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Abstract: Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which
miniaturized technology, an on-board power supply and wireless telemetry stand as technological
foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic
functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route
towards viable TCE is proposed, based on multiple CE devices including important acoustic
sensing and drug delivery components. In this approach, an initial multimodal diagnostic device
with high-frequency quantitative microultrasound that complements video imaging allows surface
and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US)
to mark sites of pathology with exogenous fluorescent agents permits follow-up with another
device to provide therapy. This is based on an US-mediated targeted drug delivery system with
fluorescence imaging guidance. An additional device may then be utilized for treatment verification
and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient
pathway for gastrointestinal treatment is presently incomplete, the description in this paper of
previous research and work under way to realize further components for the proposed pathway
suggests it is feasible and provides a framework around which to structure further work.

Keywords: ultrasound; capsule endoscopy; USCE; UmTDD; targeted drug delivery; theranostics;
gastrointestinal; acoustic sensing; ultrasonic drug delivery; endoscopy

1. Introduction

Gastrointestinal (GI) disorders represent a myriad of conditions related to known and unknown
causative agents. These conditions include food-borne illnesses (gastroenteritis), inflammatory bowel
disease (IBD: Crohn’s disease, ulcerative colitis) and neoplastic diseases (Barrett’s esophagus, colorectal
cancer). Due to the number and common occurrence of conditions associated with the GI tract,
gastroenterology is one of the most heavily utilized areas in healthcare systems. Furthermore, many of
these conditions demonstrate increasing upward trends. This is particularly true for IBD which affects
more than 2 million people in the USA [1] and colorectal cancer, related to ageing populations [2].
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GI endoscopy is one of the most heavily used procedures in gastroenterology and hospital services
in general [1]. It permits entry via natural orifices in a minimally invasive manner with access granted
to the entire length of the GI tract. The upper GI tract is accessed with esophagealgastroduodenoscopy
(OGD), the lower section with colonoscopy and the less routine procedure of enteroscopy allows
access to the remote small bowel. All three approaches allow the clinician direct visual assessment of
the mucosa and subsurface structures with endoscopic ultrasound (EUS). Furthermore, conventional
endoscopes allow tissue biopsy and means of treating pathology, either pharmaceutically or physically.
However, despite its obvious utility for diagnosis and treatment, conventional endoscopy places
demands on hospital resources in terms of operator training, patient management and capital
expense [3].

Video capsule endoscopy (VCE) [3] has been introduced and accepted as a routine clinical
procedure in the past twenty years as an alternative to conventional endoscopy. Its development
has benefited from three areas of innovation: camera miniaturization and related electronics;
minimization of power consumption from an on-board capsule battery; and wireless telemetry for data
communication with a remote data recorder. Automated information extraction and interpretation,
i.e., computer aided diagnosis (CADx), is a fourth innovation that is still a topic of research. However,
capsule localization and positioning accurate to a level compatible with targeted therapies remain
elusive and are an area of active research.

The conventional diagnostic modality of optical endoscopy, as noted, is now complemented by
multiple additional modalities for diagnosis. The most important is ultrasound (US) imaging [4],
due to its ability to visualize subsurface pathology. The adoption of endoscopic US imaging is based
on the nature of US as safe, inexpensive and capable of real time imaging deployed at the point of
care [5]. In addition to qualitative diagnosis, US data have been shown to be amenable to quantitative
analysis and US carries the potential for therapeutic treatment through ultrasound-mediated targeted
drug delivery (UmTDD).

A means for improving diagnosis and ultimately treatment is to combine multiple diagnostic and
therapeutic (i.e., theranostic) modalities. Sonopill [6,7] is an example of a multimodal capsule which
aims to combine US imaging with other diagnostic modalities such as video imaging, fluorescence
imaging [8] and pH sensing. In addition, therapeutic capsule endoscopy (TCE) devices are also under
development, an example being SonoCAIT [9,10], a capsule endoscopy (CE) device containing UmTDD
components, discussed in detail in Section 4.3.

This paper describes progress towards a proposed patient pathway utilizing multimodal CE
theranostically. We first provide an in-depth review of CE for both diagnosis and therapy in Section 2,
particularly highlighting the role of US. In Section 3 we describe the proposed patient pathway for a
multimodal CE system in the clinic. Then in Section 4 we outline results relating to each step along
this pathway, with the use of microultrasound (µUS) as a means to detect diseased regions in the GI
tract, the use of capsule US for fluorescent marking of tissue, and the use of fluorescence imaging for
detection. Progress towards TCE containing an UmTDD system is also discussed and the usefulness of
capsule-based US to enhance therapeutic agent uptake is considered.

2. Capsule Endoscopy

2.1. Video Capsule Endoscopy for Diagnosis

The first ingestible wireless CE device was announced by Given Imaging Inc. and Dr. Swain at the
Royal London Hospital, UK, in 2000 [3,11]. The capsule for diagnosis in the small bowel, initially called
M2A and latterly branded as PillCam® SB (Medtronic Inc., Dublin, Ireland), has diameter Ø11 mm ×
26 mm length and weighs 3.7 g [11]. It consists of the following components: an optically-transparent
dome, a lens with a narrow aperture, four light emitting diodes (LEDs), a complementary metal oxide
semiconductor (CMOS) image sensor, two silver oxide batteries, an application-specific integrated
circuit (ASIC), a radio-frequency (RF) transmitter and an antenna [11].
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Because of physiological differences, different CE devices are required for individual sections
of the GI tract, exemplified by PillCam® COLON2 for colonoscopy and PillCam® UGI for
esophagoscopy [11–14]. The dissolvable PillCam® Patency capsule has also been developed to verify
adequate patency of the GI tract prior to CE, aiming to reduce the risk of capsule retention [15,16].
Besides the PillCam® family, other CE devices are also commercially available for small bowel
endoscopy, as listed in Table 1.

Table 1. Specifications of commercially available capsule endoscopes [11,12,17–24].

Device Company Size (mm) Weight
(g)

Imaging
Sensor

(Pixel Res.)

Frame
Rate
(fps)

Angle of
View (◦)

Image
Display

Battery
Lifetime

(h)

PillCam®

SB3

Medtronic Inc.,
Dublin, Ireland.

Ø11.4 × 26.2 3.0 CMOS
(256 × 256) 2–6 156 Offline 8

PillCam®

COLON2
Ø11.6 × 32.8 3.0 CMOS × 2

(256 × 256) 4–35 172 Real
Time 10

PillCam®

UGI
Ø11.6 × 32.8 3.0 CMOS × 2

(256 × 256) 18–35 172 Real
Time 1.5

PillCam®

PATENCY
Ø11 × 26 3.3 N/A 1

Endo-Capsule Olympus, Tokyo,
Japan Ø11 × 26 3.8 CCD

(1920 × 1080) 2 145 Real
Time 8–10

OMOM
System I

Jinshan Sci. & Tech.,
Chongqing, China Ø11 × 25.4 ≤6.0 CMOS

(640 × 480) 2 140 Real
Time 12

MiroCam IntroMedic, Seoul,
Korea Ø10.8 × 24 3.3 CMOS

(320 × 320) 3 150 Offline 10–12

CapsoCam
Plus

CapsoVision,
Saratoga, CA, USA Ø11 × 31 4.0 CCD × 4

(221 × 884) 20 360 Offline 15

1 PillCam® PATENCY capsule does not contain imaging components.

Although commercial CE devices have been established to allow inspection of the entire GI tract
with minimal discomfort to patients, they still suffer from several limitations relating to locomotion
control (positioning), localization and movement tracking, and power supply and power management,
and have restricted imaging modalities [12,19,21,25,26]. These limitations are driving technological
development of research prototypes.

Current CE devices are propelled passively through the entire GI tract by peristalsis and
their position, speed and orientation cannot be controlled [12,26,27]. Passive locomotion prevents
prolonged diagnosis and therapeutic interventions, unlike conventional endoscopes which permit
tissue biopsy and aspiration of fluid for cytology. Many active locomotion approaches have been
proposed and feasibility has been explored with prototypes, including electrically-stimulated muscle
contractions [28], the use of shape memory alloys (SMA) [29] and external magnetic fields [30,31] and
microrobots with leg-like [32–34] and earthworm-like [35,36] mechanisms.

The nature of the GI tract makes it challenging to localize capsule position precisely [37].
RF triangulation with an external sensor array to estimate the capsule travel distance based on RF signal
strength has been used in commercial CE devices such as PillCam® M2A. However, experimental
studies have shown that the noise in the RF signal measurement can cause an average error of 37.7 mm
and a maximum error of 114 mm [38,39]. Magnetic tracking algorithms have shown better accuracy,
with position errors less than 10 mm in many studies [40–42]. However, the overall accuracy is highly
dependent on the number of external sensors used [21] and it is challenging to work with an external
magnetic locomotion approach at the same time [40]. Other methods have also been reported based on
US time-of-flight [43], X-ray radiation [26,44] and methods using gamma scintigraphy [45].

Most commercial CE devices rely on silver-oxide coin batteries to provide power, these being the
only coin batteries approved for clinical use [20]. They provide 3 V at 55 mAh for approximately 8–10 h,
with an average power delivery of 20 mW [20,21,46]. In general, small batteries with high energy
density are required to prolong the operational time and extend the functionality of CE. Wireless
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power transfer and energy harvesting technologies have been investigated as alternatives, including
inductive coupling, microwave coupling and US technology [13,21,47,48].

Typical transit times for capsules through the small and large intestines are about 3 h and 20 h,
respectively [19,20,49,50]. Depending on the frame rate of CE devices (Table 1), a large number of
images or lengthy video can be generated during the procedure, requiring lengthy clinical review [18].
Hence, it is important to have software that can improve the visibility of lesions and shorten the review
time without sacrificing accuracy [18,25,51]. Recent software developments have focused on CADx
systems and image analysis to increase diagnostic yield and reduce inter-observer variability [25].

2.2. Therapeutic Capsule Endoscopy

At present, most commercial capsules are used only for GI diagnosis. Their limitations make it
very difficult to extend their use to more demanding diagnostic and therapeutic procedures such as
biopsy, cytology, minimally invasive surgery and targeted drug delivery, all of which are possible with
conventional endoscopes. These procedures require precise localization, controlled locomotion, and
real-time viewing, with remote-controlled tools and components in the TCE devices [52]. A few
capsules have been developed specifically for drug absorption studies; examples are Enterion
and InteliSite [14,45], and the Intelligent Pill system (iPill, Koninklijke Philips N.V., Amsterdam,
The Netherlands) was developed for controlled release of medication in the GI tract [53]. Colak et al.
proposed a theranostic capsule to deal with obscure GI bleeding [54]. However, these capsules have
only basic on-board electronics and a drug reservoir, without any imaging capability. Therefore, further
research and development is required for the evolution of CE from diagnosis to multimodal theranostic
robotic systems [11].

An effective targeted drug delivery capsule should contain anchor and release mechanisms.
The anchor mechanism positions the capsules at the target site in the desired orientation. It usually
deploys leg-like mechanisms [32–34,40,50,55] or uses a magnetic field [56,57] to attach the capsule
to the inner wall of the GI tract. The release mechanism is triggered to deliver drugs in a controlled
manner and involves a reservoir [12,40,58] with release triggered by specific environmental conditions,
e.g., temperature or pH [50], or by activation of a magnetic field [56].

The ability to perform minimally invasive surgery is another modality desirable for TCE [12,37,59].
Valdastri et al. reported the first successful in vivo surgical experiment using wireless CE [59]. Their
device, Ø12.8 × length 33.5 mm, was equipped with four permanent magnets for active external
magnetic steering. A nitinol clip was mounted on the tip of the capsule for release in response to an
external signal [59]. The feasibility of tissue biopsy has also been demonstrated with capsules using a
rotational razor mechanism, micro-spikes or two cylindrical razors [60–62]. To enable identification of
sites of pathology with TCE, optical biopsy has been proposed for tissue diagnosis in vivo, including
fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, light-scattering
spectroscopy, Raman spectroscopy, and molecular imaging [20,63].

2.3. Ultrasound Capsule Endoscopy

Currently, all commercial diagnostic CE relies on optical images and videos to aid diagnosis.
However, optical imaging is limited to the internal luminal surface of the GI tract. The addition of
US imaging in CE can expand the capability to image and analyze subsurface features to resemble
EUS [64]. Because in this case, US is transmitted from inside the body cavity, attenuation is reduced
and a higher US frequency can be used to deliver higher resolution data than those obtained from
transcutaneous US. High-resolution imaging and related quantitative analysis provided by µUS have
the potential for early detection of GI disease, prior to optical manifestation.

In 2004, Olympus announced the development of US capsules [65] but no further information has
emerged subsequently. However, progress by several research groups working with prototypes [63,66–69]
and several patents have been published [26,70–72]. Yuan et al. developed and fabricated a
photoacoustic imaging endoscope with an acousto-optical coaxial structure for cavity imaging [66].
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The tethered device consists of a Plexiglas tube, an optical fiber, a tapered reflector, a 64-element
ring transducer array and a coupling medium [66]. Photoacoustic images of porcine colorectal tissue
embedded in a transparent gelatin phantom were reconstructed to demonstrate feasibility. A European
Commission project, TROY, engaged in the development of an US capsule based on a 5 MHz 32-element
ring array [67]. Memon et al. reported on a capsule US device with a 128-element cylindrically-shaped
capacitive micromachined ultrasonic transducer (CMUT) array [68] and Wang et al. recently reported
a successful US capsule based on mechanical rotation of a 39 MHz US transducer [73]. A rotary
solenoid-coil motor was employed to rotate the US transducer with sectional electronic control.
Phantoms and ex vivo porcine small intestine specimens were used for image evaluation [73]. A similar
concept was studied by Lee et al. [69].

In addition to imaging, US can also be used for therapy, including tissue ablation and site-specific
drug delivery. For tissue ablation, high-intensity focused US is required. This is difficult to integrate
into capsule form because of the energy requirement and size limitations and also because of the high
risk of perforation of the bowel. However, UmTDD can direct liposome entrapped gas bubbles and
drugs [74–77] and can be integrated into capsules [9,10]. Drug-carriers can be affected by focused US
and release their contents in confined regions, i.e., the focal zone of a focused US transducer. The rate
of drug release strongly depends on and thus can be modulated by US parameters such as frequency,
intensity, focal size, and inter-pulse intervals [78]. With appropriate control, drug delivery can be
achieved in an effective manner.

3. Proposed Theranostic Patient Pathway

The important components for multimodal CE for diagnosis are actuation and sensing devices,
a power supply, wireless communication control circuitry and an antenna. In addition, TCE devices
must contain a targeting mechanisms and a drug reservoir and release mechanism. The typical shape
of a clinical CE device is a cylinder with hemispherical ends, ØCE = 10 mm and overall length
L = 30 mm [79]. Devices described above correspond closely to these norms. Due to the complexity
of the devices and their relatively small size, a combination of two or more theranostic devices in
succession may be necessary to deliver the required payload. Such a multi-capsule approach has the
extra advantage that clinical validation can be included in the diagnostic procedure to allow a second
opinion before administration of therapeutics.

The proposed patient pathway (Figure 1) begins with a patient presenting with symptoms that
indicate a GI condition, for example Crohn’s disease. In the next step, the patient is subjected to
conventional diagnostic procedures and, if positive, a diagnostic CE device is administered that uses
white light optics and µUS imaging to identify diseased regions in the GI tract after video review
and quantitative US (QUS) analysis. The diseased regions are marked with fluorescent nanoparticles
using a process analogous to UmTDD. At this stage, a clinician validates the diagnosis and can then
apply TCE. The therapeutic device is designed to detect the fluorescent nanoparticle markers without
the need for further diagnostic or communications functions, allowing space in the capsule for a
reservoir of therapeutic agents, a release mechanism and US components to direct the agents towards
the treatment site while simultaneously assisting in separating the active component of the agent, i.e.,
a drug, from a carrier, e.g., a microbubble, and increasing tissue permeability for enhanced uptake.
Following delivery, further diagnostic CE could be used to assess therapeutic efficacy. Table 2 links
the proposed patient pathway to current and future status of research described in this paper with
relevant references highlighted.
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Table 2. Present status of capsules under development and their link to the proposed patient pathway
described in Figure 1.

CE-Relevant
Step in Patient

Pathway

Required
Technical
Capability

Present Status of Research Results Presented
in This Paper

Relevant
References

2a/4
µUS Imaging,

Video Imaging,
CADx

VCE established. US CE in
development. Bench

tests performed

Bench testing, QUS
analysis [5–7,80,81]

2b US tissue marking

Proof of concept capsule
developed. Tissue marking

with nanoparticles
demonstrated

Proof of concept
capsule. Tissue

marking
[9,10,82]

3a/b
UmTDD Capsule.

Fluorescence
Imaging

Proof of concept capsule
developed and bench tested.

Fluorescence imaging capsule
developed; requires

miniaturization.

Development of
therapeutic capsule.

Fluorescence
capsule

[8–10,83,84]

4. Results

The proposed theranostic patient pathway described above is a complex procedure. However
preliminary results have been achieved for many of the individual steps, as described in this section
and in the literature as highlighted in Table 2. Together, these highlight the minimally invasive nature
and strong reliance on contemporary sensing techniques of USCE.

4.1. Microultrasound Diagnosis and Quantitative Analysis

Maximum efficacy of ultrasonic drug delivery requires accurate identification of the nature and
extent of the diseased tissue to be treated. This can be achieved through the appropriate use of
qualitative and quantitative µUS imaging. Previous research has shown good agreement between
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µUS and histology when imaging human GI tissue [85]. We seek to expand on this work through
the use of quantitative analysis techniques to calculate key tissue properties and establish a healthy
baseline. Quantitative µUS can detect pre-cancerous changes in tissue organization in isolated tissue
in a laboratory environment [86–89]. Both acoustic impedance (Z) and backscattering coefficient (BSC)
showed potential for detecting changes in cell and tissue architecture characteristic of early disease [86].

In new studies we used a 48 MHz piezocomposite transducer (AFM Ltd., Birmingham, UK) with
a mechanical scanner [80] to obtain µUS images of ex vivo porcine tissue samples and processed them
digitally with QUS techniques. To establish a measurement methodology compatible with clinical
systems, reference scans of tissue separated into its component layers (homogeneous tissue) were used
in conjunction with an automated tissue segmentation algorithm for characterization of tissue in situ
without the need for physical biopsy.

Healthy ex vivo porcine tissue from the esophagus and small bowel were used to model the
human GI tract [90]. Post mortem tissue was obtained fresh-frozen from the abattoir so it was not
necessary to obtain ethical approval. While the initially frozen state of the tissue was a consideration,
freeze-thaw cycles have been shown not to affect acoustic properties [91]. The esophageal tissue can
be separated into four layers: (1) mucosa, (2) submucosa, (3) muscularis propria and (4) adventitia
and serosa. As precancerous tissue disruption is commonly found in the mucosa and submucosa [92],
this work focused on those layers.

4.1.1. Tissue Characterization Techniques

A critical challenge in translating laboratory analysis techniques to clinical applications is the
loss of known, fixed reference points. Established protocols for QUS commonly use flat substrates
and samples with well-controlled, known thicknesses to minimize data variance [93,94]. By contrast,
in vivo approaches commonly use approximations which eliminate those reference signals [88,95].
For the present demonstration, a hybrid approach was used, in which reference values obtained
with homogeneous, healthy samples were combined with digital image segmentation to calculate the
desired values in heterogeneous tissue, specifically to identify Z, BSC and attenuation.

For two well-differentiated materials, the percentage of an incident US wave reflected from the
interface between them is approximated as a function of their acoustic impedances [81]. Based on this,
the acoustic impedance of an unknown tissue can be calculated from the impedance of the imaging
medium (Zw), the incident pressure wave (Vi) and the reflected wave (Vr), giving Zt (MRayl):

Zt = −
Vr + Vi
Vr −Vi

Zw, (1)

The incident wave amplitude can be obtained by reversing the calculation using the same
transducer configuration and a material of known acoustic impedance as a reflector, in this case
a quartz flat. The BSC was calculated using the same methodology as in previous studies [86], where
the coefficient is broken down into terms based on the geometry of the transducer, a reference echo
from a known quartz reflector and loss due to attenuation:

µB =
Rq

2π(1− cos θT)

∫ t2
t1
|Vs(t)|2dt∫ ∞
−∞

∣∣Vq
∣∣2dt

4a′

e−4a′d1 − e−4a′d2
(2)

where Rq is the reflection coefficient of the quartz reflector, θT is the half-angle subtended by the
transducer face at the focal point, Vs is the signal obtained from the interrogated sample, integrated
over the time-gate of interest, Vq is the amplitude of the signal obtained from the ground truth reference
integrated over the full sample time, and d1 and d2 are the minimum and maximum depths of the
tissue sample within the US image.

Before the BSC could be calculated for a given sample, the loss of ultrasonic signal due to tissue
attenuation had to be determined, requiring an accurate measurement of both the sample thickness
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and the specific attenuation for the tissue. Methods exist for calculating attenuation in vivo [96] but
they require significant additional processing and are not as accurate as ex vivo methods using known
reference reflectors. For this reason, the attenuation here was pre-calculated using manually separated
samples and these values were applied when calculating the BSC in vivo.

For a tissue sample of thickness d, the attenuation factor, α, (dB mm−1) can be calculated as:

α =
−20
2× d

log10
Vr

Va
, (3)

where Vr is the amplitude of the signal from the reference reflector beneath tissue and Va is the
amplitude of the signal from the reference reflector without tissue present. The logarithmic attenuation
coefficient (dB mm−1) can then be converted to the natural logarithmic a′ (neper mm−1):

a′ =
α

8.686
, (4)

4.1.2. Experimental Tissue Preparation

All porcine tissue samples were sourced from an abattoir (Medical Meat Supplies Ltd., Oldham,
UK) and were supplied frozen, certified fit for human consumption, and thus deemed suitable to
provide a healthy baseline. Esophageal samples were selected from the transition from the esophagus
to the stomach through the gastro-oesophageal junction (GOJ) which provides naturally heterogeneous
tissue for qualitative and quantitative assessment. Small bowel samples were obtained with the
mesenteric vessels intact so the samples could be perfused to ensure accurate mucosal surfaces for
drug delivery trials.

Prior to scanning, samples were thawed in their vacuum packs for 20 min in water at room
temperature and then rinsed with water after removal from the vacuum pack. Samples were then
transferred to a tray containing 2 cm thick acoustic absorber covered by ~4 cm of 1% agar by mass.
Trays were prepared 1 day prior to scanning to allow the agar substrate to solidify overnight at room
temperature. Samples were coupled to the agar using standard acoustic gel and covered with degassed
phosphate buffered saline (dPBS) to prevent tissue degradation during scanning and ensure ultrasonic
coupling to the ultrasound devices.

The scanning apparatus used in the imaging experiments was configured for planar tissue
samples so the esophageal samples were prepared for scanning by bisecting them along the long axis
using a scalpel. This allowed the tissue to be opened and pinned to the agar without disrupting the
GOJ. To obtain homogeneous samples of the mucosa and submucosa for attenuation measurement,
two esophageal samples were prepared using the same method as that used for the whole samples but
they were then separated along the fascial plane of the tissue with a scalpel. The mucosa/submucosa
combination was separated from the remaining layers, then mounted on the agar substrate for imaging.

4.1.3. Results

A key component in successful characterization of the mucosa/submucosa in vivo using the
approach proposed here is the ability to separate the region of interest (ROI) digitally from the
surrounding tissue in the µUS scans. A custom software algorithm was developed in MATLAB
(The Mathworks, Cambridge, UK) to isolate the data from the ROI for subsequent processing.
This algorithm takes the original data from each B-scan, Figure 2a, and separates it into echoes
with amplitudes above and below an empirical threshold of −26 dB with respect to the brightest echo.
The resulting binary mask, Figure 2b, is cleaned up by applying a closing operation and the largest
echo region is selected as the ROI, Figure 2c. The mask is then applied to the original data to remove
the echo data outside the ROI, Figure 2d. BSC and Z are then calculated for this segmented data.

When imaging the tissue for each sample, three B-scans were obtained along the long axis, spaced
0.5 mm apart. The images were then inspected and any samples with non-identifiable irregularities
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were removed from the sample set. The resulting images, an exemplar being shown in Figure 3, were
assessed by a clinician who was satisfied with the layer differentiation obtained.Sensors 2017, 17, 1553 9 of 24 
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Figure 3. 48 MHz microultrasound scan of ex vivo porcine esophageal tissue. Tissues layers can be
distinguished as (a) mucosa, (b) submucosa and (c) muscularis propria and serosa.
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The attenuation coefficient for each vertical line in the images of the two mechanically separated
samples was calculated from Equation (3), then the values were averaged across both samples to
obtain αav = 1.86 ± 0.72 dB mm−1. This is on the same order as the attenuation seen in other
low density tissues [97] similar to mucosa/submucosa and this average value was used in all
subsequent calculations.

For all samples, Z and BSC were calculated for individual vertical lines then the average and
standard deviation for all lines was calculated for each sample. The variation in Z across the six
samples and the different segmentation depths can be seen in Figure 4 and the BSC intersample
variance is shown in Figure 5.

Clinical analysis of the µUS images of the porcine GI tissue determined that diagnostic quality
layer differentiation was achieved with the qualitative images with the clinician able to determine
thickness and variability of the different layers of the tissue to his satisfaction.

The attenuation values measured in the reference sample showed higher than ideal variability
across the samples but the values obtained were within the expected range. Future work will focus on
error reduction through better thickness control of the reference samples.

The segmentation algorithm successfully isolated the mucosa/submucosa digitally from the other
tissue layers using a single threshold value to allow automated ROI detection in real-time, making
this a feasible approach for in vivo scanning. It also allowed variable thickness segmentation, as
demonstrated in the acoustic impedance analysis, revealing an increase in apparent impedance with
segmentation thickness. This may correlate with the increase in density expected in healthy tissue [86].
Further work is required to determine if disruption in the macrostructure of the tissue, as seen in
pre-cancerous sample, would alter this trend. Some variance was seen in the BSC values across the six
samples but this is also reported in the literature [93] suggesting that BSC measurement is prone to
biological variability.
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Figure 4. Increase in acoustic impedance as a function of segmented tissue thickness. Error bars show
standard deviation across the full 30 mm scan for each sample.
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Figure 5. Backscattering coefficients for each digitally segmented tissue sample as a function of sample.
Error bars show standard deviation across the full 30 mm of each scan.

4.2. Fluorescent Nanoparticle Marking and Imaging

Following identification of diseased regions in the proposed patient pathway, these regions must
be marked with fluorescent nanoparticles in an US-mediated process. This is necessary, assuming that
it is impossible to include both full diagnostic capabilities and the components required for therapy in
a single CE device of viable dimensions. This section briefly describes the process of marking tissue
with fluorescent nanoparticles and explains the fluorescent imaging that could be used to detect the
marked regions.

The marking process was demonstrated by Cox et al. [82]. Experiments were performed on ex
vivo small bowel tissue taken from wild type mice using fluorescent CdSeS/ZnS quantum dots (QDs)
(Sigma-Aldrich Corp., St. Louis, MO, USA) that were directed towards the focus of a miniature US
transducer. The design of this transducer [84] was identical to those used in TCE research [9,10,83] but
they had different casings and connectors. The transducer was driven with an excitation voltage of
10 Vpp for t = 6 min with the QDs introduced at time t = 5 min for a total time of 1 min using a Braun
syringe driver (Braun GmbH, Kronberg, Germany). Post sonication, tissue was washed twice with
phosphate buffered saline (Thermo Fisher Scientific, Waltham, MA, USA) and illuminated using an
ultraviolet fluorescent lamp (UVGL-58, Analytik Jena, Jena, Germany).

The fluorescence imaging results showed an increased concentration of QDs where tissue was
insonated. The precise location of the QDs, in the tissue or only within the mucus layer, has not yet
been determined but both locations may be suitable as markers of diseased tissue as discussed in the
proposed patient pathway. Further clinically-based research is still needed to determine the lifetime of
the marker and its stability at the insonated location.

To mark tissue with fluorescent agents using US transducers that have excitation amplitudes
appropriate for CE implementation also requires a means to visualize the marked region in vivo. Here,
the work of Al-Rawhani et al. [8] is notable. They used fluorescence imaging with a single-photon
avalanche diode (SPAD) array in application-specific integrated circuits (ASIC) housed in a CE device
(Figure 6). The authors demonstrated successful miniaturization and imaging, putting in place a key
component in the patient pathway proposed here. It is also possible that the same technique could
be used during original diagnosis, as a complementary or alternative method to the combination
of white light and US imaging discussed here. Indeed, the multimodal approach when used as a
complementary method may be highly attractive in some clinical situations.
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4.3. Feasibility of Therapeutic Capsule Endoscopy

As discussed in Section 2.2, there has been little progress towards the development of TCE.
Previous therapeutic capsule designs have had limited success such as the inability to deliver
therapeutic agents through the mucosa, poor localization and positioning. One solution is to capitalize
on UmTDD to overcome these problems. UmTDD can facilitate delivery of therapeutic agents at the
target location. Focused US can release therapeutic agents from their carrier and increase uptake into
cells through thermal and mechanical effects. Although UmTDD has not yet achieved clinical use,
there are systems under investigation that are designed for extracorporeal application. These require
relatively high-power levels and are sometimes combined with magnetic resonance imaging.

A specific challenge in realizing UmTDD components in CE form is the necessary miniaturization
of the focused-US transducer. A CE US transducer is much smaller than a conventional UmTDD
transducer, until recently it has been unclear whether it can produce enhance drug uptake. Following
the previous descriptions of key issues in a patient pathway for TCE, this section of the paper describes
the development of a proof of concept TCE device, named SonoCAIT. Prototype capsules are tethered
for power and drug delivery. Nonetheless, they can provide the proof of concept that UmTDD
components can fit within the volume of a capsule and can establish the effectiveness of miniature
US transducers.

Capsule Fabrication and Functional Testing

Components necessary for a proof-of-concept UmTDD capsule are: a miniature focused-US
transducer, video camera with illumination, therapeutic agent channel, capsule shell and tether.

A typical focused-US transducer consists of a piezoelectric element, backing layer for
physical support with minimal energy absorption, electrical interconnects and a protective casing.
The piezoelectric element chosen for the present application was a PZ54 piezoceramic bowl (Meggitt
Sensing Systems, Kvistgaard, Denmark) with outer diameter, OD = 5 mm, radius of curvature,
Rc = 15 mm, thickness, T = 0.5 mm, and central driving frequency, fc = 4 MHz. PZ54 was chosen
was developed specifically for focused US applications [98] The backing layer consists of a 3:1 mass
ratio mixture of K1 glass microbubbles (3M, Maplewood, MN, USA) and epoxy (Epofix, Struers
A/S, Denmark). The Ag electrodes fired onto the PZ54 bowl were connected to a coaxial cable
with OD = 0.3 mm and ID = 0.1 mm using conductive silver epoxy (G3349, Agar Scientific, UK).
The transducer is housed in a casing with diameter, Dcase = 7 mm, and length, Lcase = 3.5 mm. The casing
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was printed in ABS plastic using a Replicator 3D printer (MakerBot, New York, NY, USA). The entire
fabrication process is detailed elsewhere [9] and the fully fabricated transducer is shown in Figure 7a.
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Figure 7. (a) CAD cross section of the miniature focused-US transducer with PZ54 bowl, backing
layer, interconnects and casing. (b) Micro ScoutCam imaging camera 1.2 mm in diameter, 5 mm in
length, tethered. Camera passes through illumination board with four LEDs mounted on a PCB with
diameter 8 mm. (c) CAD cross section of the capsule with components included. All components
are confocal and the US beam and therapeutic agents are indicated in the drawing. The capsule has
diameter Dcap = 10 mm and length Lcap = 30 mm.

The camera used in the present work (microScoutCam, Medigus Ltd., Israel) measures 1.2 mm
in diameter and 5 mm in length, allowing it to fit within a capsule. The camera has an image area
of 492.8 µm × 488.4 µm with a resolution of 220 × 224 pixels. Images and video are captured by a
dedicated video processor to which the camera is connected. Illumination was provided by mounting
four 40 mW LEDs (OSRAM Opto Semiconductors GmbH, Germany) on a printed circuit board (PCB)



Sensors 2017, 17, 1553 14 of 24

with a central hole, diameter 1.5 mm, to allow the camera to pass through. The camera is shown in
Figure 7b.

To simplify the drug delivery mechanism for the proof-of-concept capsule, a fine bore polythene
tube runs the length of the tether and into the capsule, with OD = 0.96 mm, ID = 0.58 mm; therapeutic
agents are delivered through it using a syringe pump located at the distal end. The multi-channel
tether has OD = 2.25 mm, ID = 1.65 mm, and connects capsule components with benchtop apparatus.
It is designed such that any rotation at the proximal end corresponds to the same rotation at the distal
end to assist in positioning the capsule relative to the target location.

The capsule shell was designed such that the focused-US transducer, delivery channel, video
camera and illumination are all confocal to allow therapeutic agents to be released from their carriers
in close proximity to the bowel wall. This will occur near the US focus, aiding the release of the agents
and increasing tissue permeability. Figure 7c is a computer aided design (CAD) drawing (SolidWorks,
Dassault Systèmes SOLIDWORKS Corp. Waltham, MA, USA) of the capsule and components.
The capsule shell was manufactured using an Object Connex 500 3D printer (Stratasys Ltd., Minnesota,
MN, USA).

For a simple demonstration of the capabilities of the components within the TCE device, glass
microbubbles (MBs) (3M, Maplewood, MN, USA) were passed through the delivery channel and into
the US focus, while monitoring the confocal zone with the camera. The original trajectory of the MB
stream was deflected by an angle greater than 90◦ when it impinged on the US beam driven with an
excitation voltage of 8 Vpp [2]. This shows that the miniature US transducer can direct a simple agent
towards a target location under visual observation.

For the patient pathway, we propose to treat localized diseases in the GI tract using drugs in a
targeted manner. UmTDD can help via three mechanisms [83]: drugs can be packaged to minimize
systemic effects during delivery and can be released in the US focal zone; the drug can be directed
towards the target; and US can increase permeability of the treatment site and enhance uptake.
One approach illustrates the first mechanism [75] is to combine a drug with a chemically engineered
package. An example was demonstrated by producing a chemical complex with doxorubicin (DOX),
a chemotherapeutic drug, and γ-cyclodextrin. Comparing the effect of the complex to DOX alone
showed that the complex had a reduced effect on cells in vitro but that its effect was enhanced with
mild hyperthermia and cavitation caused by focused-US [75]. An approach for the second mechanism
was described in Section 4.3, and demonstrated that the trajectory of MBs can be deflected with a
miniature focused-US capsule transducers. The third mechanism will be investigated in this section,
which explores the permeabilization effects of miniature focused-US transducers on relevant epithelial
cell models. An automated cell insonation system was created to ensure reproducible experiments,
miniature focused-US transducers were produced and used with the system that match those used in
the TCE device, and finally experiments were preformed using an epithelial cell model.

4.4. Ultrasound-Mediated Targeted Drug Delivery

4.4.1. Epithelial Cell Model of the Small Intestine

To investigate US facilitated permeabilization and improved uptake, requires an appropriate cell
model of the GI tract. One such model are human epithelial colorectal adenocarcinoma (Caco-2) cells.
Once Caco-2 cells have become differentiated and polarized, they mimic the enterocytes lining the
small intestine, forming cellular junctions and microvilli [99]. They act as a model of the small intestine
and are approved by the US Food and Drug Administration (FDA) [100]. Typically, it takes Caco-2
cells 21–25 days growing on ThinCert membranes (Greiner Bio-One, Kremsmunster, Austria) to form
this fully differentiated cell layer.

We maintained Caco-2 cells in Dulbecco’s Modified Eagle’s Medium (ThermoFisher Scientific,
Waltham, MA, USA), supplemented with: 10% fetal bovine serum (GE Life Sciences, Chicago, IL, USA);
1% non-essential amino acids (Gibco, ThermoFisher Scientific, Waltham, MA, USA); 0.5% penicillin
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streptomycin (Gibco, ThermoFisher Scientific, Waltham, MA, USA). They were seeded at a density
of 500,000 cells per 12-well ThinCert membrane and media was replenished daily. Transepithelial
electrical resistance (TER) was measured every third day to assess barrier function using a Millicell-ERS
TER meter (Millipore, Billerica, MA, USA) to measure resistance and Equation (5) to calculate TER:

TER = (Res − Rescontrol)× AreaThinCert (5)

where Res is the direct meter reading, Rescontrol is the resistance measured across a blank ThinCert and
AreaThinCert is the area of a ThinCert. TER values in the range 500–1000 Ω·cm2 reflect acceptable values
to represent a model of the small intestine and were usually established after 21–25 days [101,102].

4.4.2. Transducers for Insonation

To study the effects of the miniature focused-US transducers on Caco-2 cells an insonation system
was developed [84] utilizing transducers matching those in the TCE device. However, this system had
drawbacks including an inability to insonate more than one sample at a time and that it could work
only with therapeutic agents mixed in suspension not introduced through a channel as they are in the
capsule. To overcome these challenges, an enhanced system was developed that could automatically
insonate chosen wells in a ThinCert plate. Miniature focused-US transducers were also developed for
the system, similar to those used in the capsule except for a central hole through which therapeutic
agents can be passed.

For these transducers, the piezoceramic components were PZ26 (Meggitt Sensing Systems,
Kvistgaard, Denmark) perforated spherical-section bowls with OD = 5 mm, 1 mm central hole,
radius of curvature, Rc = 15 mm, and operating frequency, f = 4 MHz. The central hole allows
a delivery channel to be integrated into the transducer for the introduction of therapeutic agents,
similar to the setup described in Section 4.3. The PZ26 bowl is housed in a protective and structurally
supporting case produced by additive manufacturing of VeroBlack material using an Object Connex
printer (Stratasys Ltd., Minnesota, MN, USA). The backing layer comprised a 1:3 mass ratio mixture
of K1 glass microbubbles (3M, Maplewood, MN, USA) and epoxy (Epofix, Struers A/S, Denmark).
The MB-loaded epoxy was applied to the rear surface of the PZ26 material and both components were
placed in a 70 ◦C oven to cure for 15 min. The delivery channel consisted of fine bore polythene tubing,
OD = 0.96 mm, ID = 0.58 mm. The backing layer was penetrated by a 1 mm drill bit and the tubing
was passed through the center of the PZ26 material, through an outlet in the edge of the casing.

The silver electrodes fired onto the PZ26 bowl were connected to coaxial cable, OD = 0.3 mm,
using conductive Ag-loaded epoxy (G3349, Agar Scientific, UK) and the other end of this cable was
connected to the central pin of a surface mount SMA connector using conductive Ag-loaded epoxy.
The SMA connector was then inserted into grooves in the additively-manufactured casing, allowing
easy interchangeability of transducers in the insonation system. The fabrication process is shown in
Figure 8a–h and the fully fabricated transducer CAD is shown in Figure 8i.
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Figure 8. (a) Piezoceramic material was placed face down on a flat glass surface. (b) An additively-
manufactured casing was placed over the piezoceramic material, ensuring they were coaxial.
(c) Electrical interconnect was attached to the rear surface of the piezoceramic using Ag-loaded epoxy.
(d) Glass microbubble-loaded epoxy was added to the rear surface of the piezoceramic and cured in an
oven for 15 min at 70 ◦C. (e) A hole was drilled through the backing layer a 1 mm dia. drill bit. (f) The
delivery channel was run through the central hole in the piezoceramic and out an outlet in the side
of the casing. (g) The central pin on the surface mount SMA connector was attached to the electrical
interconnect on the rear surface of the transducer using Ag-loaded epoxy. The SMA connector fit into
grooves in the additively-manufactured casing and was secured using epoxy. (h) The electrical ground
connection was attached from the outside of the SMA connector to the front face of the piezoceramic
material using Ag-loaded epoxy. The ground connection runs along the outside of the transducer
casing. Gaps in the transducer were sealed with epoxy to waterproof the transducer. (i) CAD model of
the fully fabricated transducer showing piezoceramic, delivery channel, casing and SMA connector.

Acoustic power, Pac, measurements are a primary feature of transducer characterization and
provide an important quantitative description of output. Pac is measured by a radiation force balance
(RFB), providing quantification for both diagnostic and therapeutic US. A RFB consists of an absorbing
target suspended in a degassed water bath attached to a precision balance. The displacement of the
target’s equilibrium position when insonated is detected by the precision balance and the magnitude
of the equivalent mass is related to Pac. In the present work, a transducer under test was mounted in
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a bath of degassed water with the absorbing target of the RFB (Precision Acoustics, Dorchester, UK)
at the transducer focus. The transducer was driven by an Agilent 33220A signal generator (Keysight
Technologies, Santa Rosa, CA, USA). Raw data was converted into Pac values using an appropriate
temperature-specific calibration factor supplied by the manufacturer. The transducer was driven with
input voltages in the range 3–10 Vpp at 1 Vpp increments. Pac was calculated for each input voltage and
is shown in Table 3. In general, the transducer produced Pac in the range 8.5–153 mW, corresponding
to input voltages 3–10 Vpp. The electroacoustic efficiency of the transducers was calculated as the ratio
of the acoustic output power, Pac, and the electrical input power, Winput, obtained from Equation (6):

Winput =

(
Vpp

2
√

2

)2

Z
(6)

where Z is the electrical impedance magnitude at the input frequency and Vpp is the input voltage.
Efficiency values displayed in Table 3 are in the range 37.2–60.3% with an average efficiency of 54%.
The values of the lowest efficiencies of 37.2% and 49.0%, corresponding to input voltages of 3 Vpp

and 4 Vpp, are attributed to the limited accuracy of the RFB when measuring low acoustic powers.
Spatial distribution of the US field in the focal region was obtained by pressure mapping carried

out in an US scanning tank (Precision Acoustics, Dorchester, UK) with a 0.075 mm diameter needle
hydrophone (Precision Acoustics, Dorchester, UK) attached to a three-axis motorized stage that moved
the hydrophone through the US field. A LabVIEW-based program (National Instruments, Newbury,
UK) is used to control the system and position the hydrophone within the tank. The transducer was
first placed in the scanning tank with the hydrophone close to its focus. The precise focus in the z-axis
was then located by manually moving the z-stage, axial to the transducer, until the maximum signal
was found. Subsequently, the system software scans a plane in the x-y axis to find the other focus
coordinates automatically and records them.

Once the US focus had been found, an x-y planar scan was performed over an area of 5 × 5 mm
with 0.075 mm step size. The waveform was applied to the transducer using an Agilent 33,220A signal
generator (Keysight Technologies, Santa Rosa, CA, USA) at f = 4 MHz and the input voltage applied in
the range 1–10 Vpp in 1 Vpp increments. Results are shown in Table 3, with the acoustic output pressure
in the range 11–153.4 kPa corresponding to input voltages of 1–10 Vpp. The beam diameter was also
calculated to be 2.7 mm at−6 dB for all input voltages. Intensity and mechanical index were calculated
using Pac, pressure and beam diameter and are shown in Table 3.

Table 3. Output parameters of miniature focused-US transducer with central frequency f = 4 MHz
and 1 mm central delivery channel.

Input Voltage
(Vpp)

Winput
(mW)

Woutput
(mW)

Efficiency
(%)

Pressure
(kPa)

Beam Diam.
(mm)

Intensity
(W/cm2)

Mech.
Index

1 2.54 N/A 1 N/A 1 11.0 2.70 N/A 1 0.005
2 10.2 N/A 1 N/A 1 22.9 2.70 N/A 1 0.011
3 22.8 8.50 37.2 34.7 2.70 0.15 0.017
4 40.6 19.9 49.0 53.7 2.70 0.35 0.026
5 63.4 34.8 54.8 61.5 2.70 0.61 0.030
6 91.4 51.0 55.8 77.4 2.70 0.89 0.038
7 124 71.3 57.4 93.3 2.70 1.25 0.046
8 162 93.6 57.6 117 2.70 1.64 0.058
9 206 123 59.8 136 2.70 2.15 0.067

10 254 153 60.3 153 2.70 2.67 0.076
1 Woutput not available for low input voltages due to limited resolution of force balance.
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4.4.3. Fully Automated Insonation System

The automated system was constructed to select one or more wells in turn, automatically lower the
transducer into them, insonate the cells for a chosen time/US intensity, deliver any therapeutic agents
or microbubbles, remove the transducer from the well, and move to the next well. This minimizes
the human effort that was required with the previous system and allows multiple samples to be
sonicated automatically [84]. The system shown in Figure 9 comprises three X-slide translation stages
(Velmex Inc., New York, NY, USA) with travel length, LT = 350 mm. The stages were mounted
in an x-y-z configuration to provide three degrees of freedom for accessing the wells in the plate.
They were mounted onto a 450 × 600 mm optical breadboard with M6 tapped holes (Thorlabs Inc.,
Newton, NJ, USA) using optical cleats (Velmex Inc., New York, NY, USA). The transducer in use
attached to an SMA-female to BNC-male connector that is held in an additively manufactured bracket
(MakerBot, New York, NY, USA), attached to the stage carriage. A DG4102 waveform generator
(RIGOL Technologies, Beijing, China) was used to drive the transducers. The therapeutic agent
delivery channel was controlled by an NE-1000 syringe pump (New Era Pump Systems Inc., New York,
NY, USA) that drives syringes in the size range 0.5 mL to 60 mL. The cell plate holder was additively
manufactured in VeroBlack (Stratasys Ltd., Minnesota, MN, USA) material using an Objet Connex 500
(Stratasys Ltd., Minnesota, MN, USA) and mounted on a 150 × 150 mm2 optical breadboard with M6
screws (Thorlabs Inc., Newton, NJ, USA), raised 50 mm by mounting posts.

The system, including translation stages, signal generator and syringe pump, was controlled by a
LabVIEW-based interface (National Instruments, Newbury, UK) which allows individual wells in the
cell plate to be selected, and the US and delivery parameters to be varied for each well.
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Figure 9. Insonation system comprising three axis translation stages, syringe pump, signal generator
(off screen), cell plate holder, control program, and miniature focused US transducer.

4.4.4. Barrier Function Measurements during Insonation

Transepithelial resistance (TER) measurements (Equation 5) were used to assess the barrier
function of cells grown on porous membranes, such as ThinCerts. Since TER is a measurement
of barrier function, a reduction in value indicates a decrease in barrier function. The aim of the
experiments described below was to investigate the effect of insonation on TER.

Cells were grown on ThinCerts until they reached the TER reflecting full barrier function as
described in Section 4.4.1. SonoVue MBs (Bracco S.p.A., Milan, Italy) were mixed into growth medium
at a concentration of 1 × 106 MBs/mL. The cell plate containing the samples was then transferred into
the insonation system. Nine samples were generated: three samples were exposed to MBs without
insonation, three samples were insonated with no MBs present, and three samples were insonated
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with MBs present. A 10 Vpp sinusoidal waveform was applied to the transducer continuously for 60 s
per sample producing specific acoustic output parameters (last line of Table 3).

Figure 10 shows the relative drop in TER in each sample type. The samples that were exposed to
MBs without insonation were unaffected. Samples exposed to US alone demonstrated an average drop
of 2.94% from the initial value of TER. Samples that were insonated in the presence of MBs had an
average TER drop of 5.52%. In each case, the TER returned to it the initial value after 5–6 min. Since
TER is a measure of the barrier function of the cell layer, a drop in TER during insonation reflects
decreased barrier function. Reasons for a decrease in TER during insonation could be a release of
intercellular junctions, e.g., tight junctions, or increased cell membrane permeability. Both effects
could increase drug uptake. Additionally, MBs alone, which are often used as a vehicle for packaging
drugs, decreased barrier function further than just US alone. This means that the miniature focused
US transducers could improve uptake.
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Figure 10. Effect of TER on small bowel model. MB-only samples were unaffected. Ultrasound-only
samples had an average drop of 2.94% from initial TER. Samples exposed to ultrasound with MBs
present had an average drop of 5.52% from the starting value.

5. Conclusions

A potential theranostic patient pathway has been outlined (Figure 1) for the treatment of GI
diseases based on the use of multimodal CE and UmTDD in a TCE. While its implementation clearly
lies some way into the future, previous research and work now under way is demonstrating many
important components.

US sensing in the form of qualitative and quantitative µUS analysis has been explored to diagnose
diseased regions in the GI tract. Fluorescent marking is considered an important capability to allow
location of diseased regions after they were identified with diagnostic CE, to allow treatment with
a feasible therapeutic capsule subsequently, which will only require minimal communication or
diagnostic capabilities of its own. A proof-of-concept therapeutic capsule has been constructed to
determine the feasibility of UmTDD in capsule format. Viability and functional testing has shown
that the miniature focused-US transducers housed in the capsule could be able to direct therapeutic
agents towards a treatment site. The ability of these miniature focused-US transducers to increase
permeability of a small bowel cell model and enhance therapeutic uptake has also been explored.
An automated insonation system to perform drug delivery experiments was described, including
specialized US transducers corresponding to those appropriate for TCE. TER, a measurement of cell
barrier function, was measured across the small bowel model during insonation with MBs and a
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decrease was demonstrated. This indicates that the cell model is becoming more permeable and may
translate to increased drug uptake in the small intestine.

These early results demonstrate the feasibility of the proposed patient pathway. Further work is
now in progress to combine diverse capabilities in single capsules, notably VCE combined with µUS
imaging [6,7] for diagnosis and fluorescence imaging with UmTDD for therapy.
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