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1 Introduction

Decays of beauty baryons to purely hadronic final states provide a wealth of information

about the interactions between the fundamental constituents of matter. Studies of direct

CP violation in these decays can help constrain the parameters of the Standard Model and

New Physics effects in a similar way as in decays of beauty mesons [1–7]. Studies of the

decay dynamics of beauty baryons can provide important information on the spectroscopy

of charmed baryons, since the known initial state provides strong constraints on the quan-

tum numbers of intermediate resonances. The recent observation of pentaquark states at

LHCb [8] has renewed the interest in baryon spectroscopy.
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Figure 1. Expected spectrum of the Λ+
c ground state and its orbital excitations from a study based

on the nonrelativistic heavy quark-light diquark model [21], along with the observed resonances

corresponding to those states [23].

The present analysis concerns the decay amplitude of the Cabibbo-favoured decay

Λ0
b → D0pπ− (the inclusion of charge-conjugate processes is implied throughout this pa-

per). A measurement of the branching fraction of this decay with respect to the Λ0
b → Λ+

c π
−

mode was reported by the LHCb collaboration using a data sample corresponding to

1.0 fb−1 of integrated luminosity [9]. The Λ0
b → D0pπ− decay includes resonant contri-

butions in the D0p channel that are associated with intermediate excited Λ+
c states, as well

as contributions in the pπ− channel due to excited nucleon (N) states. The study of the D0p

part of the amplitude will help to constrain the dynamics of the Cabibbo-suppressed decay

Λ0
b → D0pK−, which is potentially sensitive to the angle γ of the Cabibbo-Kobayashi-

Maskawa quark mixing matrix [10, 11]. The analysis of the D0p amplitude is interesting

in its own right. One of the states decaying to D0p, the Λc(2940)+, has a possible inter-

pretation as a D∗N molecule [12–20]. There are currently no experimental constraints on

the quantum numbers of the Λc(2940)+ state.

The mass spectrum of the predicted and observed orbitally excited Λ+
c states [21] is

shown in figure 1. In addition to the ground state Λ+
c and to the Λc(2595)+ and Λc(2625)+

states, which are identified as the members of the P -wave doublet, a D-wave doublet with

higher mass is predicted. One of the members of this doublet could be the state known

as the Λc(2880)+, which is measured to have spin and parity JP = 5/2+ [22, 23], while

no candidate for the other state has been observed yet. Several theoretical studies provide

mass predictions for this state and other excited charm baryons [21, 24–29]. The BaBar

collaboration has previously reported indications of a structure in the D0p mass spectrum

close to threshold, at a mass around 2.84 GeV,1 which could be the missing member of the

D-wave doublet [30].

This analysis is based on a data sample corresponding to an integrated luminosity of

3.0 fb−1 of pp collisions recorded by the LHCb detector, with 1.0 fb−1 collected at centre-

of-mass energy
√
s = 7 TeV in 2011 and 2.0 fb−1 at

√
s = 8 TeV in 2012.

1Natural units with ~ = c = 1 are used throughout.
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The paper is organised as follows. Section 2 gives a brief description of the LHCb

experiment and its reconstruction and simulation software. The amplitude analysis for-

malism and fitting technique is introduced in section 3. The selection of Λ0
b → D0pπ−

candidates is described in section 4, followed by the measurement of signal and background

yields (section 5), evaluation of the efficiency (section 6), determination of the shape of the

background distribution (section 7), and discussion of the effects of momentum resolution

(section 8). Results of the amplitude fit are presented in section 9 separately for four dif-

ferent regions of the Λ0
b → D0pπ− phase space, along with the systematic uncertainties for

those fits. Section 10 gives a summary of the results.

2 Detector and simulation

The LHCb detector [31, 32] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c

quarks. The detector includes a high-precision tracking system consisting of a silicon-strip

vertex detector surrounding the pp interaction region, a large-area silicon-strip detector

located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-

tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet.

The tracking system provides a measurement of momentum, p, of charged particles with

relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV. The

minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is mea-

sured with a resolution of (15 + 29/pT)µm, where pT is the component of the momentum

transverse to the beam, in GeV. Different types of charged hadrons are distinguished using

information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons

are identified by a calorimeter system consisting of scintillating-pad and preshower detec-

tors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by

a system composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger [33], which consists of a hardware

stage, based on information from the calorimeter and muon systems, followed by a software

stage, which applies a full event reconstruction. At the hardware trigger stage, events

are required to have a muon with high pT or a hadron, photon or electron with high

transverse energy in the calorimeters. The software trigger requires a two-, three- or four-

track secondary vertex with significant displacement from any PV in the event. At least one

charged particle forming the vertex must exceed a pT threshold in the range 1.6–1.7 GeV

and be inconsistent with originating from a PV. A multivariate algorithm [34] is used for

the identification of secondary vertices consistent with the decay of a b hadron.

In the simulation, pp collisions are generated using Pythia 8 [35, 36] with a specific

LHCb configuration [37]. Decays of hadronic particles are described by EvtGen [38],

in which final-state radiation is generated using Photos [39]. The interaction of the

generated particles with the detector, and its response, are implemented using the Geant4

toolkit [40, 41] as described in ref. [42].
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Figure 2. Definition of the angles describing the orientation of the Λ0
b → D0pπ− decay in the

reference frame where the Λ0
b baryon is at rest: (a) ϑp and ϕp, and (b) ϕDπ.

3 Amplitude analysis formalism

The amplitude analysis is based on the helicity formalism used in previous LHCb analyses.

A detailed description of the formalism can be found in refs. [8, 43, 44]. This section gives

details of the implementation specific to the decay Λ0
b → D0pπ−.

3.1 Phase space of the decay Λ0
b → D0pπ−

Three-body decays of scalar particles are described by the two-dimensional phase space

of independent kinematic parameters, often represented as a Dalitz plot [45]. For baryon

decays, in general also the additional angular dependence of the decay products on the

polarisation of the decaying particle has to be considered.

A vector of five kinematic variables (denoted Ω) describes the phase space of the decay

Λ0
b → D0pπ−. The kinematic variables are the two Dalitz plot variables, namely the

invariant masses squared of the D0p and pπ− combinations M2(D0p) and M2(pπ−), and

three angles that determine the orientation of the three-body decay plane (figure 2). These

angles are defined in the rest frame of the decaying Λ0
b baryon with the x̂ axis given by

the direction of the Λ0
b baryon in the laboratory frame, the polarisation axis ẑ given by

the cross-product of beam direction and x̂ axis, and the ŷ axis given by the cross-product

of the ẑ and x̂ axes. The angular variables are the cosine of the polar angle cos ϑp, and

the azimuthal angle ϕp of the proton momentum in the reference frame defined above

(figure 2(a)), and the angle ϕDπ between the D0π− plane and the plane formed by the

proton direction and the polarisation axis ẑ (figure 2(b)).

3.2 Helicity formalism

The baseline amplitude fit uses the helicity formalism where the interfering amplitude

components are expressed as sequential quasi-two-body decays Λ0
b → Rπ−, R → D0p

(where R denotes the intermediate resonant or nonresonant state). The decay amplitude

for a Λ0
b baryon with spin projection µ decaying via an intermediate state R with helicity

λR into a final state with proton helicity λp is

Aµ,λR,λp [M
2(D0p), θp, φp, θR, φR] =

aλR bλp e
i(µ−λR)φR ei(λR−λp)φp d

J
Λ0
b

µ,λR
(θR) dJRλRλp(θp)R(M2(D0p)),

(3.1)
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where JΛ0
b

= 1/2 and JR are the spins of the Λ0
b baryon and the R state, dJλ1,λ2(θ) are

the reduced Wigner functions, and aλR and bλp are complex constants (couplings). The

mass-dependent complex lineshape R(M2) defines the dynamics of the R decay. The

angles defining the helicity amplitude are the polar (θR) and azimuthal (φR) angles of the

intermediate state R in the reference frame defined above, and the polar (θp) and azimuthal

(φp) angles of the final-state proton in the frame where the intermediate state R is at rest

and the polar axis points in the direction of R in the Λ0
b rest frame. All of these angles are

functions of the five phase space variables Ω defined previously and thus do not constitute

additional degrees of freedom.

The strong decay R→ D0p conserves parity, which implies that

bλp = (−1)Jp+JD−JR ηR ηD ηp b−λp , (3.2)

where Jp = 1/2, JD = 0 and JR are the spins of the proton, D0 meson and resonance R,

respectively, and ηp = +1, ηD = −1 and ηR are their parities. This relation reduces the

number of free parameters in the helicity amplitudes: |bλp | is absorbed by aλR , and each

coefficient aλR enters the amplitude multiplied by a factor ηλp = ±1. The convention used is

ηλp =

{
1 if λp = +1/2,

(−1)Jp+JD−JR ηR ηD ηp if λp = −1/2.
(3.3)

As a result, only two couplings aλR remain for each intermediate state R, corresponding to

its two allowed helicity configurations. The two couplings are denoted for brevity as a±.

The amplitude, for fixed µ and λp, after summation over the intermediate resonances

Rj and their two possible helicities λRj = ±1/2 is

Aµ,λp(Ω) = ei(µφR−λpφp)
∑
j

ηj,λp

[
a+
j d

J
Λ0
b

µ,+1/2(θR) d
JRi
+1/2,λp

(θp)Rj(M2(D0p))+

a−j d
J
Λ0
b

µ,−1/2(θR) d
JRi
−1/2,λp

(θp)Rj(M2(D0p)) ei(φR−φp)

]
.

(3.4)

To obtain the decay probability density, the amplitudes corresponding to different polari-

sations of the initial- and final-state particles have to be summed up incoherently. The Λ0
b

baryons produced in pp collisions can only have polarisation transverse to the production

plane, i.e. along the ẑ axis. The longitudinal component is forbidden due to parity conser-

vation in the strong processes that dominate Λ0
b production. In this case, the probability

density function (PDF) of the kinematic variables that characterise the decay of a Λ0
b with

the transverse polarisation Pz, after summation over µ and λp, is proportional to

p(Ω, Pz) =
∑

µ,λp=±1/2

(1 + 2µPz)|Aµ,λp(Ω)|2. (3.5)

Equations (3.4) and (3.5) can be combined to yield the simplified expression:

p(Ω, Pz) =

2Jmax∑
n=0

pn(M2(D0p)) cos(nθp) + Pz cos θR

2Jmax∑
n=0

qn(M2(D0p)) cos(nθp), (3.6)
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where Jmax is the highest spin among the intermediate resonances and pn and qn are

functions of only M2(D0p). As a consequence, p(Ω, Pz) does not depend on the azimuthal

angles φp and φR. Dependence on the angle θR appears only if the Λ0
b is polarised. In

the unpolarised case the density depends only on the internal degrees of freedom M2(D0p)

and θp (which in turn can be expressed as a function of the other Dalitz plot variable,

M2(pπ−)). Moreover, after integration over the angle θR, the dependence on polarisation

cancels if the detection efficiency is symmetric over cos θR. Since Λ0
b polarisation in pp

collisions is measured to be small (Pz = 0.06±0.07±0.02, [46]) and the efficiency is highly

symmetric in cos θR, the effects of polarisation can safely be neglected in the amplitude

analysis, and only the Dalitz plot variables ω = (M2(D0p),M2(pπ−)) need to be used to

describe the probability density p(ω) of the decay. The density p(ω) is given by eq. (3.5)

with Pz = 0 such that no dependence on the angles ϑp, ϕp or ϕDπ remains.

Up to this point, the formalism has assumed that resonances are present only in the

D0p channel. While in the case of Λ0
b → D0pπ− decays the regions of phase space with

contributions from D0p and pπ− resonances are generally well separated, there is a small

region where they can overlap, and thus interference between resonances in the two channels

has to be taken into account. In the helicity formalism, the proton spin-quantisation axes

are different for the helicity amplitudes corresponding to D0p and pπ− resonances [8]:

they are parallel to the proton direction in the D0p and pπ− rest frames, and are thus

antiparallel to the π− and D0 momenta, respectively. The rotation angle between the two

spin-quantisation axes is given by

cos θrot =
(~p

(p)
π− · ~p

(p)
D0 )

|~p (p)
π− ||~p

(p)
D0 )|

, (3.7)

where ~p
(p)
π− and ~p

(p)
D0 are the momenta of the π− and D0 mesons, respectively, in the proton

rest frame.

If the proton spin-quantisation axis is chosen with respect to the D0p resonances and

the helicity basis is denoted as |λp〉, the helicity states |λ′p〉 corresponding to pπ− states are

|λ′p〉 =
∑

λ′p=±1/2

d
1/2
λp,λ′p

(θrot)|λp〉 (3.8)

and thus the additional terms in the amplitude (eq. (3.4)) related to the pπ− channel are

expressed as

A
(pπ−)
µ,λp

(Ω) =
∑

λ′p=±1/2

d
1/2
λp,λ′p

(θrot) e
i(µφ′R−λ

′
pφ
′
p)
∑
j

ηj,λ′p×[
a+
j d

J
Λ0
b

µ,+1/2(θ′R) d
JRi
+1/2,λ′p

(θ′p)Rj(M2(pπ−))+

a−j d
J
Λ0
b

µ,−1/2(θ′R) d
JRi
−1/2,λ′p

(θ′p)Rj(M2(pπ−)) ei(φ
′
R−φ

′
p)

]
,

(3.9)

where the angles θ′p, φ
′
p, θ
′
R and φ′R are defined in a similar way as θp, φp, θR and φR, but

with the intermediate state R in the pπ− channel.
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3.3 Resonant and nonresonant lineshapes

The part of the amplitude that describes the dynamics of the quasi-two-body decay, R(M2),

is given by one of the following functions. Resonances are parametrised with relativis-

tic Breit-Wigner lineshapes multiplied by angular barrier terms and corrected by Blatt-

Weisskopf form factors [47]:

RBW(M2) =

[
q(M)

q0

]L
Λ0
b

[
p(M)

p0

]LR FΛ0
b
(M,LΛ0

b
)FR(M,LR)

m2
R −M2 − imRΓ(M)

, (3.10)

with mass-dependent width Γ(M) given by

Γ(M) = Γ0

[
p(M)

p0

]2LR+1 mR

M
F 2
R(M,LR), (3.11)

where mR and Γ0 are the pole parameters of the resonance. The Blatt-Weisskopf form

factors for the resonance, FR(M,LR), and for the Λ0
b , FΛ0

b
(M,LΛ0

b
), are parametrised as

FR,Λ0
b
(M,L) =



1 L = 0√
1+z20

1+z2(M)
L = 1√

9+3z20+z40
9+3z2(M)+z4(M)

L = 2√
225+45z20+6z40+z60

225+45z2(M)+6z4(M)+z6(M)
L = 3

, (3.12)

where the definitions of the terms z(M) and z0 depend on whether the form factor for the

resonance R or for the Λ0
b is being considered. For R these terms are given by z(M) =

p(M)d and z0 = p0d, where p(M) is the centre-of-mass momentum of the decay products in

the two-body decay R→ D0p with the mass of the resonance R equal to M , p0 ≡ p(mR),

and d is a radial parameter taken to be 1.5 GeV−1. For Λ0
b the respective functions are

z(M) = q(M)d and z0 = q0d, where q(M) is the centre-of-mass momentum of decay

products in the two-body decay Λ0
b → Rπ−, q0 = q(mR), and d = 5.0 GeV−1. The analysis

is very weakly sensitive to the values of d, and these are varied in a wide range for assessing

the associated systematic uncertainty (section 9.2).

The mass-dependent width and form factors depend on the orbital angular momenta

of the two-body decays. For the weak decay of the Λ0
b , the minimum possible angular

momentum LΛ0
b

= J − 1/2 (where J is the spin of the resonance) is taken, while for the

strong decay of the intermediate resonance, the angular momentum LR is fully determined

by the parity of the resonance, P = (−1)LR+1, and conservation of angular momentum,

which requires LR = J ± 1/2.

Two parametrisations are used for nonresonant amplitudes: exponential and polyno-

mial functions. The exponential nonresonant lineshape [48] used is

RNRexp(M2) =

[
q(M)

q0

]L
Λ0
b

[
p(M)

p0

]LR
e−αM

2
, (3.13)

where α is a shape parameter. The polynomial nonresonant lineshape [49] used is

RNRpoly(M2) =

[
q(M)

q0

]L
Λ0
b

[
p(M)

p0

]LR
(a2∆M2 + a1∆M + a0), (3.14)

– 7 –
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where ∆M = M −M0, and M0 is a constant that is chosen to minimise the correlations

between the coefficients ai when they are treated as free parameters. In the case of the

D0p amplitude fit, M0 is chosen to be near the middle of the fit range, M0 ≡ 2.88 GeV. In

both the exponential and the polynomial parametrisations, M0 also serves as the resonance

mass parameter in the definition of p0 and q0 in the angular barrier terms. Note that in

ref. [49] the polynomial form was introduced to describe the slow variations of a nonresonant

amplitude across the large phase space of charmless B decays, and thus the parameters

ai were defined as complex constants to allow slow phase motion over the wide range of

invariant masses. In the present analysis, the phase space is much more constrained and

no significant phase rotation is expected for the nonresonant amplitudes. The coefficients

ai thus are taken to be real.

To study the resonant nature of the D0p states, model-independent parametrisations of

the lineshape are used. One approach used here consists of interpolation with cubic splines,

done independently for the real and imaginary parts of the amplitude (referred to as the

“complex spline” lineshape) [50]. The free parameters of such a fit are the real Re(Ri) and

imaginary Im(Ri) parts of the amplitude at the spline knot positions. Alternatively, to

assess the significance of the complex phase rotation in a model-independent way, a spline-

interpolated shape is used in which the imaginary parts of the amplitude at all knots are

fixed to zero (“real spline”).

3.4 Fitting procedure

An unbinned maximum likelihood fit is performed in the two-dimensional phase space

ω = (M2(D0p),M2(pπ−)). Defining L as the likelihood function, the fit minimises

− 2 lnL = −2

N∑
i=1

ln ptot(ωi), (3.15)

where the summation is performed over all candidates in the data sample and ptot is the

normalised PDF. It is given by

ptot(ω) = p(ω)ε(ω)
nsig

N
+ pbck(ω)

nbck

Nbck
, (3.16)

where p(ω) is the signal PDF, pbck(ω) is the background PDF, ε(ω) is the efficiency, and

N and Nbck are the signal and background normalisations:

N =

∫
D

p(ω)ε(ω) dω, (3.17)

and

Nbck =

∫
D

pbck(ω) dω, (3.18)

where the integrals are taken over the part of the phase space D used in the fit (section 5),

and nsig and nbck are the numbers of signal and background events in the signal region,

respectively, evaluated from a fit to the M(D0pπ−) invariant mass distribution. The nor-

malisation integrals are calculated numerically using a fine grid with 400× 400 cells in the

– 8 –
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baseline fits; the numerical uncertainty is negligible compared with the other uncertainties

in the analysis.

3.5 Fit parameters and fit fractions

The free parameters in the fit are the couplings a± for each of the amplitude components

and certain parameters of the lineshapes (such as the masses and/or widths of the resonant

states, or shape parameters of the nonresonant lineshapes). Since the overall normalisation

of the density is arbitrary, one of the couplings can be set to unity. In this analysis,

the convention a+ ≡ 1 for the Λc(2880)+ state is used. Additionally, the amplitudes

corresponding to different helicity states of the initial- and final-state particles are added

incoherently, so that the relative phase between a+ and a− for one of the contributions is

arbitrary. The convention Im(a−) ≡ 0 for the Λc(2880)+ is used.

The definitions of the polynomial and spline-interpolated shapes already contain terms

that characterise the relative magnitudes of the corresponding amplitudes. The couplings

for them are defined in such a way as to remove the additional degree of freedom from the

fit. For the polynomial and real spline lineshapes, the following couplings are used:

a+ = reiφ+ , a− = (1− r)eiφ− , (3.19)

where r, φ+ and φ− are free parameters. For the complex spline lineshape, a similar

parametrisation is used with φ+ fixed to zero, since the complex phase is already included

in the spline definition.

The observable decay density for an unpolarised particle in the initial state does not

allow each polarisation amplitude to be obtained independently. As a result, the couplings

a± in the fit can be strongly correlated. However, the size of each contribution can be

characterised by its spin-averaged fit fraction

Fi =

∑
µ,λp=±1/2

∫
D
|A(i)

µ,λp
(ω)|2 dω

∑
µ,λp=±1/2

∫
D
|
∑
i
A

(i)
µ,λp

(ω)|2 dω
. (3.20)

If all the components correspond to partial waves with different spin-parities, the sum

of the spin-averaged fit fractions will be 100%; otherwise it can differ from 100% due to

interference effects. The statistical uncertainties on the fit fractions are obtained from

ensembles of pseudoexperiments.

3.6 Evaluation of fit quality

To assess the goodness of each fit, a χ2 value is calculated by summing over the bins of the

two-dimensional Dalitz plot. Since the amplitude is highly non-uniform and a meaningful

χ2 test requires a certain minimum number of entries in each bin, an adaptive binning

method is used to ensure that each bin contains at least 20 entries in the data.

Since the fit itself is unbinned, some information is lost by the binning. The number of

degrees of freedom for the χ2 test in such a case is not well defined. The effective number
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of degrees of freedom (ndfeff) should be in the range Nbins−Npar− 1 ≤ ndfeff ≤ Nbins− 1,

where Nbins is the number of bins and Npar is the number of free parameters in the fit.

For each fit, ndfeff is obtained from ensembles of pseudoexperiments by requiring that the

probability value for the χ2 distribution with ndfeff degrees of freedom, P (χ2, ndfeff), is

distributed uniformly.

Note that when two fits with different models have similar binned χ2 values, it does

not necessarily follow that both models describe the data equally well. Since the bins in

regions with low population density have large area, the binning can obscure features that

could discriminate between the models. This information is preserved in the unbinned

likelihood. Thus, discrimination between fit models is based on the difference ∆ lnL, the

statistical significance of which is determined using ensembles of pseudoexperiments. The

binned χ2 serves as a measure of the fit quality for individual models and is not used to

discriminate between them.

4 Signal selection

The analysis uses the decay Λ0
b → D0pπ−, where D0 mesons are reconstructed in the final

state K−π+. The selection of Λ0
b candidates is performed in three stages: a preliminary

selection, a kinematic fit, and a final selection. The preliminary selection uses loose criteria

on the kinematic and topological properties of the Λ0
b candidate. All tracks forming a

candidate, as well as the Λ0
b and D0 vertices, are required to be of good quality and be

separated from every PV in the event. The separation from a PV is characterised by a

quantity χ2
IP, defined as the increase in the vertex-fit χ2 when the track (or combination

of tracks corresponding to a short-lived particle) is included into the vertex fit. The tracks

forming a D0 candidate are required to be positively identified as a pion and a kaon, and

the Λ0
b and D0 decay vertices are required to be downstream of their production vertices.

All of the tracks are required to have no associated hits in the muon detector.

For candidates passing this initial selection, a kinematic fit is performed [51]. Con-

straints are imposed that the Λ0
b and D0 decay products originate from the corresponding

vertices, that the Λ0
b candidate originate from its associated PV (the one with the smallest

value of χ2
IP for the Λ0

b), and that the mass of the D0 candidate be equal to its known

value [23]. The kinematic fit is required to converge with a good χ2, and the mass of

the Λ0
b candidate after the fit is required to be in the range 5400–5900 MeV. To suppress

background from charmless Λ0
b → pK−π+π− decays, the decay time significance of the D0

candidate obtained after the fit is required to be greater than one standard deviation. To

improve the resolution of the squared invariant masses M2(D0p) and M2(pπ−) entering the

amplitude fit, the additional constraint that the invariant mass of the D0pπ− combination

be equal to the known Λ0
b mass [23] is applied when calculating these variables.

After the initial selection, the background in the region of the Λ0
b → D0pπ− signal is

dominated by random combinations of tracks. The final selection is based on a boosted

decision tree (BDT) algorithm [52, 53] designed to separate signal from this background.

The selection is trained using simulated Λ0
b → D0pπ− events generated uniformly across the

phase space as the signal sample, and the sample of opposite-flavour D0pπ−, D0 → K+π−
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combinations from data as background. In total, 12 discriminating variables are used

in the BDT selection: the χ2 of the kinematic fit, the angle between the momentum

and the direction of flight of the Λ0
b candidate, the χ2 of the Λ0

b and D0 vertex fits, the

lifetime significance of the D0 candidate with respect to the Λ0
b vertex, the χ2

IP of the

final-state tracks and the D0 candidate, and the particle identification (PID) information

of the proton and pion tracks from the Λ0
b vertex. Due to differences between simulation

and data, corrections are applied to all the variables from the simulated sample used in the

BDT training, except for the PID variables. These corrections are typically about 10% and

are obtained from a large and clean sample of Λ0
b → Λ+

c π
− decays. The simulated proton

and pion PID variables are replaced with values generated using distributions obtained

from calibration samples of D∗+ → D0π+ and Λ+
c → pK−π+ decays in data. For these

calibration samples, the four-dimensional distributions of PID variable, pT, η and the track

multiplicity of the event are described using a nonparametric kernel-based procedure [54].

The resulting distributions are used to generate PID variables for each pion or proton track

given its pT, η and the track multiplicity in the simulated event.

The BDT requirement is chosen such that the fraction of background in the signal

region used for the subsequent amplitude fit, |M(D0pπ−) − m(Λ0
b)| < 30 MeV, does not

exceed 15%. This corresponds to a signal efficiency of 66% and a background rejection of

96% with respect to the preliminary selection. After all selection requirements are applied,

fewer than 1% of selected events contain a second candidate. All multiple candidates are

retained; the associated systematic uncertainty is negligible.

5 Fit regions and event yields

The Dalitz plot of selected events, without background subtraction or efficiency correction,

in the signal D0pπ− invariant mass range defined in section 4 is shown in figure 3(a).

The part of the phase space near the D0p threshold that contains contributions from Λ∗+c
resonances is shown in figure 3(b). The latter uses M(D0p) as the horizontal axis instead

of M2(D0p).

In figure 3, the four amplitude fit regions of the Λ0
b → D0pπ− phase space are indi-

cated. These are denoted regions 1–4. Region 1, M(D0p) > 3 GeV and M(pπ−) > 2 GeV,

is the part of the phase space that does not include resonant contributions and is

used only to constrain the nonresonant pπ− amplitude in the D0p regions. Region 2,

2.86 < M(D0p) < 2.90 GeV, contains the well-known Λc(2880)+ state and is used to mea-

sure its parameters and to constrain the slowly varying amplitude underneath it in a

model-independent way. The fit in region 3 near the D0p threshold, M(D0p) < 2.90 GeV,

provides additional information about the slowly-varying D0p amplitude. Finally, the fit

in region 4, M(D0p) < 3.00 GeV, which includes the Λc(2940)+ state, gives information

about the properties of this resonance and the relative magnitudes of the resonant and

nonresonant contributions. Note that region 2 is fully contained in region 3, while region

3 is fully contained in region 4.

The signal and background yields in each region are obtained from extended un-

binned maximum likelihood fits of the D0pπ− invariant mass distribution in the range
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Figure 3. Distributions of Λ0
b → D0pπ− candidates in data: (a) the full Dalitz plot as a function

of M2(D0p) and M2(pπ−), and (b) the part of the phase space including the resonances in the

D0p channel (note the change in variable on the horizontal axis). The distributions are neither

background-subtracted nor efficiency-corrected. The hatched areas 1–4 are described in the text.

5400–5900 MeV. The fit model includes the signal component, a contribution from random

combinations of tracks (combinatorial background) and the background from partially re-

constructed Λ0
b → D∗0pπ− decays (where D∗0 decays into D0π0 or D0γ and the π0 or γ

are not included in the reconstruction).

The signal component is modelled as the sum of two Crystal Ball functions [55] with

the same most probable value and power-law tails on both sides. All parameters of the

model are fixed from simulation except for the peak position and a common scale factor

for the core widths, which are floated in the fit to data. The combinatorial background

is parametrised by an exponential function, and the partially reconstructed background is

described by a bifurcated Gaussian distribution. The shape parameters of the background

distributions are free parameters of the fit.

The results of the fit for candidates in the entire D0pπ− phase space are shown in

figure 4. The background and signal yields in the entire D0pπ− phase space, as well as in

the regions used in the amplitude fit, are given in table 1.

6 Efficiency variation over the Dalitz plot

The same sample of simulated events as in the selection training (section 4) is used to

determine the variation of the efficiency across the Dalitz plot. The sample is generated

uniformly in the decay phase space and consists of approximately 8 × 104 Λ0
b → D0pπ−

events satisfying the selection requirements. Each simulated event is assigned a weight, de-

rived from control samples of data, to correct for known differences in track reconstruction

and hardware trigger efficiency between data and simulation. Since the PID variables in the

sample are replaced by those generated from calibration data, the efficiency of PID require-

ments is included in the efficiency calculation and does not need to be treated separately.
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Figure 4. Invariant mass distribution for the D0pπ− candidates in the entire D0pπ− phase space.

The blue solid line is the fit result. Signal, partially reconstructed and combinatorial background

components are shown with different line styles. Vertical lines indicate the boundaries of the signal

region used in the amplitude fit.

Phase space region

Yield Full 1 2 3 4

Λ0
b → D0pπ− 11 212± 126 2 250± 61 1 674± 46 3 141± 63 4 750± 79

Combinatorial 14 024± 224 4 924± 132 968± 78 2 095± 96 4 188± 127

Partially rec. 4 106± 167 1 344± 96 321± 64 691± 75 1 204± 96

Signal in box 10 233 2 061 1 500 2 803 4 261

Background in box 1 616 598 89 192 427

Table 1. Results of the fits to the Λ0
b → D0pπ− mass distribution in the entire Λ0

b → D0pπ− phase

space and in the four phase space regions used in the amplitude fits. The signal and background

yields for the full M(D0pπ−) range, as well as for the amplitude fit region |M(D0pπ−)−m(Λ0
b)| <

30 MeV (“box”), are reported.

The Dalitz plot efficiency profile is calculated separately for two disjoint sets of can-

didates, defined according to whether the hardware trigger was activated by one of the

Λ0
b decay products or by other particles in the event. For each of those samples, a kernel-

based density estimation procedure with a correction for boundary effects [54] is used to

obtain a description of the relative efficiency as a function of the Dalitz plot variables. The

overall efficiency is then given by the average of the two profiles, weighted according to

the ratio of yields of the two classes of events in data. The resulting profile is shown in

figure 5(a). The normalisation of the efficiency profile used in the amplitude fit likelihood

(eqs. (3.15) and (3.16)) does not affect the result. The efficiency profile shown in figure 5(a)

is normalised such that the average efficiency over the phase space is equal to unity.
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Figure 5. (a) Relative selection efficiency and (b) background density over the Λ0
b → D0pπ− phase

space. The normalisations are such that the average over the phase space is unity.

7 Background distribution

Background in the vicinity of the Λ0
b → D0pπ− invariant mass peak is dominated by random

combinations of D0 mesons, proton, and pion tracks. To determine the background shape

as a function of Dalitz plot variables M2(D0p) and M2(pπ−), the Λ0
b mass sidebands are

used: 5500 < M(D0pπ−) < 5560 MeV and 5680 < M(D0pπ−) < 5900 MeV. The same

procedure is applied to the opposite-flavour D0pπ− sample to verify that the background

shape in the mass sidebands is representative of that in the signal window. Good agreement

is found.

The background distribution as a function of the Dalitz plot variables is estimated

using a Gaussian mixture model, describing the background as a sum of several two-

dimensional Gaussian distributions, whose parameters are allowed to vary in the fit. For

the limited-size sample of background events this approach appears more suitable than

a kernel-based technique. The parametrisation is obtained using an iterative procedure

where Gaussian components are added to the model one by one; at each iteration the

parameters of all components are adjusted using an unbinned maximum likelihood fit. The

result of the procedure is shown in figure 5(b). The baseline parametrisation is a sum of

25 two-dimensional Gaussian components. The normalisation of the background density

used in the fit is arbitrary; for the purposes of illustration in figure 5(b) it is set such that

the average density across the phase space is unity.

8 Effect of momentum resolution

Finite momentum resolution smears the structures in the Dalitz plot. The use of the

kinematic fit with Λ0
b and D0 mass constraints significantly improves the resolution near

the edges of the phase space, but less so in the central region. The only structure in

the Λ0
b → D0pπ− amplitude that is expected to be affected by the finite resolution is the

resonance Λc(2880)+, which has a natural width of approximately 6 MeV. Therefore, only
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the M(D0p) resolution is considered, and is obtained from a sample of simulated events by

comparing the generated and reconstructed values of M(D0p). The width of the resolution

function at M(D0p) = 2.88 GeV is 1.1 MeV, i.e. significantly smaller than the natural width

of the Λc(2880)+. However, simulation shows that neglecting the resolution would lead to

a bias on the Λc(2880)+ width of about 10%. Therefore, the M(D0p) resolution is taken

into account in the fit by convolving the signal PDF with a Gaussian resolution function,

where the width of the Gaussian is a function of M(D0p).

9 Amplitude analysis

The amplitude fit is performed in the four phase space regions defined in figure 3. This

approach has been chosen instead of performing the fit to the entire Dalitz plot since the

amplitude contains many unexplored contributions. The full fit would include too many

degrees of freedom and a very large range of systematic variations would need to be con-

sidered. Instead, the fit is first performed around the well-known resonance Λc(2880)+ and

then the fitting region is gradually extended to include a larger portion of the phase space.

9.1 Fit in the nonresonant region

The fit in region 1, where no significant resonant contributions are expected, provides

constraints on the high-mass behaviour of the pπ− amplitude, and thus on the pπ− par-

tial waves in the D0p fit regions. The fit model includes four exponential nonresonant

components (eq. (3.13)) in each of the D0p and pπ− spectra, corresponding to the four

combinations of spin (1/2 and 3/2) and parity (negative and positive). Since there is no

reference amplitude with known parity in this region, there is an ambiguity: all parities

can be reversed simultaneously without changing the amplitude. The shape parameters α

of all eight nonresonant components are varied in the fit.

The projections of the fitted data are shown in figure 6. The fitted pπ− amplitude is

extrapolated into the regions 2–4 of the Λ0
b → D0pπ− phase space using the fitted helicity

distributions. The estimated contributions of the pπ− nonresonant components in the D0p

mass regions are given in table 2 and compared with the total numbers of signal events in

those regions. They amount to less than 1% of the signal yield for the regions 2 and 3,

and around 1.5% for region 4. Therefore, the baseline fit models for regions 2 and 3 do not

include pπ− crossfeed (although it is taken into account as a part of the uncertainty due to

modelling of nonresonant amplitudes), while for region 4 the pπ− nonresonant component

is included in the model. Since only a small part of the pπ− helicity distribution enters the

D0p fit region, the spin and parity assignment of the pπ− amplitude should have a very

small effect. Thus only one partial wave (JP = 1/2−) of the nonresonant pπ− component

is included for the D0p amplitude fit.

9.2 Fit in the region of Λc(2880)+

Next, an amplitude fit is performed in region 2, in the vicinity of the well-established

Λc(2880)+ resonance. The quantum numbers of this state have been measured by the

Belle collaboration to be JP = 5/2+ [22, 23]. The fit probes the structure of the wide D0p
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Figure 6. Fit results for the Λ0
b → D0pπ− amplitude in the nonresonant region (region 1) (a)

M(D0p) projection and (b) M(pπ−) projection. The points with error bars are data, the black

histogram is the fit result, and coloured curves show the components of the fit model taking into

account the efficiency. The dash-dotted line represents the background. Due to interference effects

the total is not necessarily equal to the sum of the components.

Region Signal yield pπ− yield

2 1 500 9

3 2 803 16

4 4 261 61

Table 2. Estimated contributions from the pπ− nonresonant components in different phase space

regions. The signal yields from table 1 are also included for comparison.

amplitude component underneath the Λc(2880)+ peak using the shape of the latter as a

reference. Other Λc(2880)+ spin assignments from 1/2 to 7/2 are also tried (spin 7/2 was

not tested in the Belle analysis [22]). Since the amplitude is not sensitive to the absolute

parities of the components, the parity of the Λc(2880)+ is always fixed to be positive; the

parities of the other amplitude components are determined relative to its parity.

As for region 1, the nonresonant amplitude model consists of four contributions with

spins 1/2 and 3/2 and both parities. The nonresonant components are parametrised either

with the exponential model of eq. (3.13) (“Exponential”), or the amplitude with both real

and imaginary parts varying linearly in M2(D0p) (“Linear”, which is a special case of the

spline-interpolated shape with only two knots). The mass and width of the Λc(2880)+

state are free parameters.

The model in which the Λc(2880)+ has spin 5/2 is preferred for both nonresonant

models, while the difference between exponential and linear models is negligible. The

model with spin 5/2 and linear nonresonant amplitude parametrisation is taken as the

baseline. Table 3 gives the differences in lnL compared to the baseline, along with the χ2

values and the associated probabilities. The quality of the fit is obtained using the adaptive

binning approach with at least 20 data entries in each bin and with the effective number

of degrees of freedom ndfeff obtained from pseudoexperiments. The results of the fit with

the baseline model are shown in figure 7.
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Nonresonant model Λc(2880)+ JP ∆ lnL χ2/ndf P (χ2, ndf), %

Exponential 1/2+ 41.5 108.9/70 0.2

3/2+ 35.5 99.4/70 1.2

5/2+ −0.2 65.6/70 62.7

7/2+ 8.4 76.8/70 27.0

Linear 1/2+ 40.3 107.4/71 0.3

3/2+ 35.7 98.8/71 1.6

5/2+ 0.0 69.2/71 53.8

7/2+ 8.6 76.2/71 31.5

Table 3. Values of the ∆ lnL and fit quality for various Λc(2880)+ spin assignments and nonreso-

nant amplitude models. The baseline model is shown in bold face.
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Figure 7. Results of the Λ0
b → D0pπ− amplitude fit in the Λc(2880)+ mass region with spin-parity

assignment JP = 5/2+ for the Λc(2880)+ resonance: (a) M(D0p) projection and (b–e) cos θp
projections in slices of the D0p invariant mass. The linear nonresonant model is used. Points with

error bars are data, the black histogram is the fit result, coloured curves show the components of

the fit model. The dash-dotted line represents the background. Vertical lines in (a) indicate the

boundaries of the D0p invariant mass slices. Due to interference effects the total is not necessarily

equal to the sum of the components.
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Figure 8. Argand diagrams for the four amplitude components underneath the Λc(2880)+ peak in

the linear nonresonant model. In each diagram, point 0 corresponds to M(D0p) = 2.86 GeV, and

point 1 to M(D0p) = 2.90 GeV.

Argand diagrams illustrating the amplitude and phase motion of the fit components are

shown in figure 8. The plots contain a hint of phase rotation for the JP = 3/2+ partial wave

in a counter-clockwise direction, consistent with the resonance-like phase motion observed

in the near-threshold fit (section 9.3). The statistical significance of this effect is studied

with a series of pseudoexperiments where the samples are generated according to the fit

where the complex phase in all the nonresonant components is constant. Each is fitted

with two models, with the complex phase constrained to be the same for both endpoints,

and floated freely. The distribution of the logarithmic likelihood difference ∆ lnL between

the two fits is studied and compared to the value obtained in data. The study shows that

around 55% of the samples have ∆ lnL greater than the value observed in data (1.4), i.e.

this effect is not statistically significant with the data in region 2 alone.

Ensembles of pseudoexperiments, where the baseline model is used both to generate

and to fit samples of the same size as in the data, are used to validate the statistical

uncertainties obtained from the fit, check for systematic biases due to the fitting procedure,

evaluate the statistical uncertainties on the fit fractions, and obtain the effective number

of degrees of freedom for the fit quality evaluation based on a binned χ2 measure.

The unbinned maximum likelihood fit is unbiased only in the limit of a large data sam-

ple; in general a fit to a finite sample can exhibit a bias that is usually significantly smaller

than the statistical uncertainty. Pseudoexperiments are used to evaluate and correct for
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such biases on the mass and the width of the Λc(2880)+ state, as well as on the fit fractions

of the amplitude components obtained from the fit. The corrected values are

m(Λc(2880)+) = 2881.75± 0.29 MeV,

Γ(Λc(2880)+) = 5.43+0.77
−0.71 MeV,

F(Λc(2880)+) = (29.0+2.6
−3.6)%,

F(1/2+) = (11.3+2.2
−5.5)%,

F(1/2−) = (16.3+2.4
−2.6)%,

F(3/2+) = (38.2+5.0
−4.9)%,

F(3/2−) = (7.8+1.3
−3.1)%.

The uncertainties are statistical only. Correlations between the fit parameters do not

exceed 20%. Since all the amplitude components have different quantum numbers, the

interference terms cancel out after integrating over the phase space, and the sum of un-

corrected fit fractions is exactly 100%. After the bias correction is applied individually for

each fit fraction, statistical fluctuations in the corrections lead to a small, statistically not

significant, difference from 100% (in this case, the sum of fit fractions increases to 102.6%).

A number of experimental systematic uncertainties on the Λc(2880)+ mass and width

and on the difference ∆ lnL between the baseline (5/2) and the next-best (7/2) spin as-

signments are considered and are given in table 4. These arise from:

1. Uncertainty on the background fraction in the signal region (section 5). The statisti-

cal uncertainty is obtained from the fit to the M(D0pπ−) distribution, and a system-

atic uncertainty arising from the modelling of the signal and background M(D0pπ−)

distributions is estimated by performing fits with modified M(D0pπ−) models. The

sum in quadrature of these contributions is taken as the systematic uncertainty.

2. Uncertainty on the efficiency profile (section 6). The statistical uncertainty is eval-

uated via a bootstrapping procedure [56]. The uncertainty related to the kernel

density estimation procedure is obtained by varying the kernel size. The uncertainty

due to differences between data and simulation in the input variables of the BDT is

estimated by varying the scaling factors for these variables. In addition, the replace-

ment of simulated proton and pion PID variables with values drawn from control

samples in the data with matching kinematics, described in section 4, introduces

further systematic uncertainties. The uncertainty associated with the limited size

of these control samples is evaluated again with a bootstrapping procedure, and the

uncertainty associated with the kinematic matching process is assessed by changing

the kernel size in the nonparametric algorithm used to estimate the PID response as

a function of the kinematic properties of the track.

3. Uncertainty on the background shape (section 7). This is assessed by varying

the density estimation procedure (changing the number of Gaussian cores in the

mixture model, or using kernel density estimation instead of a Gaussian mixture

model), and by using only a narrower upper sideband of the M(D0pπ−) distribution,
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5680 < M(D0pπ−) < 5780 MeV. The statistical uncertainty due to the finite size of

the background sample is estimated by bootstrapping.

4. Uncertainty on the momentum resolution (section 8). This is estimated by varying the

M2(D0p) resolution by 15%. It mainly affects the width of the Λc(2880)+ resonance.

5. Uncertainties on the mass scale. Due to the constraints on the hadron masses, the

momentum scale uncertainty of the detector has a negligible effect on the fit. However,

the uncertainties on the assigned mass values themselves do contribute. For M(D0p)

amplitudes the dominant contribution comes from the D0 mass uncertainty.

6. Uncertainty on the fit procedure itself. This is assessed by fitting ensembles of pseu-

doexperiments, where the baseline amplitude model is used for both generation and

fitting, and the number of events generated for each pseudoexperiment is equal to

the number of events in the data sample. The mean value for each fitted parameter

is used as a correction for fitting bias, while the statistical uncertainty on the mean

is taken as the uncertainty due to the fit procedure.

The uncertainties on the D0 mass and the fit procedure do not affect the significance of

the quantum number assignment and are thus not included in ∆ lnL uncertainty.

Also reported in table 4 is the uncertainty related to the amplitude model. It consists

of two contributions, corresponding to the uncertainties in the modelling of the resonant

Λc(2880)+ shape and the nonresonant amplitudes. The model uncertainties are asymmet-

ric, and the positive and negative uncertainties for the two components are combined in

quadrature separately to obtain the total model uncertainty.

The uncertainty due to the Breit-Wigner parametrisation of the Λc(2880)+ amplitude

is estimated by varying the radial parameters rΛ0
b

and rΛc(2880)+ between 0 and 10 GeV−1

and 0 and 3 GeV−1, respectively, and by removing the angular barrier factor from the

Breit-Wigner amplitude. The maximum deviation is taken as the uncertainty.

The uncertainty due to the modelling of the nonresonant amplitudes is estimated by

taking the difference between the fit results obtained with the default linear nonresonant

model and the alternative exponential model. The possible crossfeed from the pπ− channel

is estimated by adding a JP = 1/2− component in the pπ− channel to the amplitude.

This component has a fixed exponential lineshape with shape parameter α = 0.5 GeV−2

(obtained in the fit to region 1 data) and its complex couplings are free parameters in the fit.

The helicity formalism used to describe the amplitudes is inherently non-relativistic.

To assess the model uncertainty due to this limitation, an alternative description is ob-

tained with covariant tensors using the qft++ framework [57], but it is much more expensive

from a computational point of view and is therefore not used for the baseline fits. Differ-

ences between the helicity and the covariant formalism are mainly associated with the

broad amplitude components and are therefore treated as a part of the uncertainty due to

the nonresonant model. Although this contribution is included in the nonresonant model

uncertainty in table 4, it is also reported separately.

– 20 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
0

Uncertainty

Source m(Λc(2880)+) Γ(Λc(2880)+) ∆ lnL
[ MeV ] [ MeV ]

Background fraction 0.01 0.02 0.11

Efficiency profile 0.01 0.10 0.35

Background shape 0.02 0.11 0.28

Momentum resolution 0.02 0.24 0.29

Mass scale 0.05 − −
Fit procedure 0.03 0.08 −
Total systematic 0.07 0.29 0.54

Breit-Wigner model +0.01/−0.00 +0.01/−0.00 0.01

Nonresonant model +0.14/−0.20 +0.75/−0.00 0.62

— of which helicity formalism +0.14/−0.00 +0.36/−0.00 0.62

Total model +0.14/−0.20 +0.75/−0.00 0.88

Table 4. Systematic and model uncertainties on the Λc(2880)+ parameters and on the value of

∆ lnL between the 5/2 and 7/2 spin assignments. The uncertainty due to the nonresonant model

includes a component associated with the helicity formalism, which for comparison is given explicitly

in the table, too.

The significance of the spin assignment J = 5/2 with respect to the next most likely

hypothesis J = 7/2 for the Λc(2880)+ state is evaluated with a series of pseudoexperiments,

where the samples are generated from the model with J = 7/2 and then fitted with both

J = 5/2 and 7/2 hypotheses. The difference of the logarithmic likelihoods ∆ lnL is used as

the test statistic. The distribution in ∆ lnL is fitted with a Gaussian function and compared

to the value of ∆ lnL observed in data. The statistical significance is expressed in terms of

a number of standard deviations (σ). The uncertainty in ∆ lnL due to systematic effects

is small compared to the statistical uncertainty; combining them in quadrature results in

an overall significance of 4.0σ. The fits with spins 1/2 and 3/2 for the Λc(2880)+ state

yield large ∆ lnL and poor fit quality, as seen from table 3. These spin assignments are

thus excluded.

In conclusion, the mass and width of the Λc(2880)+ resonance are found to be

m(Λc(2880)+) = 2881.75± 0.29(stat)± 0.07(syst)+0.14
−0.20(model) MeV,

Γ(Λc(2880)+) = 5.43+0.77
−0.71(stat)± 0.29(syst)+0.75

−0.00(model) MeV.

These are consistent with the current world averages, and have comparable precision. The

preferred value for the spin of this state is confirmed to be 5/2, with a significance of 4σ over

the next most likely hypothesis, 7/2. The spin assignments 1/2 and 3/2 are excluded. The

largest nonresonant contribution underneath the Λc(2880)+ state comes from a partial wave

with spin 3/2 and positive parity. With a larger dataset, it would be possible to constrain

the phase motion of the nonresonant amplitude in a model-independent way using the

Λc(2880)+ amplitude as a reference.
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Figure 9. M(D0p) projections for the fit including the Λc(2880)+ state and four exponential

nonresonant amplitudes.

9.3 Fit in the near-threshold region

Extending the M(D0p) range down to the D0p threshold (region 3), it becomes evident

that a simple model for the broad amplitude components, such as an exponential lineshape,

cannot describe the data (figure 9). The hypothesis that an additional resonance is present

in the amplitude is tested in a model-dependent way by introducing a Breit-Wigner reso-

nance in each of the D0p partial waves. Model-independent tests are also performed via

fits in which one or more partial waves are parametrised with a spline-interpolated shape.

The results of these tests are summarised in table 5. The mass and width of the Λc(2880)+

state are fixed to their known values [23] in these fits.

There are no states with mass around the D0p threshold (2800 MeV) that are currently

known to decay to the D0p final state. A broad structure has been seen previously in the

Λ+
c π

+π− final state that is referred to as the Λc(2765)+ [58]. It could contribute to the

D0p amplitude if its width is large. Since neither the quantum numbers nor the width of

this structure have been measured, fits are carried out in which this structure is included,

modelled as a Breit-Wigner amplitude with spin-parity 1/2± or 3/2±, and with a width

that is free to vary; its mass is fixed to 2765 MeV. In addition, four exponential nonresonant

components with JP = 1/2+, 1/2−, 3/2+, and 3/2− are included. None of these fits are

of acceptable quality, as shown in table 5. A Flatté parametrisation of the line shape [59]

with couplings to Λ+
c π

+π− and D0p channels is also considered, but does not produce a fit

of acceptable quality either. Therefore, a resonance with a fixed mass of 2765 MeV is not

sufficient to explain the data.

If the mass of the Breit-Wigner resonance is allowed to vary in the fit, good agreement

with data can be obtained for the spin-parity assignment JP = 3/2+. Moreover, if the

resonance is assumed to have JP = 3/2+, the exponential nonresonant component with

JP = 3/2+ can be removed from the amplitude model without loss of fit quality. This model

is taken as the baseline for this fit region. The mass and the width of the resonance obtained

from the fit are around 2856 MeV and 65 MeV, respectively, and therefore this structure

will be referred to as Λc(2860)+ hereafter. The results of this fit are shown in figure 10.
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Nonresonant model Resonance

1/2− 1/2+ 3/2− 3/2+ Mass [ MeV ] JP ∆ lnL χ2/ndf P (χ2, ndf) [%]

Exp Exp Exp Exp − − 72.2 287.4/150 0.0

Exp Exp Exp Exp 2765 1/2− 53.6 247.2/146 0.0

Exp Exp Exp Exp 2765 1/2+ 52.8 254.8/146 0.0

Exp Exp Exp Exp 2765 3/2− 45.8 240.5/146 0.0

Exp Exp Exp Exp 2765 3/2+ 38.5 226.0/146 0.0

Exp Exp Exp Exp Float 1/2− 8.2 162.7/145 14.9

Exp Exp Exp Exp Float 1/2+ 15.2 170.2/145 7.5

Exp Exp Exp Exp Float 3/2− 9.3 162.1/145 15.7

Exp Exp Exp Exp Float 3/2+ −3.3 139.5/145 61.3

Exp Exp − − Float 3/2+ 12.8 169.7/153 16.9

Exp Exp Exp − Float 3/2+ 0.0 143.1/149 62.1

CSpl Exp Exp Exp − − 16.1 181.3/140 1.1

Exp CSpl Exp Exp − − 2.0 154.8/140 18.5

Exp Exp CSpl Exp − − 16.6 172.9/140 3.1

Exp Exp Exp CSpl − − −0.4 146.6/140 33.4

Exp Exp CSpl − − − 63.1 234.8/143 0.0

Exp Exp − CSpl − − 10.8 165.7/143 9.4

Exp Exp CSpl CSpl − − −4.7 146.1/130 15.8

Exp Exp RSpl Exp − − 17.4 177.0/143 2.8

Exp Exp Exp RSpl − − 15.4 174.5/143 3.8

Exp Exp RSpl RSpl − − −0.4 145.1/138 32.3

Table 5. Quality of various fits to the near-threshold D0p data. The models include nonresonant

components for partial waves with J ≤ 3/2 with or without a resonant component, whose mass

is fixed to 2765 MeV or allowed to vary (“Float”). “Exp” denotes an exponential nonresonant

lineshape, “CSpl” a complex spline parametrisation, and “RSpl” a real spline parametrisation

multiplied by a constant phase. The baseline model is shown in bold face.

One model-independent test for the presence of structure in the broad component is

to describe the real and imaginary parts with spline-interpolated shapes. Cubic splines

with six knots at D0p masses of 2800, 2820, 2840, 2860, 2880 and 2900 MeV are used. Of

the models where only one partial wave is described by a spline while the others remain

exponential, the best fit is again given by the model where the spline-interpolated amplitude

has JP = 3/2+. The Argand diagram for the 3/2+ amplitude in this fit is shown in

figure 11(a). Each of the points numbered from 0 to 5 corresponds to one spline knot

at increasing values of M(D0p). Note that knots 3 and 5 at masses 2860 and 2900 MeV

correspond to the boundaries of the region 2 where the nonresonant amplitude is described

by a linear function (section 9.1) and that the amplitudes and phases in those two knots

can be compared directly to figure 8, since the convention is the same in both fits. The

Argand diagram demonstrates resonance-like phase rotation of the 3/2+ partial wave with

respect to the other broad components in the D0p amplitude, which are assumed to be

constant in phase. Note that the absolute phase motion cannot be obtained from this fit

since there are no reference amplitudes covering the entire D0p mass range used in the fit.
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Figure 10. Results for the fit of the Λ0
b → D0pπ− Dalitz plot distribution in the near-threshold

D0p mass region (region 3): (a) M(D0p) projection, and (b–g) cos θp projections for slices in D0p

invariant mass. An exponential model is used for the nonresonant partial waves. A broad Λc(2860)+

resonance and the Λc(2880)+ state are also present. Vertical lines in (a) indicate the boundaries of

the D0p invariant mass slices. Due to interference effects the total is not necessarily equal to the

sum of the components.

As seen in table 5, inclusion of a spline-interpolated shape in the 1/2+ component

instead of 3/2+ also gives a reasonable fit quality. The Argand diagram for the 1/2+ wave

in this fit is shown in figure 11(b). Since the phase rotates clockwise, this solution cannot

be described by a single resonance.

A genuine resonance has characteristic phase motion as a function of M(D0p). As

a null test, the fits are repeated with a spline function with no phase motion. This is

implemented as a real spline function multiplied by a constant phase. The fits where only

one partial wave is replaced by a real spline give poor fits. If both spin-3/2 amplitudes are
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Figure 11. Argand diagrams for the complex spline components used in two fits, represented by

blue lines with arrows indicating the phase motion with increasing M(D0p). For subfigure (a), the

JP = 3/2+ partial wave is modelled as a spline and the other components in the fit (1/2+, 1/2−

and 3/2−) are described with exponential amplitudes. For comparison, results from a separate fit

in which the 3/2+ partial wave is described with a Breit-Wigner function are superimposed: the

green line represents its phase motion, and the green dots correspond to the D0p masses at the

spline knots. For subfigure (b), the JP = 1/2+ component is modelled as a spline and 1/2−, 3/2+

and 3/2− components as exponential amplitudes.
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Figure 12. Results of the fit including the Λc(2880)+ state, two exponential nonresonant ampli-

tudes with JP = 1/2± and two real splines in JP = 3/2± partial waves. (a) Spline amplitudes for

JP = 3/2± partial waves as functions of M(D0p). Points with the error bars are fitted values of

the amplitude in the spline knots, smooth curves are the interpolated amplitude shapes. (b) The

M(D0p) projection of the decay density and the components of the fit model.

represented by real splines, the fit quality is good, but the resulting amplitudes oscillate as

functions of M(D0p), which is not physical. Figure 12(a) shows the real spline amplitudes

without the contribution of the phase space term, which exhibit oscillating behaviour, while

figure 12(b) shows the M(D0p) projection of the decay density for this solution.

As in the case of the amplitude fit in the Λc(2880)+ region, pseudoexperiments are

used to validate the fit procedure, obtain uncertainties on the fit fractions, and deter-
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mine values of ndfeff for the binned fit quality test. Pseudoexperiments are also used to

obtain the ∆ lnL distributions for fits with various spin-parity hypotheses. After correct-

ing for fit bias, the mass and width of the broad Λc(2860)+ resonance are found to be

m(Λc(2860)+) = 2856.1+2.0
−1.7 MeV and Γ(Λc(2860)+) = 67.6+10.1

−8.1 MeV, where the uncertain-

ties are statistical only.

Systematic uncertainties are obtained following the same procedure as for the ampli-

tude fit in the Λc(2880)+ region (section 9.2) and are summarised in table 6. An additional

contribution to the list of systematic uncertainties is the uncertainty in the knowledge of

the mass and width of the Λc(2880)+ resonance, which are fixed in the fit. It is estimated

by varying these parameters within their uncertainties. The model uncertainty associated

with the parametrisation of the nonresonant components is estimated by performing fits

with an additional exponential 3/2+ amplitude component and with the 3/2− component

removed, as well as by adding the pπ− amplitude and using the covariant amplitude for-

malism in the same way as in section 9.2.

The JP = 3/2+ hypothesis is preferred for the Λc(2860)+ state, since its fit likelihood,

as measured by ∆ lnL, is substantially better than those of the other JP values tested. The

significance of this difference is assessed with pseudoexperiments and corresponds to 8.8σ,

6.3σ, and 6.6σ for the 1/2+, 1/2−, and 3/2− hypotheses, respectively. When systematic

uncertainties are included, these reduce to 8.4σ, 6.2σ and 6.4σ. For JP = 3/2+, the

following parameters are obtained for the near-threshold resonant state:

m(Λc(2860)+) = 2856.1+2.0
−1.7(stat)± 0.5(syst)+1.1

−5.6(model) MeV,

Γ(Λc(2860)+) = 67.6+10.1
−8.1 (stat)± 1.4(syst)+5.9

−20.0(model) MeV.

The largest uncertainties are associated with the modelling of the nonresonant components

of the D0p amplitude.

9.4 Fit including Λc(2940)+

Finally, the D0p mass region in the amplitude fit is extended up to M(D0p) = 3.0 GeV

to include the Λc(2940)+ state (region 4). Since the behaviour of the slowly-varying D0p

amplitude is consistent with the presence of a resonance in the JP = 3/2+ wave and

nonresonant amplitudes in the 1/2+, 1/2−, and 3/2− waves, the same model is used to

describe those parts of the amplitude in the extended fit region. The Λc(2940)+ resonance

is modelled by a Breit-Wigner lineshape. The masses and widths of the Λc(2940)+ and

Λc(2860)+ states are floated in the fit, while those of the Λc(2880)+ resonance are fixed

to their nominal values [23]. Several variants of the fit are performed in which the spin of

Λc(2940)+ is assigned to be 1/2, 3/2, 5/2 or 7/2, with both positive and negative parities

considered. Two different parametrisations of the nonresonant components are considered:

the exponential model (taken as the baseline) and a second-order polynomial (eq. (3.14)).

The results of the fits are given in table 8. For both nonresonant parametrisations, the

best fit has a Λc(2940)+ spin-parity assignment of 3/2−. The results of the fit with this

hypothesis and an exponential model for the nonresonant amplitudes, which is taken as the

baseline for fit region 4, are shown in figure 13. Although the 3/2− hypothesis describes
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Uncertainty

Source m(Λc(2860)+) Γ(Λc(2860)+) ∆ lnL
[ MeV ] [ MeV ] 1/2+ 1/2− 3/2+

Background fraction 0.22 0.54 2.3 1.1 1.8

Efficiency profile 0.20 0.61 0.5 0.8 0.4

Background shape 0.29 0.77 1.0 0.4 0.3

Momentum resolution 0.10 0.49 − − −
Mass scale 0.05 − − − −
Fit procedure 0.17 0.67 − − −
Λc(2880)+ parameters 0.02 0.22 0.7 0.4 0.5

Total systematic 0.46 1.41 2.7 1.4 2.0

Breit-Wigner model +1.11/−1.65 +5.92/−8.02 0.2 0.0 0.2

Nonresonant model +0.00/−5.35 +0.15/−18.29 2.4 0.1 0.5

— of which helicity formalism +0.00/−1.23 +0.00/−5.67 1.6 0.1 0.0

Total model +1.11/−5.59 +5.93/−19.97 2.9 0.2 0.5

Table 6. Systematic uncertainties on the Λc(2860)+ parameters and on ∆ lnL between the baseline

3/2+ and alternative spin-parity assignments. The uncertainty due to the nonresonant model

includes a component associated with the helicity formalism, which for comparison is given explicitly

in the table, too.

the data significantly better than all others in fits using an exponential nonresonant model,

this is not the case for the more flexible polynomial model: the assignment JP = 5/2− is

only slightly worse (∆ lnL = 3.6) and a number of other spin-parity assignments are not

excluded either.

In the baseline model, the mass of the Λc(2940)+ state is measured to be

m(Λc(2940)+) = 2944.8+3.5
−2.5 MeV, and the width is Γ(Λc(2940)+) = 27.7+8.2

−6.0 MeV. The

fit fractions for the resonant components of the D0p amplitude are F(Λc(2860)+) =

(47.2+2.9
−2.8)%, F(Λc(2880)+) = (12.9+1.0

−0.9)%, and F(Λc(2940)+) = (8.2+2.3
−1.1)%. All these

uncertainties are statistical. Pseudoexperiments are used to correct for fit bias, which is

small compared to the statistical uncertainties, and to determine the linear correlation

coefficients for the statistical uncertainties between the measured masses, widths and fit

fractions (table 7).

The systematic and model uncertainties for the parameters given above, obtained

following the procedure described in sections 9.2 and 9.3, are presented in table 9. The

part of the model uncertainty associated with the nonresonant amplitude is estimated from

fits that use the polynomial nonresonant parametrisation instead of the default exponential

form, by adding a 3/2+ nonresonant amplitude or removing the 3/2− or pπ− amplitudes,

and by using the covariant formalism instead of the baseline helicity formalism. The

uncertainty due to the unknown quantum numbers of the Λc(2940)+ state is estimated

from the variation among the fits with spin-parity assignments that give reasonable fit

quality (P (χ2, ndf) > 5%): 3/2+, 3/2−, 5/2+, 5/2−.
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F(Λc(2880)+) +1.00

F(Λc(2860)+) +0.02 +1.00

M(Λc(2860)+) −0.14 +0.24 +1.00

Γ(Λc(2860)+) −0.14 +0.34 +0.61 +1.00

F(Λc(2940)+) +0.18 +0.03 −0.02 −0.12 +1.00

M(Λc(2940)+) +0.02 +0.13 −0.08 −0.09 +0.45 +1.00

Γ(Λc(2940)+) +0.15 +0.06 −0.04 −0.11 +0.78 +0.54 +1.00

Table 7. Correlation matrix associated to the statistical uncertainties of the fit results in the fit

region 4.

Nonresonant model Λc(2940)+ JP ∆ lnL χ2/ndf P (χ2, ndf) [%]

Exponential No Λ+
c (2940) 54.6 337.3/230 0.0

1/2− 25.5 293.1/228 0.2

1/2+ 34.2 306.4/228 0.0

3/2− 0.0 246.9/228 18.6

3/2+ 14.8 269.1/228 3.2

5/2− 14.5 269.9/228 3.0

5/2+ 15.6 271.7/228 2.5

7/2− 23.0 276.4/228 1.6

7/2+ 29.0 300.2/228 0.1

Polynomial No Λ+
c (2940) 25.5 296.0/228 0.2

1/2− 8.9 270.0/226 2.4

1/2+ 7.2 266.1/226 3.5

3/2− −4.2 238.0/226 27.9

3/2+ 4.9 253.4/226 10.2

5/2− −0.6 249.0/226 14.0

5/2+ 4.9 250.5/226 12.6

7/2− 10.6 270.0/226 2.4

7/2+ 11.7 273.0/226 1.8

Table 8. Fit quality for various Λc(2940)+ spin-parity assignments. Exponential and polynomial

parametrisations of the nonresonant lineshapes are considered. The baseline model is shown in

bold face.

– 28 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
0

) [GeV]p
0

D(M

2.8 2.85 2.9 2.95 3

C
a
n
d
id

a
te

s 
/ 

(0
.0

0
4
 G

e
V

)

0

50

100

150

200

250

300

LHCb

(a)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

2

4

6

8

10

12

14

16

18

LHCb

.83 GeV2<)p
0

D(M

(b)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

10

20

30

40

50

60

LHCb

.85 GeV2<)p
0

D(M<2.83

(c)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

10

20

30

40

50

60

LHCb

.87 GeV2<)p
0

D(M<2.85

(d)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30
LHCb

.88 GeV2<)p
0

D(M<2.87

(e)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30

35

40
LHCb

.89 GeV2<)p
0

D(M<2.88

(f)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30

35

LHCb

.905 GeV2<)p
0

D(M<2.890

(g)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30

35
LHCb

.920 GeV2<)p
0

D(M<2.905

(h)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30

35

40

45

LHCb

.94 GeV2<)p
0

D(M<2.92

(i)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30

35

40
LHCb

.96 GeV2<)p
0

D(M<2.94

(j)

pθcos
1− 0.5− 0 0.5 1

C
a
n
d
id

a
te

s 
/ 

0
.0

5

0

5

10

15

20

25

30

35

40

45
LHCb

.00 GeV3<)p
0

D(M<2.96

(k)

+(2880)cΛ

+(2940)cΛ

)+(1/2
p

0
D

NR

)
−

(1/2
p

0
D

NR

)
−

(3/2
p

0
D

NR

+(2860)cΛ

)+(1/2−
πpNR

Background

Figure 13. Results of the fit of the Λ0
b → D0pπ− data in the D0p mass region including the

Λc(2880)+ and Λc(2940)+ resonances (region 4): (a) m(D0p) projection and (b–k) cos θp projections

for slices of D0p invariant mass. An exponential model is used for the nonresonant partial waves,

and the JP = 3/2− hypothesis is used for the Λc(2940)+ state. Vertical lines in (a) indicate the

boundaries of the D0p invariant mass slices. Due to interference effects the total is not necessarily

equal to the sum of the components.
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Uncertainty

Source m(Λc(2940)+) Γ(Λc(2940)+) F(Λc(2860)+) F(Λc(2880)+) F(Λc(2940)+)

[ MeV ] [ MeV ] [%] [%] [%]

Background fraction 0.09 0.23 0.29 0.12 0.19

Efficiency profile 0.12 0.34 0.50 0.24 0.11

Background shape 0.15 0.68 1.13 0.09 0.48

Momentum resolution 0.07 0.09 0.03 0.07 0.02

Mass scale 0.05 − − − −
Fit procedure 0.30 0.45 0.25 0.08 0.15

Λc(2880)+ parameters 0.01 0.16 0.17 0.03 0.03

Total systematic 0.38 0.92 1.30 0.30 0.55

Breit-Wigner model +0.10/−0.16 +0.00/−0.34 +0.00/−0.59 +0.01/−0.16 +0.17/−0.31

Nonresonant model +0.00/−1.43 +5.21/−7.39 +8.77/−1.60 +0.86/−0.41 +2.06/−2.38

— of which hel. form. +0.00/−0.38 +2.18/−0.00 +1.15/−0.00 +0.00/−0.23 +0.38/−0.00

Λc(2940)+ JP +0.00/−4.32 +0.00/−7.25 +0.00/−5.79 +0.00/−0.67 +0.00/−3.29

Total model +0.10/−4.58 +5.22/−10.36 +8.82/−6.04 +0.86/−0.80 +2.07/−4.08

Table 9. Systematic and model uncertainties of the Λc(2940)+ parameters and the resonance fit

fractions. The uncertainty due to the nonresonant model includes a component associated with the

helicity formalism, which for comparison is given explicitly in the table, too.

The systematic uncertainties on ∆ lnL between the various Λc(2940)+ spin-parity hy-

potheses and the baseline hypothesis, JP = 3/2−, are shown in table 10 (for the exponential

nonresonant model) and table 11 (for the polynomial model). Only those systematic vari-

ations from table 9 that can affect the significance of the quantum number assignment are

considered. Since the cases with exponential and polynomial nonresonant amplitudes are

treated separately, the model uncertainty associated with the nonresonant amplitudes does

not include the difference between these two models.

For each JP hypothesis, the significance with respect to the baseline is obtained from

ensembles of pseudoexperiments and shown in table 12. The column marked “Statistical”

includes only statistical uncertainties on ∆ lnL, while that marked “Total” is the sum in

quadrature of the statistical, systematic, and model uncertainties.

Including the systematic and model uncertainties, the mass and width of the Λc(2940)+

resonance are

m(Λc(2940)+) = 2944.8+3.5
−2.5(stat)± 0.4(syst)+0.1

−4.6(model) MeV

Γ(Λc(2940)+) = 27.7+8.2
−6.0(stat)± 0.9(syst)+5.2

−10.4(model) MeV.

The largest uncertainties in the measurement of these parameters, apart from those of sta-

tistical origin, are related to the model of the nonresonant amplitude and the uncertainties

for the Λc(2940)+ quantum numbers. The fit fractions of the resonances in the region of

the Λ0
b → D0pπ− phase space used in the fit, M(D0p) < 3 GeV, are

F(Λc(2860)+) = (47.2+2.9
−2.8(stat)± 1.3(syst)+8.8

−6.0(model))%,

F(Λc(2880)+) = (12.9+1.0
−0.9(stat)± 0.3(syst)+0.9

−0.8(model))%,

F(Λc(2940)+) = (8.2+2.3
−1.1(stat)± 0.5(syst)+2.1

−4.1(model))%.
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∆ lnL uncertainty for Λc(2940)+ JP

Source No Λc(2940)+ 1/2+ 1/2− 3/2+ 5/2+ 5/2− 7/2+ 7/2−

Background fraction 0.3 0.7 0.3 0.9 0.7 0.6 0.7 0.8

Efficiency profile 0.3 0.2 0.6 0.6 0.6 0.6 0.9 1.1

Background shape 3.6 3.4 3.3 2.6 1.4 2.0 2.4 4.0

Momentum resolution 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

Λc(2880)+ parameters 0.2 0.2 0.9 0.2 0.3 0.1 0.5 0.4

Total systematic 3.6 3.5 3.4 2.8 1.7 2.2 2.6 4.2

Breit-Wigner model 2.1 1.2 1.9 1.6 2.3 0.4 1.4 1.4

Nonresonant model 3.7 2.4 0.4 1.5 1.0 1.9 1.4 0.1

Total model 4.3 2.7 1.9 2.1 2.5 1.9 2.0 1.4

Table 10. Systematic and model uncertainties on ∆ lnL between the baseline fit with JP = 3/2−

for the Λc(2940)+ state and other fits without a Λc(2940)+ contribution or with other spin-parity

assignments, for the exponential nonresonant model.

∆ lnL uncertainty for Λc(2940)+ JP

Source No Λc(2940)+ 1/2+ 1/2− 3/2+ 5/2+ 5/2− 7/2+ 7/2−

Background fraction 0.6 0.1 0.2 0.3 0.3 0.4 0.1 0.6

Efficiency profile 0.6 0.5 0.5 0.3 0.2 0.6 0.7 0.7

Background shape 1.2 0.5 0.6 1.4 1.6 0.7 1.5 1.3

Momentum resolution 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Λc(2880)+ parameters 0.2 0.6 0.2 0.2 0.1 0.4 0.3 0.5

Total systematic 1.6 0.9 0.8 1.5 1.6 1.1 1.7 1.7

Breit-Wigner model 1.1 0.7 0.4 0.6 1.1 0.5 0.9 0.3

Nonresonant model 3.7 2.2 2.2 1.6 0.8 1.3 2.1 3.2

Total model 3.8 2.3 2.3 1.7 1.3 1.4 2.3 3.2

Table 11. Systematic and model uncertainties on ∆ lnL between the baseline fit with JP = 3/2−

for the Λc(2940)+ state and other fits without a Λc(2940)+ contribution or with other spin-parity

assignments, for the polynomial nonresonant model.

The contributions of individual resonant components, integrated over the entire phase

space of the Λ0
b → D0pπ− decay, can be used to extract the ratios of branching fractions

B(Λ0
b → Λc(2860)+π−)×B(Λc(2860)+ → D0p)

B(Λ0
b → Λc(2880)+π−)×B(Λc(2880)+ → D0p)

= 4.54+0.51
−0.39(stat)± 0.12(syst)+0.17

−0.58(model),

B(Λ0
b → Λc(2940)+π−)×B(Λc(2940)+ → D0p)

B(Λ0
b → Λc(2880)+π−)×B(Λc(2880)+ → D0p)

= 0.83+0.31
−0.10(stat)± 0.06(syst)+0.17

−0.43(model),

which assumes the ratios of the branching fractions to be equal to the ratios of the fit

fractions.

The constraints on the Λc(2940)+ quantum numbers depend on the description of the

nonresonant amplitudes. If an exponential model is used for the nonresonant components,

the single best spin-parity assignment is JP = 3/2−, and the 3/2+, 5/2+ and 5/2− as-
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Nonresonant model Λc(2940)+ Significance, σ

JP Statistical Total

Exponential No Λc(2940)+ 19.0 8.2

1/2+ 18.3 7.9

1/2− 10.6 5.6

3/2+ 7.5 3.7

5/2+ 7.5 4.4

5/2− 7.4 4.5

7/2+ 13.0 6.1

7/2− 9.9 6.1

Polynomial No Λc(2940)+ 11.8 5.6

1/2+ 7.3 4.1

1/2− 7.8 4.5

3/2+ 5.5 3.6

5/2+ 4.8 3.1

5/2− 3.3 2.2

7/2+ 8.0 6.2

7/2− 7.9 4.0

Table 12. Significances of the JP = 3/2− spin-parity assignment for Λc(2940)+ state with respect

to the alternative models without a Λc(2940)+ contribution or with other spin-parity assignments.

signments are excluded at the levels of 3.7, 4.4 and 4.5 standard deviations, respectively

(including systematic uncertainties), while spins of 1/2 or 7/2 are excluded by more than

5σ. If a polynomial nonresonant parametrisation is used, the solution with 3/2− is again

the most likely one, though the data are consistent with the 5/2− hypothesis at 2.2σ. Sev-

eral JP assignments (5/2+, 3/2+, 7/2−, 1/2+ and 1/2−) are disfavoured with respect to

the 3/2− hypothesis with significances between 3.1 and 4.5σ, and only the 7/2+ hypothesis

is excluded by more than 5σ. Since the data are consistent with both the exponential and

polynomial nonresonant models, only weak constraints on the spin and parity are obtained,

with JP = 3/2− favoured and with positive parity excluded at the 3σ level.

10 Conclusion

An amplitude analysis of the decay Λ0
b → D0pπ− is performed in the region of the phase

space containing D0p resonant contributions. This study provides important information

about the structure of the D0p amplitude for future studies of CP violation in Λ0
b → DpK−

decays, as well as on the spectroscopy of excited Λ+
c states.

The preferred spin of the Λc(2880)+ state is found to be J = 5/2, with the J = 7/2

hypothesis disfavoured by 4.0 standard deviations. The solutions with J = 1/2 and 3/2

are excluded with a significance of more than 5 standard deviations. The mass and width
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of the Λc(2880)+ state are found to be:

m(Λc(2880)+) = 2881.75± 0.29(stat)± 0.07(syst)+0.14
−0.20(model) MeV,

Γ(Λc(2880)+) = 5.43+0.77
−0.71(stat)± 0.29(syst)+0.75

−0.00(model) MeV.

These results are consistent with and have comparable precision to the current world av-

erages (WA), which are mWA(Λc(2880)+) = 2881.53 ± 0.35 MeV, and ΓWA(Λc(2880)+) =

5.8± 1.1 MeV [23].

A near-threshold enhancement in the D0p amplitude is studied. The enhancement

is consistent with being a resonant state (referred to here as the Λc(2860)+) with mass

and width

m(Λc(2860)+) = 2856.1+2.0
−1.7(stat)± 0.5(syst)+1.1

−5.6(model) MeV,

Γ(Λc(2860)+) = 67.6+10.1
−8.1 (stat)± 1.4(syst)+5.9

−20.0(model) MeV

and quantum numbers JP = 3/2+, with the parity measured relative to that of the

Λc(2880)+ state. The other quantum numbers are excluded with a significance of more

than 6 standard deviations. The phase motion of the 3/2+ component with respect to

the nonresonant amplitudes is obtained in a model-independent way and is consistent with

resonant behaviour. With a larger dataset, it should be possible to constrain the phase

motion of the 3/2+ partial wave using the Λc(2880)+ amplitude as a reference, without

making assumptions on the nonresonant amplitude behaviour. The mass of the Λc(2860)+

state is consistent with recent predictions for an orbital D-wave Λ+
c excitation with quan-

tum numbers 3/2+ based on the nonrelativistic heavy quark-light diquark model [24] and

from QCD sum rules in the HQET framework [26].

First constraints on the spin and parity of the Λc(2940)+ state are obtained in this

analysis, and its mass and width are measured. The most likely spin-parity assignment for

Λc(2940)+ is JP = 3/2− but the other solutions with spins 1/2 to 7/2 cannot be excluded.

The mass and width of the Λc(2940)+ state are measured to be

m(Λc(2940)+) = 2944.8+3.5
−2.5(stat)± 0.4(syst)+0.1

−4.6(model) MeV,

Γ(Λc(2940)+) = 27.7+8.2
−6.0(stat)± 0.9(syst)+5.2

−10.4(model) MeV.

The JP = 3/2− assignment for Λc(2940)+ state is consistent with its interpretations as a

D∗N molecule [16, 17, 19] or a radial 2P excitation [21].
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M. Gersabeck56, T. Gershon50, Ph. Ghez4, S. Giaǹı41, V. Gibson49, O.G. Girard41, L. Giubega30,

K. Gizdov52, V.V. Gligorov8, D. Golubkov32, A. Golutvin55,40, A. Gomes1,a, I.V. Gorelov33,

C. Gotti21,i, R. Graciani Diaz38, L.A. Granado Cardoso40, E. Graugés38, E. Graverini42,

G. Graziani18, A. Grecu30, P. Griffith16, L. Grillo21,40,i, B.R. Gruberg Cazon57, O. Grünberg67,

– 38 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
0
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62 Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated

to 2

63 University of Chinese Academy of Sciences, Beijing, China, associated to 3

64 School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3

65 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated

to 3

– 41 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
0

66 Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to 8

67 Institut für Physik, Universität Rostock, Rostock, Germany, associated to 12

68 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 32

69 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain,

associated to 38

70 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 43
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