 

Margolick and Ferrucci (87) are all prevalent in uremic inflammation (68, 137). Notably, in keeping 139 

with these feautures, neurodegeneration, impaired cognitive function and balance are already 140 

prevalent in earlier stages of CKD (44, 88), whereas brain atrophy is a well known complications of 141 

ESRD (32). Next to these four domains, vascular progeria is a common finding in the inflamed uremic 142 

phenotype and significant associations between vascular calcification and increased vascular stiffness 143 

with inflammatory biomarkers are often reported (68). Thus, according to the phenotypic criteria, it 144 

can be concluded that an argument for the presence of a premature aging syndrome can be well 145 

made. Moreover, recent studies found that abnormalities in the kidney and blood vessels in patients 146 

with renal failure were associated with a progeric and senescent phenotype (138, 143).  147 

Mechanistic relations between uremic inflammation and (premature) aging  148 
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The next question is whether uremic inflammation is mechanistically related to biological ageing 149 

(174). For this purposes, a reflection on the relation between uremic inflammation and aging 150 

hallmarks is relevant (80). In non-uremic mice, chronic inflammation, induced by the knockout of the 151 

NFκB subunit 1, resulted in telomere shortening and a phenotype of progressive aging (56). In dialysis 152 

patients, increased telomere attrition was observed in comparison to age-matched controls and 153 

related to inflammatory markers (19, 24, 68). Oxidative stress, generally regarded as a major 154 

contributor to biological ageing, is increased in ESRD and reciprocally related to (uremic) 155 

inflammation (140, 172). Uremic inflammation impairs nutrient sensing, which is also considered an 156 

important hallmark of aging (80). TNF and IL-6 induce catabolism by stimulation of the ubiquitin 157 

proteasome complex and blunt anabolic pathways by IGF resistance and abberrant mTOR regulation 158 

(39, 68, 135). These effects, which can be considered a cellular stress response, can explained both 159 

by a direct effect of inflammation on these pathways. An alternative explanation is reduced energy 160 

availability to the cell because of shifting of energy to the inflammatory response and a concomitant 161 

increase in sympathetic nervous system activity (142). Moreover, systemic inflammation is also 162 

related to a decrease in endothelial progenitor cells in uremic patients (49). This might play a role in 163 

impaired vascular repair, although in the same study no link between endothelial progenitor cells 164 

and endothelial dysfunction was observed (106). A recent study by Kramann et al (70) show that 165 

critical adventitial progenitors (Gli1+ cells) may be relevant therapeutic targets for mitigation of 166 

vascular calcification. Senescence may also make the cell more susceptible to damage evoked by 167 

uremic toxins and or oxidative stress (16). 168 

 Causes of uremic inflammation  169 

Abnormalities in mineral metabolism 170 

Abnormalities in mineral metabolism appear to be another important link in the relation between 171 

inflammation and progeria (75). In adenine-induced CKD rats, dietary phosphate increased systemic 172 

TNF as well as tissue (e.g. in kidney heart and aorta) mRNA expression in a dose dependent matter, 173 
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which was prevented by the use of the phosphate binder lanthanum carbonate (166). In CKD4 174 

patients the phosphate binder sevelamer increased fetuin-A, which is a negative acute phase protein 175 

and an inhibitor of extracellular matrix mineralization) (139) (45) (15). The mechanisms behind 176 

phosphate-induced inflammation may at least be partly dependent upon generation of oxidative 177 

stress and activation of NFκB (175). Phosphate may also lead to osteoblast induction of vascular 178 

smooth muscle cells (VSMC), which might subsequently release inflammatory mediators especially in 179 

combination with a senescent phenotype (7). Indeed, increased serum phosphate levels may drive 180 

cellular and physiological senescence (73). A surprising result was observed in a study in uremic rats, 181 

where the calcification process of dietary phosphate was actually enhanced by a very low protein 182 

diet, and was also associated with systemic inflammation, as evidence by an increase in TNF levels 183 

and a decline in fetuin levels (167). Another proof linking phosphate to progeria is a recent study that 184 

reports that inorganic phosphate activate the mTOR pathway (57).  185 

Fetuin mediates the formation of calciprotein particles (CPP), circulating colloidal complexes 186 

containing calcium and phosphate, which are catabolized by the mononuclear phagocytic system 187 

(130) and might lead to a reduction of mineral stress. However, formation of CPP also results in the 188 

reduction of circulating and intracellular fetuin levels, with a potential loss of protection against the 189 

extracellular calcification and to the transformation of VSMC (128). The calcification propensity of 190 

serum, which is inversely reflected by the “maturation time” (T50) of CPPs, of serum was related to 191 

all-cause mortality in patients with CKD stages 3-4 as well as in renal transplant recipients (61, 129). It 192 

can be speculated that when formation of CPP exceeds clearance, the cytotoxic CPP induce pro-193 

inflammatory cytokines (130).  194 

Defective anti-aging mechanisms 195 

An intriguing relation appears to exist between uremic inflammation and the anti-aging protein 196 

Klotho (105). The anti-aging properties of Klotho in endothelial cells were explained by inhibition of 197 

NFκB translocation from cytoplasm to the nucleus by stabilisation of the NFκB /IKK complex, which 198 
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protected these cells from senescence (13). Klotho expression was reduced by TNF, TWEAK and NFκB 199 

activation (101, 142). Next to this epigenetic repression of Klotho gene expression via accumulation 200 

of protein bound toxins may be operative (144). As Klotho is also a potent inhibitor of vascular 201 

calcification, a self-reinforcing interaction between uremic inflammation, phosphate accumulation, 202 

decreased Klotho expression, cellular senescence, and vascular calcification may be operative in the 203 

uremic milieu (51). 204 

Gut dysbiosis  205 

The causes of inflammation specifically related to dialysis treatment, such as vascular access, 206 

bioincompatibility of dialysis membranes contamination of dialysis solutions or the use of 207 

intravenous iron, have been summarized extensively in previous reviews (17, 34, 40) [Figure 2]. The 208 

same holds true for potentially modifiable factors, such as periodentitis (17, 40, 71, 72). An emerging 209 

factor with relevance for both inflammaging and uremic inflammation is gut dysbiosis (83) (110, 156). 210 

Shi et al. (125) observed bacterial DNA in 12 out of 52 ESRD patients and a correlation with CRP and 211 

IL-6 levels. Elevated endotoxin levels, which are related to bacterial DNA (125), have also been 212 

observed in uremic plasma (93) and soluble CD14 predicts mortality in HD patients (109). Morever, 213 

the microbial metabolite Trimethylamine-N-oxide (TMAO), which has been linked to adverse 214 

cardiovascular outcome, correlates with uremic inflammation and is an independent predictor of 215 

mortality in CKD (99). Although the origin of the increased endotoxin levels in uremia remain to be 216 

elucidated it is likely that a translocation of gut microbiome due to increased gut permeability is the 217 

primary contributor. Constituents of tight junctions like claudin-1, occludin and ZO-1 were reduced in 218 

the colon of uremic rats (157). A recent study showed that depletion of tight junction proteins 219 

coincided with a reduction in nuclear factor erythroid 2-related factor 2 (Nrf2), which has a central 220 

role in the regulation of intracellular oxidative stress (74). Recently, a study studied the interaction of 221 

gut dysbiosis, aging and inflammation. In wild-type mice, the microbial constitution of the faeces, 222 

changed with aging whereas gut permeability  increased, leading to translocation of bacterial 223 



10 
 

products into the blood and induction of systemic inflammation. Remarkably, these age-related 224 

changes were absent in TNF-α deficient mice, which was explained by an interaction between the 225 

inflammatory state of the host and the intestinal microbiome (150)  226 

Regulation of oxidative stress  227 

Uremic toxins such as phosphate, protein bound toxins and advanced glycation end (AGEs) products, 228 

can evoke inflammatory pathways directly or mediated by oxidative stress (47). ROS stimulates the 229 

inflammatory process through NFκB signaling (78). As the uremic milieu may down-regulate Nrf2 230 

(107), which inhibits NFκB and upregulates a large number anti-oxidative genes (90), impaired Nrf2 231 

activity likely contributes to uremic inflammation. Perturbed expression of these expression factors 232 

also appears to contribute to senescence(176).  233 

Non-enzymatic glycation  234 

During the ageing process, increased protein damage takes place as a result of non-enzymatic 235 

glycation (108). Protein glycation was viewed originally as a post-translational modification of 236 

proteins that accumulated slowly on extracellular and long-lived proteins throughout life. In the 237 

extracellular matrix, so called advanced glycation endproducts (AGEs) caused aberrant cross-linking 238 

resulting in a decrease of elasticity in vessels leading to arterial stiffness and hypertension, i.e. 239 

hallmarks of vascular ageing. The physiological consequences of the formation of AGEs in the 240 

aetiology of a range of important age-related diseases, such as ESRD, have been described (82). In 241 

addition to the slow formation of AGES,  glycation adducts are also formed in a fast manner on 242 

cellular and short-lived extracellular proteins and on DNA. The highly reactive methylglyoxal (MG) is a 243 

key compound involved in the very fast generation of glycation adducts on proteins, lipids and DNA. 244 

Methylglyoxal is mainly generated as a by-product of glycolysis. To counteract the deleterious effects 245 

of MG, organisms contain an enzymatic glyoxalase defense system comprised of glyoxalase I (GLO1) 246 

and GLO2, in which MG is converted to D-lactate. GLO1 is a key enzyme in regulating the levels of 247 
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MGO and AGEs. It has been shown that GLO1 and GLO2 activity decreases in human arterial tissues 248 

and red blood cells during the aging process (63, 94). The downstream consequences of GLO1 249 

reduction have been demonstrated by an overexpression of the GLO1 homologue in C. Elegans, 250 

resulting in an increase of the mean and maximum lifespan by ca 30%; silencing the GLO1 homologue 251 

decreased the lifespan by about 50% (100, 122). Thus, since the balance between the production of 252 

MGO and its detoxification by GLO1 contribute to the ageing process, managing this balance is 253 

important for the prevention of age-related health problems (164). Next to their direct effects on the 254 

(vascular) aging process, AGEs can also induce inflammation via NFkB activation and subsequent 255 

expression of pro-inflammatory cytokines (141) in target cells, such as VSMC. A relation between 256 

serum pentosidine levels and monocyte activation markers was observed in CKD (162). On the other 257 

hand, blockade of the RAGE receptor reduced oxidative stress and atherosclerosis in uremic mice, 258 

but not the mRNA expression of inflammatory mediators in aortic smooth muscle cells (11). AGEs 259 

could also contribute to inflammation by endoplasmatic reticulum (ER) stress  (90), which occurs 260 

when the demand for protein folding, a major task of the ER, exceeds capacity (31). ER stress may 261 

induce inflammation and cellular senescence by NfkB activation and increased translocation of Ca2+ 262 

into the cytosol (31, 79, 117, 123). It has also been demonstrated that uremic serum induces ER 263 

stress in human umbilical vein endothelial cells (HUVEC), via NFkB upregulation (171). 264 

Danger associated molecular patterns (DAMPS) 265 

An important factor in the pathogenesis of inflammaging with potential relevance for uremic 266 

inflammation is the presence of misplaced or misfolded molecules, which serve as so-called danger 267 

associated molecular patterns (DAMPS), which are non-microbial inducers of inflammation that are 268 

evolutionary strongly preserved. DAMPS signal cellular and tissue stress and might evoke an 269 

inflammatory response by TLRs, RAGE and/or inflammasomes (38). Various DAMPS have been 270 

identified with portential relevance for CKD, such as extracellular ATP, uric acid, S100 proteins and 271 

the high mobility group box 1 HMBG1 protein (77, 120). Whereas there is accumulating evidence for 272 

a role of DAMPS in the pathogenesis of localized inflammation in CKD (113), the evidence for a role 273 
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of DAMPS in the pathogenesis of systemic uremic inflammation is yet limited. However, an inverse 274 

relation between renal function and serum levels of HMBG1 (12) and a relation between serum 275 

levels of HMBG1 and TNF, IL-6 and CRP (177) have been reported.  276 

Accumulation of DAMPS may be related to a disturbance in autophagy (38, 77). Autophagy  serves to 277 

remove damaged intracellular organelles and to enable the recirculation of essential nutrients. 278 

Complex interactions exist between inflammation and autophagy, which may act as a double endged 279 

sword for the individual. On one hand, autophagy may eliminate inflammatory triggers by removal of 280 

DAMPS. On the other hand, whereas systemic inflammation may induce autophagy through a cellular 281 

stress response, autophagy may also release DAMPS and, thus, induce inflammation (77, 118, 119). 282 

Similar to oxidative stress and inflammation, autophagy may be beneficial for cellular survival during 283 

short-term or minor insults, but have detrimental effects during prolonged or excessive activation. 284 

Reduced autophagy was observed in uremic leukocytes (21). However, autophagy of phosphate 285 

loaded VSMC was found to be protective against vascular calcification (25). Conversely, in an 286 

experimental model of renal failure, inflammation markers were related to increased autophagy in 287 

muscle (159). Thus it is not yet clear if increased or defective autophagy is a causative factor in 288 

uremic inflammation (161). 289 

Cellular senescence  290 

A factor which is considered highly important in the pathogenesis of inflammaging is the senescence-291 

associated secretory phenotype (SASP), in which senescent cells release pro-inflammatory cytokines 292 

such as TNF, IL-1, IL-6 and IL-8 (23) (112), which poison the surrounding tissues. The inflammatory 293 

process can progress from the cell to the tissue and whole body environment by extracellular 294 

spillover and through what is termed the communicome or secretome, which can act at local, tissue, 295 

as well as systemic levels. In this communicome, circulating cytokines, miRNA and extracellular 296 

vesicles may be involved (38). Senescent mononuclear cells with increased expression of pro-297 
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inflammatory cytokines were observed in HD-patients treated with cellulosic membranes, but not in 298 

serum of predialysis patients (111). Additionally, phosphate and indoxyl sulphate induce VSMC 299 

senescence (103, 165). VSMC in human carotid plaques of non-uremic patients showed evidence of a 300 

SASP accompanied by secretion of IL-1a (41). Studies on the SASP in CKD are limited. Although it has 301 

been suggested that the SASP is involved in the pathogenesis of chronic allograft nephropathy (131) 302 

the role of SASP in the pathogenesis of the uremic phenotype needs to be addressed further. We 303 

recently showed that severe uremic arterial calcification was associated with increased vascular 304 

expression of CDKN2A/p16INK4a, increased number p16 positive cells and SASP (138). Notably, in an 305 

epidemiological cohort, <10% of the variability in IL-6 expression in the circulation could be explained 306 

on the basis of cellular ageing, expressed by telomere length (127). A recent study showed that 307 

FOXO4 is elevated in senescent cellls and maintains their viability by preventing p53-induced 308 

apoptosis. Inhibition of the interaction between FOXO4 and p53 by a modified peptide (FOXO4-DRI 309 

[D-retro-invero] resulted in p53 induced apoptosis of senescent cells but also improved fitness, fur 310 

density and renal function in both naturally aged mice, as well as in a premature aging (XpdTTD/TTD) 311 

model (4). Whether substances like FOXO4-DRI could also have an impact on cellular senescence in 312 

the uremic phenotype should be investigated in future studies.  313 

 A special type of cellular senescence, which may contribute to uremic inflammation, is 314 

immunosenescence of the adaptive immune system. An increase in pro-inflammatory CD4+ CD28- 315 

effector cells and an imbalance of the Treg/TH17 cell ratio, simulating immunosenescence, has been 316 

detected in uremic serum (8, 26, 173). CD4+ CD25+ FoxP3 Treg cells have an inhibiting effect on 317 

systemic inflammation by releasing anti-inflammatory cytokines, such as IL-10 and TGF-. Since a 318 

relation was observed between CRP and IL-6 with and TH17 frequency and an inverse relation was 319 

observed between these factors and Treg frequency, a role for Treg/TH17 dysregulation in the 320 

pathogenesis of uremic inflammation could be suggested (173). It has also been reported that p-321 

cresyl sulfate induces macrophage activation and interfere in antigen processing, which lead to a 322 

failure in the uremic adaptive immune response (3). A consequence of vascular cellular senescence, 323 
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which could potentially be of major relevance in uremia, is breakdown of the blood brain barrier 324 

(168). Potentially, this could contribute to passage of retained cytokines and uremic toxins from the 325 

circulation to the brain and promote cognitive dysfunction, anorexia, and depression; all common 326 

features of the uremic phenotype (36).  327 

Abnormalities in tissue homeostasis  328 

Abnormalities in tissue homeostasis can also contribute to uremic inflammation following the 329 

concept of “para-inflammation” (95). One important potential trigger of uremic inflammation resides 330 

in visceral adipose tissue. Many ESRD patients show characteristics of “obese sarcopenia”; i.e. a 331 

progressive increase in fat mass and a decline in lean tissue mass commonly associated with 332 

inflammation (50, 85). The relative increase in (visceral) fat mass may contribute to uremic 333 

inflammation (2) via pro-inflammatory adipokines, like leptin and visfatin. However, a recent 334 

observational study has actually paradoxically shown a protective effect for  higher BMI levels in 335 

inflamed, but not in non-inflamed dialysis patients, showing the complexity and reverse causation of 336 

pathophysiologic relations that are operative in wasted and inflamed ESRD patients (133).  337 

Abnormalities in fluid or sodium composition of the extracellular tissue could also contribute to 338 

uremic inflammation. A relation between extracellular fluid overload and inflammation, as evidenced 339 

by CRP or IL-6 levels has been observed in various studies in both HD- and PD-patients  (30, 37, 52, 340 

66). Moreover, in accordance with the theory of catalytic effects of inflammation (18) the combined 341 

presence of fluid overload and inflammation was associated with a multiplicative risk of mortality as 342 

compared to the presence of fluid overload or inflammation in isolation (29). The mechanisms 343 

behind the relation between fluid overload and inflammation can theoretically be explained either by 344 

increased translocation of endotoxins or gut microbes or microbial fragments across an oedematous 345 

bowel wall (i.e. leaky gut), or by a progressive decline in lean tissue mass due to sustained 346 

inflammation, or by translocation of fluid from the vascular to the interstitial compartments, which 347 

may hamper removal during dialysis (29, 55). 348 
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There is an accumulation of osmotically interchangeable sodium not only in dialysis patients, but also 349 

in patients with non-uremic ageing or uncontrolled hypertension (151). The sodium concentration in 350 

this compartment has been estimated to be around 40 mmol/l greater than measured in plasma (10). 351 

Accumulation of interstitial sodium may act pro-inflammatory by stimulation of monocytes, and 352 

induction of IL-17-producing CD4+ T helper (Th17) cells, which may lead to systemic inflammation 353 

(64). In addition, sodium chloride inhibited the activation of IL-4 and IL-13 stimulating M2 (anti-354 

inflammatory) macrophages (10), as well the suppressive function of FOXP3+ regulatory T cells (46). 355 

The antibacterial effects of sodium and may be an evolutionary conserved mechanism for 356 

antimicrobial skin defense (53). However, whether interstitial sodium accumulation contributes to 357 

persistent inflammation and/or has a causal role in the pathogenesis of premature ageing in CKD has 358 

not yet been definitely established.  A last putative factor contributing to uremic inflammation is 359 

tissue hypoxia. Studies in healthy subjects have shown activation of the innate immune system, as 360 

reflected by an increase in IL-6 and CRP, as well as by an increase in natural killer cells in response to 361 

hypoxia (43, 65). Recent evidence indicates that HD-patients suffering from prolonged intradialytic 362 

hypoxemia, a condition defined as arterial oxygen saturation levels ≤90% for more than 1/3 of the 363 

treatment time, exhibit a pro-inflammatory phenotype (98). Low arterial oxygen saturation, anemia, 364 

and low cardiac output are frequently concurrently present in HD patients and may put tissues at an 365 

increased risk for hypoxia. Hypoxia triggers adaptive processes in all nucleated cells. HIF-1 mediates 366 

the expression of glycolytic enzymes and a switch from oxidative to glycolytic metabolism. This 367 

metabolic change results in an increased formation of superoxide, hydrogen peroxide and other toxic 368 

ROS (35, 124). HIF regulates an array of processes associated with the immune response and the host 369 

response to infection; in particular HIF plays a key role in the activities of T cells, B cells, dendritic 370 

cells, macrophages, and neutrophils. Members of the NFκB family regulate inflammation and interact 371 

with members of the PHD (prolyl hydroxylase domain)–HIF pathway in ways that link inflammation to 372 

hypoxia (121). Taken together, given the pro-inflammatory effects of local and systemic hypoxia and 373 

given the novel data there is a distinct possibility that hypoxemia may play a role in the genesis of the 374 
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pro-inflammatory uremic phenotype. Emerging data link tissue hypoxia to both mitochondrial 375 

dysfunction and inlamed uremic fat (134). Since data from a rodent model of programmed 376 

cardiovascular dysfunction link hypoxic pregnancy and oxidative stress to endothelial dysunction, 377 

inflammation and premature aging (1) more research is needed in this area. Lastly, systemic factors 378 

such as depression, as well as socioeconomic and psychosocial factors and associated epigenetic 379 

preconditioning, may contribute to uremic inflammation (92), although it is not yet exactly clear to 380 

which extent [Figure 1].  381 

 382 

Systemic effects of uremic inflammation  383 

Systemic low-grade inflammation is considered to be a cause of premature aging not only in CKD, but 384 

also in other chronic diseases such as chromnic obstructive pulmonary disease (COPD), congestive 385 

heart failure (CHF), rheumatoid arthritis (RA) and HIV (6, 104, 115, 154). In the previous paragraphs, 386 

we have explored to which extent chronic inflammation resembles “inflammaging” in the general 387 

population. We outlined how inflammation can contribute to cellular damage as well as activation of 388 

cellular stress resistance mechanisms. This can lead to effects in various organ system by a variety of 389 

changes, such as endothelial dysfunction, vascular calcification, increased vascular stiffness, left 390 

ventricular diastolic dysfunction, osteoporosis, cognitive dysfunction and muscular atrophy (68, 137, 391 

149).  392 

The long-term cumulative effects could lead to various clinical syndromes. The most well known are 393 

the malnutrition, inflammation and atherosclerosis (MIA) syndrome (17), and the frailty syndrome 394 

[Figure 3], defined by loss of lean tissue mass and muscle weakness as well as a reduced functional 395 

capacity, (54). Although the relation between biomarkers of aging and these different phenotypes 396 

has not been assessed yet, it is likely that these can be considered a subset of a premature ageing 397 

syndrome.  Systemic inflammation could also impair the homeostatic balance of the body in various 398 
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ways. The first is an impaired functioning and reduced structural reserve of cells and vital tissues by 399 

direct damage, by mitochondrial dysfunction, or by relocation of free energy for cellular maintenance 400 

and repair to the immune system (142, 146). Secondly, systemic inflammation could also impair 401 

homeostasis by influencing regulatory networks of the body. Homeostasis depends on a smooth 402 

information transfer at all levels; from individual cells to supersystems (163). Systemic inflammation 403 

may impair the normal homeostatic fine regulation through the communicome after extracellular 404 

spillover of cytokines as well as by an abnormal sympathocovagal balance (38) (152), thus prioritizing 405 

the inflammatory response over normal homeostatic regulation, as well as inducing allostatic load.  406 

Concluding, systemic inflammation can lead to a reduced structural and functional reserve as well as 407 

impaired regulatory mechanisms, resulting in reduced resilience to internal and external stressors.  408 

This occurs in combination with the loss of kidney function, which  cannot be fully replaced by 409 

contemporary dialysis techniques, and with comorbidities. Together, this could provide an 410 

explanation for the greatly increased risk of morbidity and mortality in ESRD (67) and, metaphorically 411 

stated, for an acceleration of biological time (69, 169). 412 

 413 

Outlook  414 

Whereas persistent systemic inflammation appears to be a major contributor to adverse outcomes as 415 

well as progeria in ESRD, it is not an inevitable consequence of reduced renal function. Indeed, a 416 

significant proportion of patients with ESRD have either normal or varying levels of inflammatory 417 

markers (97). Next to further investigations of reversible causes of uremic inflammation, it is also of 418 

relevance to try to identify patients that are protected from inflammation. Following the example of 419 

respiratory medicine (48), “endotyping” of CKD patients, by which detailed phenotypes are coupled 420 

to (epi)genetic variants and other biomarkers, could shed more light on both pro-inflammatory as 421 

well as protective mechanisms, and their relation to a premature ageing phenotype. There is a great 422 
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opportunity for collaboration between basic as well as clinical reseachers on this topic, because, as 423 

also shown in this review, the study of uremic inflammation is relevant at all system levels in the 424 

body, from (epi)genetics to phenotype. This provides indeed the opportunity to connect these 425 

different system levels in order to identify central mechanisms which are ideally also amendable for 426 

therapeutic interventions.       427 

However, given the multidimensional causality of uremic inflammation, it is unlikely that a single 428 

therapeutic “magic bullet” will ever be identified. Recent reviews (81, 136) summarized five 429 

therapeutical concepts, which could be applied to combat inflammation in ESRD. The first is to 430 

identify and treat underlying sources of inflammation. The second is to promote healthy dietary 431 

habits and lifestyle changes that include low-intensity exercise programs (84). Third, in an 432 

experimental setting, pharmacological interventions developed to combat inflammation in other 433 

chronic diseases as well as, fourth, anti-cytokine treatments may also be applied in ESRD considered 434 

not at increased risk for infectious complications. Finally, as recent data imply that elimination of 435 

p16INK4a positive cells improve health span in mice (5), senolytic drugs, such as dasatinab and 436 

qurecetin, should be tested in conditions in which senescence may contribute to disease 437 

pathogenesis, such as ESRD. Next to interventions specifically focusing on inflammation, it is also of 438 

major importance to increase the resilience of the body by physical activity and adequate diet, next 439 

to reducing end organ damage due to allostatic overload by factors other than inflammation, e.g. by 440 

adequate fluid and blood pressure control and adequate dialysis technique. 441 

Despite the huge potential of the approaches mentioned above (27), few controlled studies have 442 

proven success in the management of oxidative stress or systemic inflammation in the uremic milieu. 443 

It is of important to realize that targeted mechanisms may have pleiotropic effects (62), or that 444 

targeted interventions might focus on pathways, which are influenced by multiple other factors (41). 445 

In the future, it is likely that these pitfalls can be partly avoided by the further elucidation of pro- and 446 

anti-inflammatory pathways. Since inflammatory biomarkers are “moving targets”, randomized 447 
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controlled trials need to include large number of patients in each arm in order to provide sufficient 448 

power to prove any anti-inflammatory effect of various interventions. Moreover, given the strong 449 

interaction between inflammation and the progeric process (“inflammaging”) it is likely that 450 

interventions developed in the gerontology field, or in other chronic diseases will also have relevance 451 

for CKD and vice versa (126).  452 

Conclusion 453 

Important conceptual similarities exist between uremic inflammation and “inflammaging” in the 454 

general population. The native inflammatory system is based on a highly evolutionary preserved 455 

mechanism, which shows a common effector response to a variety of noxious stimuli. In this sense, it 456 

also shares important similarities with other chronic diseases, such as COPD, CHF, RA and HIV, 457 

although there are clearly disease specific phenotypical differences next to important similarities. It 458 

might therefore be hypothesized that uremic inflammation is an example of progressive “unhealthy” 459 

aging, both mechanistically as well as phenotypically. Thus, it could be speculated that age-related 460 

diseases could be treated more effectively by modulating fundamental mechanisms of aging per se, 461 

versus the attempt to prevent or delay organ-specific complications one at a time. Studies 462 

incorporating patients with different chronic diseases as well as aging subjects may shed more role in 463 

the relation between phenotypes and their underlying mechanisms and could provide an answer the 464 

question whether phenotypical alterations in these diseases are indeed an example of progressive 465 

unhealthy aging. This could in turn lead to shared and better treatment approaches for 466 

“inflammaging”.  467 
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Figure 1. Basic mechanisms of uremic inflammation 971 

Figure 2. Causes of uremic inflammation 972 

Figure 3. Inflammation concerns and consequences 973 

Figure 4. Effects of systemic inflammation on homeostasis   974 

                                                            
i In which uremia is defined as the medical condition produced by the toxic effects of abnormally high 
concentrations of nitrogenous substances in the blood as a result of the kidney’s failure to expel waste 
products by way of the urine (https://www.britannica.com/science/uremia) 

https://www.britannica.com/science/blood-biochemistry
https://www.britannica.com/science/kidney-failure
https://www.britannica.com/science/excretion
https://www.britannica.com/science/urine
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