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Abstract

I corroborate an important experimental evidence reported by [Schuldt et al., PRL,

2016, 117, 197801] revealing the incapability of the current theoretical framework to

fully describe the dynamics of semiflexible polymer solutions in the tightly-entangled

concentration regime. These results have been endorsed here by means of previously

published, but overlooked, data by [Tassieri et al., PRL, 2008, 101, 198301; Tassieri

et al., Biophysical J., 2008, 94, 2170]. The ensemble of information provides a strong

evidence that the scaling law of the plateau modulus as function of polymer’s con-

centration and persistence length, i.e. G0 ∝ cαLβp , should have both the exponents

positive; in contrast with all the existing predictions converging on similar values of

α > 0 and β < 0. Hence, the need of new theoretical models able to better interpret

the contribution of the polymer bending rigidity to the viscoelastic properties of the

polymer network.
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1 Introduction

Sitting between two well established theoretical frameworks describing the dynamics of lin-

ear flexible polymers and rigid rods,1–4 there exists a number of extrapolated models5–14

aimed at describing the yet not fully understood dynamics of linear semiflexible polymers.

Indeed, despite their importance to soft-matter physics, biology, and industrial processing, a

basic analytical model aimed at predicting the viscoelastic properties of semiflexible polymer

solutions has not yet been agreed upon. This is because solutions of semiflexible polymers

have many regimes of viscoelastic behaviour, depending on the polymers’ degree of rigidity

(commonly described in terms of persistence length Lp), on their contour length L and on

the concentration c.

In spite of that, in the case of concentrated solutions (i.e., in the tightly-entangled regime),

where the geometrical mesh size ξm of the polymer network is much smaller than Lp, all the-

oretical models converge to either identical or similar scaling law predictions of the solution’s

plateau modulus G0 as function of both c and Lp. In particular, while most theories10–13

predict a scaling law of G0 ∝ c7/5L
−1/5
p , competing studies8 propose G0 ∝ c4/3L

−1/3
p . Ergo,

all the existing models agree on (i) very similar concentration-dependence of the plateau

modulus, with fractional exponents so close to each other (i.e., G ∝ c1.4 vs. G ∝ c1.33̄) to be

indistinguishable experimentally,8,15,16 and (ii) an inverse proportionality of G0 to the poly-

mer’s persistence length, with significantly different fractional exponents (i.e., G ∝ L−0.2
p vs.

G ∝ L−0.33̄
p ) to allow critical studies16 on which of the above predictions (if either) better

describes the viscoelastic behaviour of semiflexible polymer solutions in the tightly-entangled

concentration regime.

Interestingly, thanks to new experimental findings reported by Schuldt et al.,17 here

augmented by experimental data previously published by Tassieri et al.,16,18 it is actually

possible to assert that none of the above mentioned scaling laws is actually suitable to

fully describe the viscoelastic properties of concentrated solutions of semiflexible polymers.

Indeed, when these data16–18 are drawn together, they provide a strong evidence that the
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scaling law of the plateau modulus as function of c and Lp, i.e. G0 ∝ cαLβp , must have both

the exponents positive; in contrast with all the current theoretical predictions. In particular,

while nothing new can be said on α (i.e., in tightly-entangled regime it remains undetermined

on whether it is 7/5 or 4/3), it is actually possible to assert that β is a positive number,

possibly ranging between 1 and 5, depending on yet unknown factors; however, certainly

different from the two negative values (i.e., G ∝ L−0.2
p or G ∝ L−0.33̄

p ) proposed by current

theories. In addition, upon entering the tightly-entangled regime, some semiflexible polymer

solutions show a scaling behaviour of G0 ∝ c2Lp, which is here semi-empirically obtained

by combining a general expression of the plateau modulus, valid for entangled solutions

of semiflexible polymers,12 with a relationship describing the topological confinement of

semiflexible polymers in the tightly-entangled regime.8

Hence, the need of new models that better interpret the contribution of the polymer

bending rigidity to the viscoelastic properties of the polymer network and the concentration-

dependence of the characteristic length scales of this latter, as highlighted in this paper.

2 Theoretical background

2.1 The persistence length Lp

To a first approximation a polymer with aspect ratio p � 1 (defined as the ratio between

the polymer contour length L and its diameter d) can be described as a homogeneous elastic

filament with circular cross-section and mechanical properties proportional to its Young’s

modulus (E).19 Once the latter is known, the elastic stiffness for specific deformations,

such as stretch, bending and twist can be calculated. For sufficiently small amplitudes of

excitation, additional simplifying assumptions can be made; e.g., if a constant cross-section

is assumed during bending, then all the different types of deformations can be considered as

independent from each other. A further hypothesis that can be made is the inextensibility

constraint of the filament. These assumptions form the basis of the worm-like chain (WLC)
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model. Moreover, since the energy per unit length required to change the length of such

a filament by a specified fractional strain is proportional to Ed2 and the energy per length

required to bend it into an arc of radius R is of order of Ed4/R2, the ratio between the arc

bending energy and the strain energy is of order of (d/R)2; therefore, the adoption of the

WLC model is a valid option as long as d/R << 1.

The smallest excitations to which a polymer chain is subject are caused by thermal

energy. These represent an important feature for microscopic structures of semiflexible poly-

mer solutions. The conventional measure of the degree of thermal flexing of a polymer is

the persistence length Lp.20 This is defined by the correlation function Equation 1, as the

characteristic distance along the polymer chain over which the direction of unit vector ~u(s)

drawn tangent to the polymer contour become uncorrelated:

〈~u(s) • ~u(s′)〉 = e−|s−s
′|/Lp , (1)

where the brackets 〈· · · 〉 denote the average over thermal fluctuations, and s is the distance

along the chain contour, measured from an arbitrary point s′ (Figure 1). The persistence

length is proportional to the filament rigidity and it is inversely proportional to the temper-

ature:

Lp =
EI

kBT
, (2)

where kB is the Boltzmann’s constant, T is the absolute temperature and I is the moment

of inertia of the filament cross-section, which is different for solid (Is) or annular (Ia) shapes:

Is =
π

64
d4 or Ia =

π

64
(d4

2 − d4
1), (3)

where d1 and d2 are the inner and the outer diameters. For a thin annular tube of thickness

ε, where d = d1 ' d2 and d2 = d1 + ε, one obtains I ∼= (πd3ε)/21. The product EI is also

defined as the “flexural rigidity” or “bending modulus” (κ).
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Figure 1: Schematic representation of a linear semiflexible polymer.

Under the WLC model (for which L � d), the ration L/Lp ∼ 1 represents a crossover

between two opposing asymptotic ideal configurations towards which semiflexible polymers

may tend to depending on the relative value of L and Lp: (i) flexible phantom chain of Kuhn

length21 b = 2Lp (for L� Lp) and (ii) stiff rod (for L� Lp). This can be further elucidated

by considering the polymer’s mean-square end-to-end distance 〈R2〉, which for a worm-like

chain can be expressed in terms of L and Lp, with clear asymptotic values:22

〈R2〉 = 2L2
p

(
L

Lp
− 1 + e−L/Lp

)
⇒


〈R2〉 ∼= 2LLp (L� Lp)

〈R2〉 ∼= L2 (L� Lp)

(4)

where the brackets 〈· · · 〉 denote an average over all possible states of the system (obtained

either by considering many chains or numerous different conformations of the same chain).

It follows that, in the first asymptotic case, the unit tangent vector will change direction

several times along the polymer contour length and the chain configuration will look like a

“random coil ”; whereas, in the second asymptotic case, the unit tangent vector will be almost

invariant and the polymer will look like a “rod ”.

2.2 Biological models of semiflexible polymer

Synthetic (flexible) linear polymer melts and their blends23–25 have served the field of rheology

as ideal models for the development of constitutive equations (e.g.,26–31) aimed at predicting

the rheological behaviour of complex materials (e.g.,32–34). Similarly, biological systems such

as protein filaments,35,36 self-assembling peptides37,38 and viruses,39,40 have been explored by
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biophysicists as potential models41 of either semiflexible or rod-like polymers, with a dual

aim of gathering new insights on their dynamics during biological processes. For instance,

in vitro reconstituted actin filament has served for many years as biological model of lin-

ear semiflexible polymers and plays a key role in many biological processes, including cell

motility, migration and invasion.

Below I summarise the key features of three biological models of semiflexible polymers

that are relevant to this work.

Actin filament. At low ionic strength, actin exists in the monomeric (globular) G-actin

form. This is roughly spherical with a diameter of about 5 nm. When the ionic strength of a

G-actin solution is increased to a physiological value (0.1 M), G-actin self-associates to form

the backbone of the thin filament, actin filament (F-actin), which can be viewed as either a

two-stranded long-pitch (∼ 37 nm) helical structure or a single short-pitch (∼ 5.9 nm) helical

structure, which is related to the size of the monomeric G-actin. F-actin is a semiflexible

polymer characterised by an average contour length of ∼ 15 µm,15,42 a persistence length

ranging from ∼ 2 µm to ∼ 30 µm (depending on the buffer used)43,44 and a diameter of

∼ 9 nm.18,43 However, despite its ideal structure, in vitro reconstituted actin filaments come

with devious issues that are difficult to deal with; these include, to mention but a few, (i) the

unidirectional “treadmilling” of monomers from one end toward the other, (ii) contamination

by either cross-linking or capping proteins and (iii) buffer pH and salinity.

Intact cardiac thin filament. An alternative to F-actin is represented by the (cardiac)

thin filament (CTF), which is made of three constituents: F-actin, Tropomyosin (Tm) and

Troponin (Tn). Tm is an extended molecule that is ∼ 42nm long formed as a homodimer

or heterodimer of two α-helical chains arranged as a coiled coil. Stability of the coiled coil

is produced by hydrophobic interactions between nonpolar side chains contributed by amino

acids in each chain. Each chain is 284 residues long and spans 7 actin monomers on each

strand of the F-actin filament. Neighbouring Tm overlap in a head-to-tail configuration with

periodicity of 38.5nm along the thin filament.45 Troponin is composed of three interacting

6



subunits each receiving its identifying letter from the first identified property: troponin C

(TnC) binds Ca2+, troponin I (TnI) binds to actin and inhibits the actomyosin ATPase in a

Ca2+-insensitive manner on a one-to-one basis with actin, and troponin T (TnT) links the Tn

complex to Tm.45 It has been shown18 that, solutions of intact cardiac thin filaments have a

bell-shaped distribution of contour lengths that contained a population of filaments of much

greater length than the in vivo sarcomere size (∼ 1µm) due to a one-dimensional annealing

process. Moreover, by combining these results with microrheology and dynamic light scat-

tering measurements, it has been possible to reveal the rod-like nature of the CTF,18 which

has a persistence length of the order of a few microns (i.e., L/Lp ' 1) and concentration-

dependence of the viscosity of η ∝ c3, in agreement with Doi and Edwards’ model of rod-like

polymers.2,3

DNA microtubes. A valuable alternative to both the above mentioned systems is given

by “tiled-based DNA tubes”.17,46,47 These are engineered microtubes made up by n distinct

and partially complementary DNA oligonucleotides, which hybridise to a half overlapping

ring of n interconnected DNA helices. Depending on the chosen set of n strands, n-helix

tubes (nHTs) with a uniform circumference can be obtained. Once formed in water solutions

at a specific pH and ionic strength, they are extremely stable. The resulting filiform (p� 1)

structures have a contour length distribution comparable to actin (up to 20µm),46 but with

tunable (annular) cross-section and persistence length ranging from ∼ 9nm to ∼ 60nm47

and from ∼ 1µm to ∼ 20µm,17 respectively.

2.3 Measuring Lp via dynamic light scattering

The first fundamental contribution towards the understanding of semiflexible polymer dy-

namics by dynamic light scattering (DLS) measurements was thanks to Farge and Maggs.48

They found that, with the following length scale conditions satisfied: qLp >> 1 , q−1 < ξm

and L
1/3
p q−2/3 < ξm (where q is the wave vector), the dynamic structure factor follows a
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universal scaling law:

g(1)(q, t) ∝ exp(−q2t3/4). (5)

Later on, the same result was achieved by other authors.49–51 They all provided more ex-

plicit equations describing the dynamic structure factor behaviour in different time windows.

These models49–51 essentially differ from each other on the basic assumptions related to the

microscopic hydrodynamic interactions and the inextensibility constraint of the polymer

chain. Although these models49,50 seem to approximate very well the experimental data,49,52

only Kroy and Frey50 provided, in the limit of a “weakly bending rod ” (L/Lp << 1) and with

the following length scale conditions satisfied ah << q−1 << Lp ∼= L (where ah is the hydro-

dynamic lateral diameter of the polymer chain) for sufficiently long time t >> γ−1
q (qLp)

−3/4,

a simple analytical expression for the time decay of the dynamic structure factor in semi-

dilute solution (qξm >> 1):

g(1)(q, t) = g(1)(q, 0)exp

[
−Γ(1/4)

3π
(γqt)

3/4

]
, (6)

where γq is the decay rate defined as

γq =
kBTq

8/3

4πηsL
1/3
p

[C − ln (qah)] , (7)

ηs is the solvent viscosity and C is a constant (i.e. 5/6 in Eq.(3.4) of Ref.50) that can be

evaluated by laborious calculations describing the microscopic hydrodynamic interactions.

In addition, based on the same assumption as before, Kroy and Frey50 provided the

expression of the dynamic structure factor in the limit of t→ 0:

g(1)(q, t) = g(1)(q, 0)exp(−γ0t), (8)
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where γ0 is the initial decay rate defined as

γ0 =
kBTq

3

6π2ηs
[C − ln (qah)] . (9)

Equations 7 and 9 (with C = 5/6) have been successfully used in literature16,18,38 to esti-

mate two characteristic polymer lengths: the microscopic lateral diameter d (∼= ah) and the

persistence length Lp. In particular, it has been shown,16,18,38 by direct comparison with

transmission electron microscopy (TEM) image analysis results, that Equation 9 provides a

good estimation of the lateral diameter with an uncertainty of order of a few percent depend-

ing on how well the investigated system satisfies the “weakly bending rod ” model conditions.

It is important at this point to specify that, as correctly pointed out by Nyrkova and

Semenov,53 the constant C in Equation 9 can be replaced by anything ∼ 1 and one can

still obtain a reasonable agreement between DLS estimations and direct (e.g., TEM) mea-

surements of the microscopic lateral diameter. This uncertainty is mainly due to both the

weak logarithm dependency of γ0 on qah and the small range of experimentaly accessible q

values.54

2.4 Linear viscoelasticity of semiflexible polymer solutions

The first important contribution toward understanding the viscoelastic properties of en-

tangled polymer solutions was provided by Edwards,55 who introduced the “tube” model

as a mean-field description of the topological confinement exerted on a given chain by the

surrounding chains. Next, de Gennes1 solved a fundamental aspect of the entangled dy-

namics by describing the diffusion of a chain along its own length, a process that he named

“reptation”. Finally, Doi and Edwards, by combining the idea of the tube with reptation,

developed two full theories of the entangled state for two extreme cases: completely flexible2

and rigid-rod3 polymers.

All current models describing the viscoelastic properties of semiflexible polymer solutions
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are extrapolations of the Doi and Edwards’ models.2,3 Amongst the others, Morse’s model5–8

is the only one that interpolates smoothly between the limit of rod-like polymers (L << Lp)

and coil-like polymers (L >> Lp), providing a rather detailed description of the viscoelastic

properties of semiflexible polymer solutions. With respect to the WLC model, Morse identi-

fies all the possible regimes of polymer concentration and chain length expected for solutions

of semiflexible polymers. He then characterises the regimes of dynamical behaviour of an

entangled solution in terms of the relative magnitudes of four length scales: L, Lp, the en-

tanglement length Le (defined as the contour distance between collisions of the polymer with

the walls of the tube and thus depending upon both Lp and ξm), and the chain diameter d.

Morse calculated a general expression for the stress tensor of a solution of wormlike

chains that may be applied to any concentration regime. In particular, the stress tensor of

a solution subjected to a macroscopic fluid velocity v with a spatially homogeneous rate-of-

deformation tensor Γ(t) = (∇v)T is given in the Kramers-Kirkwood theory56,57 by a sum:

σ(t) = ηs(Γ + ΓT ) + σp; where σp is the polymer stress and ηs is the solvent viscosity. The

polymer stress tensor may be divided into two contributions: σp = σintra + σinter, arising

from forces associated with, respectively, intramolecular and intermolecular (e.g., steric or

Van der Waals) interactions. The intermolecular stress contribution is negligible over all

the frequency ranges for concentrations up to the nematic phase for both the limit cases of

coil-like and rod-like polymers. The intramolecular stress contribution, instead, is expected

to play a much bigger role in determining the viscoelastic properties of systems of long

semiflexible chains. It can be expressed as a sum σintra = σcurve + σorient + σtens − ckBTδ,

where the stress contributions (see Figure 2) are defined physically as it follows: (i) σcurve is

the curvature contribution arising from forces that oppose transverse deformation or rotation

of chain segments, (ii) σorient is the orientational contribution that reduces in the appropriate

limit to the Brownian stress of a rigid-rod solution. (iii) σtens is the tension contribution

arising from tangential forces that resist stretching or compression of the chain; and (iv)

−ckBTδ is the ideal solution osmotic pressure arising from the translational entropy of the
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Figure 2: Schematic representation of stress tensor contributions.

molecule as a whole.

In order to calculate the linear viscoelastic properties of a fluid, Morse calculated the re-

laxation of σintra in a system that is subjected to an infinitesimal step strain δε at time t = 0.

The shear relaxation modulus G(t) is defined by expressing the resulting stress as a product

σ(t) = G(t)(δε + δεT ). The complex modulus G∗(ω) is given by the Fourier transform of

the time derivative of G(t).58,59 It is thus possible to express G∗(ω) as sums of contributions

arising from the three different stresses: G∗(ω) = G∗curve(ω) + G∗orient(ω) + G∗tens(ω). Let us

focus on the dynamics of highly entangled isotropic solutions. In particular, in the tightly-

entangled regime (where both ξm and Le are expected to be much less than Lp) and at time

scales much shorter than the system’s longest relaxation time (i.e., ∀t < trep, where trep is the

“reptation” time), the orientational contribution Gorient(t) is expected to make a negligible

contribution to G(t) and the latter may be approximated as the sum of a large but rapidly

decaying tension contribution Gtens(t) and a much smaller but more slowly decaying curva-

ture contribution Gcurve(t); hence, the possible existence of two plateau moduli (at high and

low frequencies, respectively), as also predicted by Maggs.60 In particular, at relatively low

frequencies (i.e., for t−1 & t−1
rep), Morse developed two analytical approximations8 describing

the confinement forces acting on a randomly chosen test chain embedded in a “thicket” of

uncrossable chains:8 (I) the binary collision approximation (BCA) and (II) effective medium
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approximation (EMA), which yield the following scaling laws:

BCA


Re ∝ c−3/5L

−1/5
p ,

Le ∝ c−2/5L
1/5
p ,

G0 ∝ c7/5L
−1/5
p ,

(10)

and

EMA


Re ∝ c−1/2,

Le ∝ c−1/3L
1/3
p ,

G0 ∝ c4/3L
−1/3
p ,

(11)

where Re is the radius of the tube in which the test chain is embedded (Re = D/2, see

Figure 2). Notice that, both the above approximations are based on the assumption that Re

and Le obey to the following power law relationship:

Le ∝ R2/3
e L1/3

p , (12)

which was derived by Odijk9 in the study of the dynamics of a single worm-like chain

polymer in a cylindrical pore with solid walls. Interestingly, the scaling relation resulting

from the BCA had previously been obtained by several others authors,10–13 but Morse has

also estimated the prefactors.8 So, prior to the introduction of the EMA, there was broad

agreement regarding the scaling law of the solution’s plateau modulus G0 in the tightly-

entangled concentration regime.

At relatively high frequencies (i.e., for times t such that t−1
rep << t−1 . τ−1

e , where τe

is the relaxation time of an undulation mode of wavelength Le), Morse’s model retrieves

the scaling low predictions derived by Mackintosh et al.,12 who focused exclusively on σtens

contribution to the stress, but did not allow for any relaxation of the tension; an assumption
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that is more applicable to cross-linked gels:

G0 ∝ c11/5L7/5
p (13)

Notably, this is the only theoretical prediction of the plateau modulus with both positive

exponents, in line with the new experimental findings reported by Schuldt et al.17 and those

previously published by Tassieri et al.;16,18 as discussed below.

3 Discussion

In order to discriminate which of the above equations (if any) better represents the dy-

namics of semiflexible polymers in the tightly-entangled concentration regime, independent

measurements of the solutions’ plateau modulus and polymer’s persistence length would be

necessary, as pioneered by Tassieri et al.16 while studying the dynamics of F-actin solutions.

Driven by the same aim, Schuldt et al.17 have recently revealed new insights on the dynam-

ics of semiflexible polymer solutions; i.e., they have provided a strong experimental evidence

indicating the existence of a direct proportionality of the plateau modulus to the polymer’s

persistence length G0 ∝ Lp.

In what follows, I wish to endorse and speculate on Schuldt et al.’s findings.17 In particu-

lar, notwithstanding the validity of the results reported by Schuldt et al.,17 here I argue that

they cannot be considered conclusive and the dynamics of semiflexible polymers continue to

be unresolved. In support of my opinion, I report several independent measurements of both

the plateau modulus and the persistence length (see Figure 4) for ‘three’ different biological

models of semiflexible polymers, in the tightly-entangled concentration regime. Specifically,

these systems are solutions of in vitro reconstituted F-actin,16 DNA nHT microtubles17 and

intact cardiac thin filaments (with and without addition of calcium).18
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3.1 Concentration-dependence of the plateau modulus

Upon entering the tightly-entangled regime, Morse’s model predicts a change in the concentration-

dependence of the plateau modulus from G0 ∝ c2.3 in the loosely-entangled regime to

G0 ∝ c1.4 for c > c∗∗, where c∗∗ is the crossover concentration between the two regimes. This

thesis has been supported so far only by simulations61 and a single experimental evidence

presented by Tassieri et al.,16 leaving unaddressed Morse’s dilemma that “experiments on

isotropic solutions of F-actin span concentrations near c∗∗ for which the predicted asymptotic

scaling of the plateau modulus G0 ∝ c7/5 is not yet valid ”.61

Morse’s uncertainty is here elucidated by the data shown in Figure 3, in which I re-

port measurements of the plateau modulus versus concentration for nine different systems

of semiflexible polymers spanning over two decades of concentration. In particular, in Fig-

ure 3(Top) are reported the data presented in the original works,16,17 which were obtained

from either micro- or bulk-rheology measurements, respectively; whereas, in Figure 3(Bot-

tom) the same data as above have been rescaled vertically by an arbitrary factor to allow

their superimposition at high concentrations (i.e., for c & 3µM), demonstrating their com-

pliance to the scaling predictions for the tightly-entangled regime. From Figure 3(Bottom) it

is possible to identify a crossover concentration at a value of c ∼= 3µM , which may actually

turn to be veracious due to the similar characteristic lengths (i.e., Lp, L and d) of the ex-

plored systems.17 Nevertheless, from Figure 3(Bottom) it is clear that (i) for concentrations

c & 3µM , data can be equally well interpreted by either of the two competing scaling laws

G0 ∝ c7/5 or G0 ∝ c4/3, leaving the dispute still open; (ii) for concentrations c . 3µM ,

data can be fitted by any power law G0 ∝ cα having exponent α ranging between 4/3 and

2.3 (hence, Morse’s dilemma). Interestingly, despite the so coveted asymptotic scaling of

the plateau modulus (G0 ∝ c7/5) is now clearly defined, it is worth noting that at least two

systems in Figure 3(Bottom) (i.e., F-actin 2 and 14HT) show adherence to a power law of

G0 ∝ c2 over an extended range of concentrations (i.e., 0.2 . c . 10µM). This peculiar

feature is discussed in the following paragraph.
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Figure 3: The plateau modulus vs. concentration for different biological models of semiflex-
ible polymers. (Top) Data reproduced from References.16,17 (Bottom) Same data as above,
but for each system the modulus has been rescaled (Ḡ0) by an arbitrary factor to allow data
superimposition at high concentrations (i.e., for c & 3µM). Lines are guides for the power
laws.

3.2 Persistence length-dependence of the plateau modulus

In order to better discriminate between different scaling laws governing the relationship be-

tween the solution’s plateau modulus and the polymer’s persistence length, the original data

of both G0 and Lp (taken from References16–18 and here reproduced in Figure 4(Top)) have

been normalised by the first value of their own data set and presented in Figure 4(Bottom).

From this, it is clear that experimental results fall between two power laws: (i) G0 ∝ Lp

and (ii) G0 ∝ L5
p, leaving no doubts on the possible existence of an inverse proportionality

of the plateau modulus to the persistence length; at odds with all the current theoretical
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predictions leading to either the systems of Equations 10 and 11.

By contrast, Equation 13 is the only theoretical prediction that provides a persistence

length-dependence of the plateau modulus with a positive exponent. It was derived by Mack-

intosh et al.12 from a more general expression valid for entangled solutions of semiflexible

polymers:

G0 ∝ ξ−2
m L2

pL
−3
e , (14)

based on the assumption that at high concentration (where ξm ∝ c−1/2 and ξm << Lp) the

entanglement length could be expressed as Le ∝ κ1/5c−2/5, like in the system of Equations 10.

Interestingly, it is possible to speculate that if instead one would substitute in Equation 14

the expression of the entanglement length Le ∝ c−1/3L
1/3
p derived by Morse for the effective

medium approximation, one would obtain:

G0 ∝ c2Lp, (15)

which provides a direct proportionality of the plateau modulus to the polymer’s persistence

length, in agreement with the experimental evidences presented by Schuldt et al.,17 but with

a stronger concentration-dependence of the plateau modulus than the one predicted by the

existing models developed for such concentration regime (i.e., G ∝ c2 vs. G ∝ c1.4). However,

in my opinion, it simply cannot be considered mere coincidence that both the systems F-

actin 2 and 14HT show good adherence to a power law of G0 ∝ c2 over an extended range of

concentrations, i.e. 0.2 . c . 10µM (see Figure 3(Bottom)), and that system 14HT, within

the experimental error, practically fulfils Equation 15.

Hence, the need of new models that better account the contribution of the concentration-

dependent characteristic length scales (e.g., Le) of the polymer network to its mechanical

properties. In this regard, it is worth mentioning that microscopy studies62–64 on the tube

width fluctuations in F-actin solutions have revealed the inappropriateness of theoretical

approaches to employ a homogeneity (or mean-field) assumption, treating the tube radius as
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Figure 4: The plateau modulus vs. persistence length for different biological models of
semiflexible polymers. (Top) Data reproduced from References.16–18 (Bottom) Same data as
above, but for each system the original data of both G0 and Lp have been normalised by the
first value of their own data set, respectively. Lines are guides for the power laws: G0 ∝ Lp
and G0 ∝ L5

p, respectively.

a constant; while experiments13,65–68 and simulations69 indicate substantial heterogeneities.

The common outcome of these studies indicates that both the concentration-dependent dis-

tributions of the tube radius P (Re) and of the entanglement length P (Le) are non-symmetric

Gaussian functions. Therefore, it is possible to further speculate that the adoption of these

skewed leptokurtic distributions may represent an alternative pathway for the development

of theoretical models capable to fully describe the viscoelastic properties of semiflexible poly-

mer solutions.
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4 Conclusions

After many years, competing theories aimed at describing the dynamics of semiflexible poly-

mer solutions in the tightly-entangled concentration regime have converged to similar scaling

laws of the plateau modulus as function of polymer’s concentration and persistence length,

i.e.: G0 ∝ cαLβp , with both α and β yet undetermined on either the values 7/5 or 4/3 and

−1/5 or −1/3, respectively.

In this article, I corroborate a strong experimental evidence reported by Schuldt et al.17

asserting that none of the above scaling laws are actually able to fully describe the dy-

namics of semiflexible polymer solutions in the tightly-entangled regime. This is achieved by

drawing together new17 and previously published16,18 independent measurements of both the

solutions’ plateau modulus and the polymers’ persistence length for ten different biological

models of semiflexible polymers. The collected data provide a strong evidence that β is ac-

tually a positive number ranging between 1 and 5 circa, depending on yet unknown factors;

but certainly different from the predicted negative values. On the other hand, α remains

undetermined on whether it is 7/5 or 4/3 in the tightly-entangled concentration regime, and

it spans between ∼ 1.4 and ∼ 2 in the loosely-entangled regime.

To conclude, the ensemble of independent experimental data presented in this paper must

serve as a springboard for theoreticians to revise current models and to develop new com-

prehensive theories able to predict the dynamics of entangled semiflexible polymer solutions.

These are indeed of crucial importance to many biological processes, including tumor cell

motility, migration and invasion.
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