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Analysis of Drain-Induced Barrier Rising in
Short-Channel Negative Capacitance FETs and Its

Applications
Junbeom Seo, Jaehyun Lee, and Mincheol Shin

Abstract—We investigate the performance of hysteresis-
free short-channel negative-capacitance field-effect transistors
(NCFETs) by combining quantum mechanical calculations with
the Landau-Khalatnikov equation. When the subthreshold swing
(SS) becomes smaller than 60 mV/dec, a negative value of drain-
induced barrier lowering (DIBL) is obtained. This behavior,
drain-induced barrier rising (DIBR), causes negative differential
resistance (NDR) in the output characteristics of NCFETs.
We also examine the performance of an inverter composed of
hysteresis-free NCFETs to assess the effects of DIBR at the
circuit level. Contrary to our expectation, although hysteresis-
free NCFETs are used, hysteresis behavior is observed in the
transfer properties of the inverter. Furthermore, it is expected
that the NCFET inverter with hysteresis behavior can be used
as a Schmitt trigger inverter.

Index Terms—Subthreshold swing, ferroelectric, negative ca-
pacitance FET, hysteresis behavior, drain-induced barrier lower-
ing, Schmitt trigger inverter

I. INTRODUCTION

AS conventional metal-oxide-semiconductor field-effect-
transistors (MOSFETs) are reduced to a nanometer scale,

the subthreshold swing (SS) reaches the fundamental thermal
limit of 60 mV/dec [1]. It is well-known that this limitation
is an obstacle to achieving high-performance and low-power
consumption devices. To solve this issue, new device concepts,
such as impact ionization MOS (I-MOS) [2] and tunneling
FETs (TFETs) [3] have been suggested. Despite their out-
standing features, I-MOS suffers from reliability issues and
is not suitable for low-power consumption devices because of
their high applied voltages. In the case of TFETs, ON-state
current (ION ) is restricted due to tunneling probability, even
though sub-60 mV/dec switching behavior occurs [3]-[6].

In recent years, negative capacitance FETs (NCFETs), pro-
posed by Salahuddin et al. [7], have received much attention
as a new type of steep switching device. NCFETs are capable
of achieving steep SS and high ION by amplification of the
gate voltage (VGS) through the ferroelectric material. Unlike I-
MOS and TFETs, the ION of NCFETs strongly depends on the
thermionic currents. According to recent experimental studies
on NCFETs, they have successfully achieved very steep SS
values of 18 and 11.3 mV/dec as well as a high ON/OFF
current ratio with low drain volgate (VDS) [8]-[10].
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Fig. 1. (a) Schematic structure of the UTB NCFET and (b) a series of
ferroelectric (CFE ), dielectric (Cox), and semiconductor capacitors (Cs).
The gate capacitance (CG) is modeled as a series capacitance of CFE and
Cox.

There has been growing interest in the evaluation and
optimization of NCFETs. Kobayashi et al. [11] suggested
exploiting the ferroelectric properties to design low-power
NCFETs. The dependences of NCFET performances on fer-
roelectric thickness (TFE) have been studied extensively [12]-
[16]. Khan et al. [17] provided guidelines for parameters to
develop low-power NCFETs. Since NCFETs are based on
conventional MOSFETs, they may be vulnerable to short-
channel effects (SCEs). Recently, Li et al. [18] pointed out
the coupling effects between gate and drain on the device
performance of short-channel bulk NCFETs. Except for Li’s
work, SCEs on NCFETs have never been reported.

In this work, we investigated the performance of short-
channel NCFETs through quantum mechanical simulations
with the Landau-Khalatnikov (LK) equation. We especially
focused our attention on the SCEs associated with VDS

and drain-induced barrier lowering (DIBL). Furthermore, we
explored the influence of SCEs on the inverter to verify the
viability of NCFETs at the circuit level.

The remainder of this paper is organized as follows. Section
II describes our simulation approach based on the LK theory
and quantum transport. In Section III, the basic properties of
NCFETs are presented focusing on the SCEs. We discuss
the characteristics of the NCFET inverter and propose a
new application in Section IV, followed by a summary and
conclusions in Section V.
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Fig. 2. Flowchart of the NCFET simulation.

II. SIMULATION APPROACH

A schematic diagram of the ultra-thin body (UTB) double-
gate (DG) NCFETs simulated in this work is shown in Fig.
1(a). The key difference between the structure of NCFETs
and conventional MOSFETs is the presence of a ferroelectric
material in the gate stack. As in the case of recent experiments
[8][9], the ferroelectric and baseline MOSFET in our work
are supposed to be spatially separated, but connected by a
metal layer with the same contact area, which provides the
same gate charge density (QG) to both the internal gate and
ferroelectric surfaces. The channel length (Lch) and TFE are
subject to variation, whereas the channel thickness (TSi) and
equivalent oxide thickness (EOT) are assumed to be 5 and 2
nm, respectively.

Fig. 1(b) describes the equivalent capacitance model. An
NCFET can be depicted with three capacitances, including
ferroelectric, dielectric, and semiconductor capacitors. The
total gate capacitance (CG) consists of a series combination
of oxide (Cox) and ferroelectric (CFE) capacitances. The
internal voltage (Vint) indicates the voltage amplified by the
ferroelectric, and it acts as VGS in the conventional MOSFET.

The overall simulation procedure shown in Fig. 2 consists
of two parts: electronic calculation and ferroelectric capacitor
modeling.

First, we solve the non-equilibrium Greens function (NEGF)
and Poisson equation self-consistently in the ballistic transport
regime for the conventional MOSFET with the same dimen-
sions as those of NCFETs [19]. In the channel region, the
effective mass Hamiltonian and 6 bands k · p Hamiltonian for
n-type and p-type devices are used to describe the conduction
and valence bands, respectively. The effective masses are
calibrated from the sp3d5s∗ tight-binding method [20]. The

Luttinger parameters are adjusted from the sp3s∗ tight-binding
method [21]. From the self-consistent calculation, we obtain
QG and drain current (ID) as a function of VGS .

Next, the ferroelectric capacitor is modeled as follows.
The LK equation [22][23] which describes the dynamics of
polarization in response to time is given as

ρ
dP

dt
+∇~PU = 0, (1)

where ρ, P , and t are resistivity, polarization, and time, respec-
tively. Here, U represents the free energy of the ferroelectric
material and is defined by the Landau-Devonshire (LD) theory
[24] as

U = αP 2 + βP 4 + γP 6 − ~E · ~P , (2)

where E is an external electric field and α, β, and γ are the
order parameters. In the case of the ferroelectric material, α
is always negative. In this work, the ferroelectric material is
assumed to be SrTiO3 with the parameters of α = −6.5×107

m/F , β = 3.75 × 109 m5/F/C2, and γ = 0 m9/F/C4 [25].
We note that the use of bulk order parameters in this work
may be justified considering the supposed spatial separation
between the ferroelectric and baseline MOSFET. However, in
an ultimate integration of ferroelectric into the gate stack, the
size of ferroelectric should affect the ferroelectricity [26]-[28]
and thus leads to different order parameters than the bulk ones.
We nevertheless believe that the overall trend as predicted from
the results of this work might not change in nature.

We assume that the ferroelectric is in steady-state polariza-
tion (dP/dt = 0). Substituting Eq. (2) into Eq. (1), the electric
field is given as

E = 2αP + 4βP 3, (3)

which can be further derived as

Vint = VGS − [2αP + 4βP 3]TFE , (4)

where Vint, VGS , and TFE are the internal voltage, gate
bias, and ferroelectric thickness, respectively. Since QG can
be expressed as QG = P + ε0E ≈ P because P of the
ferroelectric is larger than ε0E, Eq. (4) is approximated as

Vint = VGS − [2αQG + 4βQ3
G]TFE . (5)

Finally, the drain current at a particular gate voltage
(V NCFET

GS ) in NCFETs, INCFET
D (V NCFET

GS ), is obtained
by looking up the drain current in the conventional
MOSFET which was precalculated in the previous step,
IMOSFET
D (VGS), as follows:

INCFET
D (V NCFET

GS ) = IMOSFET
D (VGS),

where VGS = Vint(V
NCFET
GS ) as given by Eq. (5).

III. CHARACTERISTICS OF NCFET

A. Dependence on TFE

Fig. 3 presents the transfer characteristics of conventional
MOSFETs and NCFETs with Lch = 20 nm, respectively.
As TFE increases, ION increases and SS decreases. For
instance, NCFETs with TFE = 270 nm provide larger ION

(12.9 mA/µm) and lower SS (43.5 mV/dec) than conventional
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Fig. 3. Transfer characteristics of the conventional MOSFET (TFE = 0 nm)
and NCFETs with TFE = 170, 270 and 380 nm. Inset shows QG versus the
capacitance of NCFETs with TFE = 270 and 380 nm.
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Fig. 4. (a) DIBL and (b) SS as a function of TFE for Lch = 7, 10, 20, and
30 nm.

MOSFETs (1.1 mA/µm and 71.5 mV/dec). However, in the
case of NCFETs with TFE = 380 nm, the hysteresis behavior is
observed. Inset of Fig. 3 shows the MOS capacitance (CMOS)
and CFE as a function of QG for NCFETs with TFE =
270 and 380 nm. For TFE = 270 nm, CG is positive in the
all range of QG, because |CFE | is larger than CMOS . For
TFE = 380 nm, on the other hand, |CFE | > CMOS in a
certain range of QG and so CG becomes negative in the range
only. In this condition, NCFETs become unstable, resulting
in the hysteresis behavior [17]. Such a trade-off between
high performance and hysteresis agrees well with previous
results [12][17]. Since hysteresis behavior is not desirable, we
consider only hysteresis-free NCFETs hereafter.

The dependence of DIBL and SS on TFE is shown in Fig.
4. Regardless of the hysteresis behavior, we can extract SS and
DIBL for the forward sweep. SS is defined as the minimum
inverse slope near threshold voltage (Vth), which is defined
as the gate voltage at which ID = 0.1 µA/µm for the forward
sweep. It is interesting to note that in the cases of devices with
Lch = 20 and 30 nm, DIBL has a value of 0 mV/V when
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Fig. 5. Potential profile at VGS = 0.0 V for (a) the conventional MOSFET
and NCFETs with (b) TFE = 170 and (c) 270 nm. Insets show the output
characteristics of each device.

SS becomes 60 mV/dec. This behavior can be explained by
the fundamental semiconductor theory as follows. First, SS is
defined as

SS =
dVGS

dlog10ID
=
dVGS

dφs

dφs
dlog10ID

= (1+
Cs

CG
)× kBT

q
ln10,

(6)
where φs, kB , T , and q are the surface potential, Boltzmann
constant, temperature, and electronic charge, respectively. Sec-
ondly, DIBL is expressed as

DIBL =
V high
th − V low

th

V high
DS − V low

DS

, (7)

where V
low(high)
th is the threshold voltage at low (high)

V
low(high)
DS . From the fundamental theory of bulk transistors,
Vth is written as

Vth = φMS + 2φbi +
QG

CG
, (8)

where φMS is the work function difference between the gate
metal and semiconductor and φbi is the built-in potential [29].
Assuming that φMS and φbi are not affected by the ferro-
electric, Vth only depends on QG/CG. That is, if the value
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Fig. 6. (a) Vint versus VDS for the n-type NCFETs with TFE = 270 nm
and (b) QG versus VGS . Inset of (b) shows the polarization versus electric
field for SrTiO3, where the remanent polarization (Pr) and coercive electric
field (Ec) are 5.2 µC/cm2 and 46.6 kV/cm, respectively.

of CG is very large (it can be infinite when Cox = −CFE

for NCFETs), DIBL becomes 0 mV/V. At the same time, the
first term of SS, called the body factor, becomes 1, thus, SS
becomes 60 mV/dec at room temperature.

When Lch = 7 and 10 nm, we cannot find the specific
TFE to satisfy DIBL = 0 mV/V and SS = 60 mV/dec
simultaneously. This is because, as Lch decreases, the direct
source-to-drain tunneling current increases. Thus, SS no longer
can be described by Eq. 6. Therefore, when DIBL = 0 mV/V,
SS 6= 60 mV/dec in short-channel devices.

B. Drain-Induced Barrier Raising (DIBR)

In the previous subsection, we showed that when SS
becomes less than 60mV/dec, DIBL has a negative value.
This behavior is in good agreement with Li’s work [18]. To
investigate it in details, we first compare the potential profile
in the channel region of conventional MOSFETs and NCFETs
with TFE = 170 and 270 nm, respectively, as shown in Fig.
5. Here, Lch is assumed to be 20 nm for these devices. In
the case of the conventional MOSFET, the potential barrier is
lowered with increasing VDS , which indicates a typical DIBL.
However, NCFETs show the opposite trend, which we call
drain-induced barrier rising (DIBR).
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Fig. 7. Voltage transfer characteristics of the NCFET inverters with (a) TFE

= 170 (n-type) and 140 (p-type) nm and (b) TFE = 270 (n-type) and 280
(p-type) nm. Dashed lines represent the voltage transfer characteristics of the
conventional MOSFET. Insets show the road line of the n-type and p-type
NCFETs at Vin = 0.25 V.

The Vint values of NCFETs are plotted as a function of
VDS with various VGS values in Fig. 6(a). To exhibit DIBR
clearly, TFE and Lch of NCFETs are assumed to be 270
and 20 nm, respectively. From Fig. 6(a), we can see that,
as VDS increases, Vint decreases. In particular, when VGS =
0.2 V, Vint undergoes a steep variation. This behavior can
be elucidated by Fig. 6(b) and Eq. (6). In this case, the
NCFET is operated in the NC region because QG is less than
remanent polarization (Pr) of 5.2 µC/cm2, as seen in Fig.
6(b) and its inset. Due to the small QG in the NC region, the
second term in Eq. (5) is more dominant than the third term.
Moreover, Fig. 6(b) shows that QG for VDS = 0.05 V is higher
than that for VDS = 0.5 V. As a consequence, QG reduction
with increasing VDS leads to a decrease in Vint, resulting in
DIBR as seen in Fig. 5(b). In addition, variation in Vint with
respect to VDS is well in accordance with the change in QG,
4QG(QG(VDS = 0.05 V)−QG(VDS = 0.5 V).

As seen in the insets of Fig. 5(b) and (c), NCFETs show
negative differential resistance (NDR) [16][30], which is a dis-
tinctive feature that is not seen in the conventional MOSFET.
In a Gunn diode, known as a transferred-electron device, NDR
is induced by the transition of electrons from a high-mobility
valley to a low-mobility valley [31]. In the case of NCFETs,
however, it occurs due to the reduction of current caused by
DIBR. For instance, when TFE = 270 nm, Vint is reduced from
1.45 to 0.5 V with increasing VDS from 0.05 to 0.5 V as shown
in Fig. 6(a), and NDR is induced as a consequence. Moreover,
since DIBR is associated with CFE , NDR can be controlled
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by TFE . Despite NDR, NCFETs still deliver a larger current
than the conventional MOSFET.

In recent experimental works where SS less than 60 mV/dec
was achieved [9][32], DIBR and NDR behaviors were not
observed. In [9], QG shows only a weak dependence on
VDS which makes DIBL more predominant than DIBR. In
a different setting where QG becomes a stronger function of
VDS , we may expect appearance of both NDR and DIBR.

IV. NCFET INVERTERS

A. Voltage transfer characteristics of NCFET inverters

Fig. 7 shows the voltage transfer characteristic (VTC) of
NCFET inverters. The VTC of NCFET inverters is extracted
from cross points of n-type and p-type NCFET load curves at
each Vin. Insets of Fig. 7 show the load lines of n-type and
p-type NCFETs at Vin = 0.25 V. The TFE values of n-type
and p-type NCFETs without hystresis behavior are adjusted to
have similar ION . As seen in this figure, however, unexpected
hysteresis loops are observed. In common load lines of the
conventional MOSFETs, there is a cross point for one input
voltage, but in the case of NCFETs with NDR, two or three
cross points are observed as shown in the insets. This induces
the hysteresis behavior in VTC of NCFET inverters. The
hysteresis loop can be modified by adjusting TFE . In the case
of NCFET inverters with TFE = 170 (n-type) and 140 (p-
type) nm as shown in Fig. 7, the hysteresis window (Vhys), low
threshold (Vlow), and high threshold (Vhigh) are 0.0198, 0.243,
and 0.262 V, respectively. As the TFE values of NCFETs
become thicker, the hysteresis loop becomes more apparent
due to stronger NDR; for example, in the NCFET inverter
with TFE = 270 (n-type) and 280 (p-type) nm, Vhys, Vlow,
and Vhigh become 0.0743, 0.272, and 0.332 V, respectively
(See Fig. 7).

B. Schmitt trigger inverter

The transient response of NCFET inverters is shown in
Fig. 8. The transient response of NCFET inverters is the

same as that of the Schmitt trigger inverter described in [33]
and [34]. The Schmitt trigger inverter, which consists of 4
to 6 MOSFETs, acts as a filter of noise and disturbance
in an analog circuit, which exhibits hysteretic characteristics
[33]-[35], while the NCFET Schmitt trigger inverters requires
just two transistors. Further, since NCFETs outperform the
conventional MOSFETs with regard to ION and SS, it is
concluded that NCFET inverters are superior to conventional
Schmitt trigger inverters. If one makes use of the hysteresis
behavior of NCFETs as suggested in this work, it is expected
that the application of NCFETs can be extended to functional
circuits.

V. CONCLUSION

In this paper, we assessed the performance of UTB short-
channel NCFETs by combining quantum-mechanical transport
calculations with LD theory. Since CG increases with TFE ,
both SS and DIBL decrease due to strong gate controllability.
When SS becomes less than 60 mV/dec, unexpected behaviors,
such as DIBR and NDR, emerge in NCFETs, whose origin
was analyzed by investigating the potential profile and the
dependence of QG on VDS and VGS .

We found that, even if both the n-type and p-type NCFETs
are hysteresis-free, the inverter shows hysteresis behavior
due to NDR. Together with the fact that NDR accompanies
hysteresis behavior in the inverters, it is difficult for the
inverter composed of steep SS devices to avoid the hysteresis
behavior. However, NCFET inverters with hysteresis behavior
can be used as a noise filter, such as the Schmitt trigger
inverter, which suggests an expansion of the application area
of NCFETs.
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