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Abstract 

Sexual dimorphism (i.e., masculinity in males and femininity in females) is known to 

affect social perceptions that are important for both mate choice and intrasexual 

competition, such as attractiveness and dominance. Little is known, however, about the 

neurophysiological underpinnings mediating sexual dimorphism’s effects on face 

processing. Here we investigate the neurological correlates of processing sexually 

dimorphic faces using event-related potentials (ERPs). We employed image 

transformation techniques to enhance and reduce the sexually dimorphic shape 

features of male and female faces viewed by women performing a sex categorization 

task. Sexual dimorphism modulated superior-central N250 magnitude and the peak 

latency of the N170 and P200. The sex of the face further modulated the amplitude of 

the P200. These findings extend prior work linking the superior-central N250 to social 

categorization processes triggered by face shape, and strengthen its functional 

interpretation in terms of coarse- versus fine-grained categorical judgements. We 

conclude that ERPs can illuminate the cognitive mechanisms (i.e., mental processes) 

underlying behavioral responses to sexual dimorphism.  
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Introduction 

Perceptions of physical attractiveness affect many aspects of our lives, such as who we 

reproduce with (Gangestad, 1993; Gangestad & Buss, 1993), employ (Chiu & Babcock, 

2002), and vote for (Klein & Ohr, 2000; Little, Burriss, Jones, & Roberts, 2007), as well 

as other fundamental aspects of human care (e.g., Bordieri, Solodky, & Mikos, 1985; 

Dion, 1972; Kurdahi Badr & Abdallah, 2001; Stephan & Langlois, 1984). Facial 

attractiveness, specifically, may be particularly important in person perception (see, 

e.g., Little, Jones, & DeBruine, 2011; Thornhill & Gangestad, 1999), although not the 

only important element involved in prosocial biases toward attractive people (see 

Maestripieri, Henry, & Nickels, 2017). Evidence suggests that the face is processed 

differently than the body, beginning at a very early age. For example, the configural 

processing of faces, which emerges very early in infancy (Le Grand, Mondloch, Maurer, 

& Brent, 2003; Walton & Bower, 1993), develops earlier than the configural processing 

of bodies (Slaughter, Heron, & Sim, 2002). Brain imaging studies (e.g., Allison, Puce, 

Spencer, & McCarthy, 1999; Eimer, 2000; Halit, de Haan, & Johnson, 2000; Kanwisher, 

McDermott, & Chun, 1997; McCarthy, Puce, Belger, & Allison, 1999; Puce, Allison, & 

McCarthy, 1999) and single-cell recording studies (Perrett, Hietanen, Oram, & Benson, 

1992) show greater activity in certain brain regions (e.g., the fusiform gyrus, Kanwisher 

et al., 1997) when processing faces compared to other types of stimuli, further 

suggesting that face processing may play a particularly important role in overall person 

perception.  
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Certain facial traits, including bilateral symmetry, facial averageness, color cues to 

health, and sexual dimorphism (i.e., masculinity in males and femininity in females), are 

related to attributions of attractiveness with relative consistency across cultures 

(reviewed in, e.g., Little et al., 2011; Mogilski & Welling, 2017). However, compared to 

the consistently high preferences for female facial femininity among men (e.g., Perrett et 

al., 1998; Welling, Jones, DeBruine, Smith, et al., 2008), preference for male 

masculinity among women is considerably more variable, with some studies reporting a 

high preference for relatively masculine men (e.g., Johnston, Hagel, Franklin, Fink, & 

Grammer, 2001) and others reporting a high preference for relatively feminine men 

(e.g., Welling et al., 2007). Given that masculinity is associated with measures of long-

term health (reviewed in Thornhill & Gangestad, 2006) and negative personality traits 

(e.g., dishonesty; Perrett et al., 1998), it is likely that women’s preferences for 

masculinity reflect how women resolve the tradeoff between the benefits (e.g., genetic 

immunocompetence that may be passed on to offspring) versus costs (e.g., less 

investment) of choosing a masculine partner. Certainly, preferences for male 

masculinity appear to be relatively context-specific, whereby preferences for masculinity 

are higher in conditions where genetic fitness should be prioritized. For example, 

women prefer masculine men more when environmental conditions are harsher 

(DeBruine, Jones, Crawford, Welling, & Little, 2010; DeBruine, Jones, Little, Crawford, 

& Welling, 2011; Little, Cohen, Jones, & Belsky, 2007), when considering men for short-

term (i.e., purely sexual) relationships (Little, Jones, Penton-Voak, Burt, & Perrett, 

2002), and when conception is more likely (e.g., Gildersleeve, Haselton, & Fales, 2014; 

Penton-Voak et al., 1999; Welling et al., 2007). Thus, various adaptive functions may be 
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served when social behavior is influenced by others’ sexually dimorphic features 

(Rhodes, Chan, Zebrowitz, & Simmons, 2003; Thornhill & Gangestad, 1999), but little is 

known about the brain’s response to these features.  

 

Relatively few studies have examined how event-related potentials (ERPs) are 

influenced by face shape during face processing, although some work has been done 

on the brain’s response to another socially important facial cue – that of race. Recently, 

Balas and Nelson (2010) investigated the effect on White participants of manipulating 

own-race (White) and other-race (Black) face shape and skin pigmentation within 

images viewed in a simple orientation discrimination task. They found that the N170, an 

early-processing component in face recognition (e.g., Bentin & Deouell, 2000; 

Herzmann, Schweinberger, Sommer, & Jentzsch, 2004; Itier & Taylor, 2004a, 2004b), 

and a superior-central N250 component were modulated by skin color, independent of 

face shape, such that the N170 amplitude was larger (i.e., more negative) and the 

latency shorter to Black faces than to White faces, and that the N250 amplitude was 

larger for White faces than to Black faces (with no N250 differences in latency in 

response to skin color). However, only the superior-central N250 exhibited sensitivity to 

face shape, whereby White face shape made N250 magnitudes less negative compared 

to Black face shape.  As concluded by Balas and Nelson (2010), the superior-central 

N250 may reflect greater experience with face shapes of own- compared to other-race 

individuals, although it is possible that this component may relate to the ease of 

processing face shape more generally. With respect to facial masculinity, although the 

neurophysiological correlates of perceived sex of the face have been investigated 
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(Mouchetant-Rostaing & Giard, 2003; Schyns, Bonnar, & Gosselin, 2002; Xu, Liu, & 

Kanwisher, 2005), only one study has investigated perception of sexually dimorphic 

face shape using ERPs. Cellerino et al. (2007) presented participants with profile views 

of gender-ambiguous faces and investigated perceptual masculinity based on a sex 

categorization task. They found that the right parieto-temporal N170 latency positively 

correlated with perceived masculinity, suggesting that the right parieto-temporal region 

plays a role in processing sexually dimorphic cues. However, given that the images 

were intentionally gender-ambiguous, the manipulation used by Cellerino et al. (2007) 

may not have been sufficiently salient to properly capture the encoding of sexually 

dimorphic face shape. Similarly, profile views of faces may not provide enough 

structural information related to sexually dimorphic shape because important dimorphic 

features are obscured or not fully visible (e.g., jaw width; Penton-Voak et al., 2001). 

 

ERPs allow brain activity to be tracked with high temporal resolution and provide 

researchers with a way to study the brain’s response to facial manipulations in real-time 

(i.e., as they happen), thereby offering important insight into the electrophysiology 

underlying perception. Here, given the importance of sexually dimorphic traits in person 

perception, we investigate how these cues are processed in the brain using ERPs. We 

demonstrate that neurophysiological correlates of face processing in women are 

sensitive to sexually dimorphic cues in male and female faces, providing novel insight 

into cognitive mechanisms (i.e., mental processes) mediating adaptive responses to 

facial sexual dimorphism. Given that most behavioral studies on facial sexual 

dimorphism have focused on women’s responses and given that preferences for 



7 
Face Sexual Dimorphism and ERPs 

sexually dimorphic traits are less consistent across women as compared to men, ERPs 

were recorded from a sample of young adult women as they categorized faces 

manipulated in sexually dimorphic shape as male or female. This work builds upon 

previous research (Cellerino et al., 2007) by using stronger manipulations of sexually 

dimorphic face shape. We predicted sexual dimorphism effects upon the right parieto-

temporal N170, and further predicted effects upon the superior-central N250, on the 

assumption that processes reflected by this component are not exclusively tuned to 

race-specific structure (i.e., that this component may reflect expertise with faces more 

generally). We additionally examined whether sexual dimorphism manipulations trigger 

different neurophysiological responses (as measured by differences in ERP amplitude 

and latency) as a function of sex, indicating functionally distinct processing of sexually 

dimorphic cues in male versus female faces.  

 

Methods 

Stimuli 

We manipulated images using prototype-based image transformation techniques. First, 

prototype male and female face images were made by averaging the shape, color, and 

texture of a group of male and a group of female faces (for more information, see 

Rowland & Perrett, 1995; Tiddeman, Burt, & Perrett, 2001). Next, 50% of the linear 

differences in 2D shape between these prototype faces were added to or subtracted 

from 40 unfamiliar male and 40 unfamiliar female face identities (all with neutral 

expressions). This generated 40 pairs of male faces and 40 pairs of female faces, with 

each pair consisting of a version enhanced and a version reduced in sexual dimorphism 
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(see, e.g., Buckingham et al., 2006; Little, Cohen, et al., 2007; Welling, DeBruine, Little, 

& Jones, 2009; see also Figure 1). Previous studies have verified that manipulating 

sexual dimorphism in this way influences perceptions in the predicted manner 

(DeBruine et al., 2006; Welling et al., 2007). Importantly, the masculine and feminine 

versions of each image differed equally in 2D shape from the original image, and pairs 

of images were matched in other regards (i.e., texture, color, and identity). Also, the 

image manipulation applied to male and female faces was identical. 

 

The experiment was implemented using Presentation 9.13, with 4 randomized blocks of 

40 trials, each containing 20 of the 80 face pairs (half female). Each image (20 male 

and 20 female) was presented once within each block in a random order. 

 

FIGURE 1 AROUND HERE. 

 

Procedure 

Heterosexual female participants (N = 17 adult White women, Mage=21 years, SD=2.89 

years) were recruited through the Psychology Subject Pool at the University of 

Aberdeen (Scotland, United Kingdom) and participated in exchange for course credit. 

All participants had normal or corrected to normal vision and reported being right-

handed. These women classified faces as male or female using a response box while 

EEG was recorded in an electrically and acoustically shielded chamber. Participants 

responded right button=female and left button=male during blocks 1 and 3 and the 

opposite during blocks 2 and 4, as quickly as possible. Each face was presented for 
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200ms, followed by a 600ms blank screen, and then a 500ms fixation cross followed by 

a 700-1700msec blank screen. Trial durations were randomly set at 2000-3000ms, in 

200ms jumps. This task allows us to measure categorical discrimination based on 

biological sex, as well as the influence of relevant fine-grained details (i.e., sexually 

dimorphic traits) in sex categorization, and how these details potentially correlate with 

ERP components involved in face processing.  

 

ERP Derivation 

Sixty-four-channel EEG data files were converted via the Polyrex conversion 

programme to a 16-bit resolution (gain .05) for processing in Neuroscan Edit 4.3. 

Following ocular artefact correction, data were bandpass filtered (.1 to 30Hz), re-

referenced to the common average, then epoched (100ms pre- to 800ms post-stimulus) 

and baseline corrected. Trials containing drift or saturation artefacts were rejected and 

data were smoothed using a 5-point binomial filter. ERPs were created from correct-

response trials for the enhanced-male (Mtrials=35.7), reduced-male (Mtrials=34.8), 

enhanced-female (Mtrials=34.9), and reduced-female (Mtrials=34.4) conditions (i.e., 

masculinized male, feminized male, feminized female, and masculinized female, 

respectively). 

 

Results 

Behavioral Data 

One-sample t-tests revealed that participants categorized faces in all conditions more 

accurately than chance (all t>40.66, all p<.001, see Figure 2). Repeated-measures 
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ANOVA [within-subjects factors: sex of face (male, female); sexual dimorphism 

(enhanced, reduced)] revealed only a main effect of sexual dimorphism upon sex 

discrimination (F1,16=5.88, p=.03, ηp²=.269), whereby enhanced sexual dimorphism 

faces were categorized with more accuracy than reduced sexual dimorphism faces (all 

other p>.39). Reaction time (RT) analyses (from trials where RT > 150ms, see 

Kaufmann, Schweinberger, & Burton, 2009) revealed a main effect of sexual 

dimorphism (F1,16=9.61, p=.007, ηp²=.375), whereby enhanced sexual dimorphism faces 

were categorized faster. A marginal main effect of sex of face (F1,16=4.12, p=.06, 

ηp²=.205) emerged, reflecting faster identification of male versus female faces, and a 

sex of face by sexual dimorphism interaction (F1,16=10.41, p=.005, ηp²=.394). RTs were 

slower for masculinized female faces than for feminized female faces (t16=5.14, p<.001), 

with no equivalent effect for male faces (p=.83). 

 

FIGURE 2 AROUND HERE. 

 

ERP Data 

Figure 3 shows ERPs at left and right lateral inferior sites P7/P8 and the superior-

central Pz site where the primary components of interest (N170 and superior-central 

N250) are located. Repeated-measures ANOVA of N170 mean amplitude (150-

180msec) [within-subject factors: sex of face (male, female); sexual dimorphism 

(enhanced, reduced); site (P7, P8)] produced no significant main effects or interactions 

(all p>.08). However, repeating this analysis using N250 mean amplitude data (230-

270msec) at Pz produced a main effect of sexual dimorphism (F1,16=5.67, p=.03, 
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ηp²=.262) because superior-central N250 amplitude was larger for reduced versus 

enhanced sexual dimorphism images (see Figure 4a), with no other effects (all p>.65). 

Inspection of Figure 3 shows further differentiation between positive ERPs in each 

condition at the lateral inferior sites during the 230-270msec interval. We analyzed this 

effect using repeated-measures ANOVA with the above factors, which gave only a main 

effect of sex of face (F1,16=10.25, p<.008, ηp²=.390; see Figure 4b) due to increased 

positivity of ERPs evoked by female versus male images (all other effects p>.6). 

 

FIGURE 3 AROUND HERE. 

 

Analyses of lateral inferior peak latency data revealed sexual dimorphism by site 

interactions both for the N170 (F1,16=6.39, p=.022, ηp²=.285) and (marginally) the 

subsequent 230-270msec positivity (F1,16=4.23, p=.056, ηp²=.209). ERPs peaked faster 

over the left hemiscalp at P7 for faces enhanced in sexual dimorphism (N170: 163msec 

versus 166msec, t17=2.18, p<.05; 230-270msec positivity: 251msec versus 258msec, 

t17=2.16, p<.05). Note that prominent superior-central N250 peaks could not be 

identified reliably in all participants, as was the case in Balas and Nelson’s (2010) study, 

and so we too cannot provide superior-central N250 latency analyses.  

 

FIGURE 4 AROUND HERE. 

 

Discussion 
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Reduced sexual dimorphism resulted in decreased overall accuracy and, for female 

faces, increased reaction times, suggesting that this manipulation affected within-

category (i.e., within-sex) discrimination of facial features that signal biological sex. In 

other words, sexually dimorphic faces were easier to correctly categorize as male or 

female, especially for female faces. These behavioral data add to our ERP data; our key 

finding was that the superior-central N250 was largest for reduced sexual dimorphism 

faces regardless of their sex, extending Balas and Nelson’s (2010) work by showing 

that superior-central N250 sensitivity is not limited to racial characteristics of face 

shape. In line with Balas and Nelson’s (2010) expertise account of the superior-central 

N250 (see also Scott, Tanaka, Sheinberg, & Curran, 2006, 2008; Tanaka, Curran, 

Porterfield, & Collins, 2006), our findings suggest that correct categorization of faces 

with reduced sexual dimorphism requires sensitivity to fine-grained facial features that 

signal sex. Thus, faces that are less sex-typical (i.e., less sexually dimorphic) are more 

difficult to categorize with respect to biological sex, as suggested by our behavioral 

data, and this task difficulty is apparently reflected in enhanced N250 negativity in 

response to faces with reduced sexual dimorphism. Moreover, previous fMRI work 

investigating effects of sexual dimorphism on face perception (Rupp et al., 2009) 

identified five brain regions (i.e., superior temporal gyrus, precentral gyrus, anterior and 

posterior cingulate and inferior parietal neocortex) previously related to either face or 

risk processing that showed increased activation to masculinized versus feminized male 

faces in women. Our findings complement this work by revealing neurophysiological 

correlates of face perception processes sensitive to sexual dimorphism, and by showing 

that common responses can be triggered in response to sexually dimorphic 
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manipulations within male and female faces. These findings yield novel information 

regarding how features relevant to mate preferences and sex categorization are 

encoded in the brain.  

 

Participants in our sample were quicker at categorizing male faces than female faces. It 

is possible that this categorical difference is reflected in the inferior lateral positivity 

observed during the 230-270msec interval, which showed reduced positivity to male 

versus female faces. This positivity could be a P200 effect related to social 

categorization that is enhanced for same-sex versus opposite-sex images. Similar 

research has found enhanced P200 effects for “in-group” versus “out-group” individuals 

in terms of ethnicity (Ito & Urland, 2003, 2005; see also Kubota & Ito, 2007; Stahl, 

Wiese, & Schweinberger, 2010) and age (Wiese, Schweinberger, & Hansen, 2008). In 

support of this conclusion, Latinus and Taylor (2006) previously demonstrated faster 

P200 latency for upright faces when compared to inverted faces, Mooney faces, and 

non-face stimuli, and this was coupled with faster N170 peak latency. Correspondingly, 

we find that the peak latencies of the N170 and the subsequent putative P200 over the 

left hemi-scalp are similarly affected by sexual dimorphism. Although Cellerino et al. 

(2007) found longer N170 latency to faces perceived as masculine, they used gender-

ambiguous faces, which may have been more complex to process. Here we used sex-

typical faces that varied in the degree of sexual dimorphism and found that enhanced 

(i.e., more sex-typical) faces were related to earlier N170 peak latencies, perhaps 

suggesting, as our behavioral data suggests, that they are easier to process than faces 

with reduced sexual dimorphism.  Alternatively, differences in the observed inferior 
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lateral positivity may reflect greater ease of perceptual processing for mating-relevant 

(i.e., male) faces, but this interpretation is highly speculative and additional work would 

be needed to investigate the mate choice specificity of this component. Regardless, 

because the superior-central and lateral inferior ERP modulations were differentially 

sensitive to sexual dimorphism and sex, we suggest that these two effects could reflect 

the concurrent activation of functionally distinct processes (i.e., shape processing 

versus sex categorization).  

 

There are several limitations of the current work. First, our sample consisted of only 17 

women. However, we note that small sample sizes are commonplace in the ERP 

literature and similar research has made use of comparable participant numbers (i.e., 

N=14, 12 female, Balas & Nelson, 2010; N= 20, 10 female, Cellerino et al., 2007). Still, 

future work could use a larger sample with more varied demographic characteristics 

(e.g., different ethnicities or sexual orientations). Similarly, future work could test males 

so that inferences can be made about whether differences between male and female 

stimuli reflect properties of male versus female faces or same- versus different-sex 

expertise in face processing. Researchers could also have participants rate or 

categorize faces for attractiveness within short-term and long-term mating contexts, 

which has been shown to influence preferences for sexually dimorphic face shape (e.g., 

Little et al., 2002). Male and female participants could rate the attractiveness of both 

sexes to assess whether more attractive faces are processed more quickly. Finally, 

although our results aligned well with the race-related face shape findings reported by 

Balas and Nelson (2010), suggesting that the N250 component may reflect expertise in 
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correctly categorizing faces based on subtle aspects of face shape, we did not test 

other aspects of expertise in faces or other stimuli. Future research could include 

additional conditions related to face shape (e.g., ethnicity) and/or a non-face condition 

to see whether results are relatively specific to dimorphic face shape or if they 

generalize to expertise in other domains.  

 

Sexually dimorphic facial cues are important both for women’s mate preferences and for 

assessing same-sex competitor mate-quality (e.g., Perrett et al., 1998). Therefore, 

sexual dimorphism manipulations may trigger an evaluative response in regard to mate 

quality that is common to male and female faces, although perception of mate quality 

was not directly tested in the current study. Our data are consistent with this conclusion, 

revealing identical ERP effects (increases in superior-central N250 magnitude and 

alterations in left lateral inferior ERP peak latencies) triggered by reduced versus 

enhanced sexual dimorphism in male and female faces. A necessary caveat is that 

neural generators independently sensitive to male versus female sexual dimorphism 

may co-exist within the same regions, producing the similar male and female ERP 

effects related to sexual dimorphism observed here. Importantly, future ERP work can 

now explore the various individual difference factors (e.g., Jones et al., 2005; Vukovic et 

al., 2009; Welling, Jones, & DeBruine, 2008; Welling et al., 2007; Welling, Jones, 

DeBruine, Little, & Smith, 2008) that influence female sexual dimorphism preferences, 

which may allow sexual dimorphism effects triggered by male and female faces to be 

neurally dissociated. This, in turn, should lead to a better functional characterization of 

the cognitive mechanisms underlying adaptive behavioral responses to sexual 
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dimorphism. These same techniques can later be applied to investigate how other cues 

to mate quality and attractiveness (e.g., averageness, symmetry, color cues to health; 

see, e.g., Little et al., 2011; Mogilski & Welling, 2017) are processed in the brain. 

Furthermore, eventual research could investigate how ERP components associated 

with sexual dimorphism and other cues to mate quality are influenced by different 

contexts where cues to genetic fitness should be prioritized, such as under harsher 

environmental conditions (DeBruine et al., 2010, 2011; Little et al., 2007), thereby 

bridging the evolutionary psychology and perceptual neurology literatures.  
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 Figure Captions 

 

Figure 1: Examples of female (top row) and male (bottom row) manipulated faces. 

Feminized versions are on the left and masculinized versions are on the right. 

Masculinized and feminized versions differ only in 2D shape and are identical in other 

regards (e.g., color, texture and identity). Differences from average face shape are also 

constrained to be mathematically equivalent for each particular masculinized and 

feminized individual image. The manipulation therefore produces equivalently atypical, 

(i.e. distinctive) versions of each base identity. 

 

Figure 2: Mean percent accuracy (out of 40, grey bars) and mean RTs (milliseconds, 

yellow bars) for all four conditions. Faces enhanced in sexual dimorphism (i.e., 

masculine male faces and feminine female faces) were categorized more accurately 

(M=97.1%, SD=.04) and faster (M=550msec, SD=82) than reduced sexual dimorphism 

faces (M=95.1%, SD=.04; M=565msec, SD=94). Male faces were also identified faster 

(M=546msec, SD=95) than female faces (M=564msec, SD=83). RTs were slower for 

female faces reduced in sexual dimorphism (M=580msec, SD=81) than for female faces 

enhanced in sexual dimorphism (M=548msec, SD=84), with no equivalent effect for 

male faces. 

 

Figure 3: Grand average ERPs contrasting all four image conditions at the superior-

central Pz site and the lateral inferior P7 and P8 sites. Scalp locations are indicated on 
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the inset. Clear lateral inferior N170 and superior-central N250 are evident and, in 

addition, a lateral inferior positivity enhanced for female versus male images.  

 

Figure 4: (A) Topographic maps depicting left and right hemi-scalp as viewed from the 

side, illustrating the effect of sexual dimorphism upon the superior-central N250 during 

the 230-270msec interval separately for male (top) and female (bottom) faces. Each 

map was created by subtracting ERPs in the enhanced conditions (i.e., masculinized 

male and feminized female) from ERPs in the respective reduced conditions (i.e., 

feminized male and masculinized female). (B) Topographic map of the lateral inferior 

face gender positivity observed during the 230-270msec interval, created by subtracting 

ERPs evoked by male faces (average of the reduced and enhanced male face ERPs) 

from ERPs evoked by female faces (average of the reduced and enhanced female face 

ERPs). Electrode sites are shown as black squares, and the voltage range for each 

map is given in the color scales. 

 










