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Abstract 

“Species distribution modeling” was recently ranked as one of the top five “research 

fronts” in ecology and the environmental sciences by ISI’s Essential Science 

Indicators (Renner and Warton 2013), reflecting the importance of predicting how 

species distributions will respond to anthropogenic change. Unfortunately, species 

distribution models (SDMs) often perform poorly when applied to novel 

environments. Compounding on this problem is the shortage of methods for 

evaluating SDMs (hence, we may be getting our predictions wrong and not even 

know it). Traditional methods for validating SDMs quantify a model’s ability to 

classify locations as used or unused. Instead, we propose to focus on how well SDMs 

can predict the characteristics of used locations. This subtle shift in viewpoint leads 

to a more natural and informative evaluation and validation of models across the 

entire spectrum of SDMs. Through a series of examples, we show how simple 

graphical methods can help with three fundamental challenges of habitat modeling: 

identifying missing covariates, non-linearity, and multicollinearity. Identifying 

habitat characteristics that are not well-predicted by the model can provide insights 

into variables affecting the distribution of species, suggest appropriate model 

modifications, and ultimately improve the reliability and generality of conservation 

and management recommendations. 

Keywords: animal movement, calibration, discrimination, inhomogeneous Poisson 
Process, logistic regression, prediction, presence-only, resource-selection, spatial 
point process, use-availability 
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Introduction 

A variety of data collection and statistical methods are available for linking 

individuals, populations, and species to the habitats they occupy. Data collection 

methods range from design-based or opportunistic surveys that result in a set of 

pooled locations (ignoring any temporal component) (Edwards et al. 2006, Skov et al. 

2016) to telemetry studies that result in many locations over time for a small number 

of individuals (Boyce and McDonald 1999, Pearce and Boyce 2006). A growing 

number of methods have been proposed for analyzing these different data types, and 

“species distribution modeling” (SDM) was recently ranked as one of the top five 

“research fronts” in ecology and the environmental sciences by ISI’s Essential 

Science Indicators (Renner and Warton 2013). Regardless of the method used, the 

underlying objectives are the same: to understand how resources, risks, and 

environmental conditions influence distribution and abundance patterns (Mayor et 

al. 2009, Matthiopoulos et al. 2015). A more challenging, but equally important goal is 

to infer how various perturbations, including climate change and habitat 

management actions, influence these patterns (Matthiopoulos et al. 2011, Renner and 

Warton 2013). Unfortunately, SDMs frequently perform poorly when applied to 

novel environments (Elith et al. 2010, Matthiopoulos et al. 2011, Heikkinen et al. 2012, 

Wenger and Olden 2012). If we are going to use models to inform decision making, 

we need to have confidence in their predictions, which in turn requires that we have 

appropriate methods for model evaluation. Importantly, methods that provide 

insights into why a model performs poorly (e.g., missing predictors, incorrect 
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functional form, multicollinearity) are more useful than methods that provide only 

an overall measure of fit. 

Much recent literature on model evaluation has focused on the interrelated concepts 

of model validation, calibration, and discrimination (Pearce and Ferrier 2000, Phillips 

and Elith 2010, Steyerberg et al. 2010, Harrell 2013, Chivers et al. 2014). Model 

validation is the process of assessing agreement between observations and fitted or 

predicted values. When a model (or set of models) is chosen via a data-driven process 

(e.g., transformations are considered, outliers are inspected and potentially dropped, 

and multiple models are compared before one or more are selected for inference), 

evaluations should ideally use out-of-sample data (i.e., data not used to arrive at the 

model(s); Araújo et al. 2005, Harrell 2013, Muscarella et al. 2014, Naimi and Araújo 

2016). The use of out-of-sample data is also critical when evaluating model 

transferability and is especially challenging if the explanatory variables are 

correlated among themselves. Prediction error will typically be greater with the new 

data set unless the correlation among explanatory variables is the same as in the data 

originally used for model fitting (Dormann et al. 2013). When there is close 

agreement between observed and fitted/predicted values, we say the model is well 

calibrated; calibration therefore refers to steps taken to improve agreement between 

observed and predicted values (e.g., one may choose to ‘shrink’ regression parameters 

towards zero to improve out-of-sample predictions when models have been overfit; 

Harrell 2013, Street et al. 2016). Discrimination, by contrast, describes a model’s 

ability to rank sample units in terms of their likely outcomes (Fielding and Bell 1997, 

Pearce and Ferrier 2000, Fawcett 2006, Steyerberg et al. 2010). 
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Calibration and discrimination often go hand-in-hand, though this need not be the 

case. A model may be well-calibrated but fail to discriminate well if it gives unbiased 

but highly imprecise estimates. A nice exemplification is given by Ellner et al. (2002), 

who demonstrated that estimates of extinction probabilities from population 

dynamic models are frequently too imprecise to rank individual populations in terms 

of risk even though they may provide an accurate estimate of the proportion of 

populations that will cross a quasi-extinction threshold. Conversely, a model may be 

poorly calibrated, yet have strong discriminating capabilities (Phillips and Elith 2010, 

Jiménez-Valverde et al. 2013). For instance, population indices may accurately rank 

sites in terms of their abundance, provided variation in detection probabilities is 

small relative to variation in abundance, even though indices are biased estimators of 

population size (Johnson 2008). Researchers routinely use methods such as the Area 

Under the Receiver Operating Curve (AUC) to evaluate discrimination of SDMs (e.g., 

Meyer and Thuiller 2006, Jiménez-Valverde 2012, Heikkinen et al. 2012), whereas 

calibration methods, the focus of this paper, are equally important but underutilized 

(Phillips and Elith 2010). 

We consider methods for validating two general classes of models. The first includes 

a variety of methods appropriate for survey data pooled over time, in which observed 

locations are compared to a set of “background” (or “control” or “available”) 

locations generated by randomly or systematically sampling from an area that 

encompasses the observed locations. Effectively, this approach treats the data as if 

they were cross-sectional (i.e., the temporal information in the data is ignored when 

making inferences). Animal telemetry data are also often analyzed in this way, 
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particularly when locations are collected infrequently or if the researcher is 

interested in habitat use at broad spatial scales (e.g., second or third orders of 

selection; Johnson 1980). Parallel development of methods for survey data and 

telemetry data has led to slightly different nomenclatures. The combination of the 

observed and random points is typically referred to as either presence-background 

(survey data) or use-availability (telemetry) data and the fitted models as either 

species distribution models (survey data) or habitat- or resource-selection functions or 

models (telemetry data). Though a variety of modeling approaches have been used in 

this context, most – MaxEnt (Elith et al. 2011), spatial logistic regression (Baddeley et 

al. 2010), weighted distribution theory with an exponential link function (Lele and 

Keim 2006), and resource utilization distributions (Millspaugh et al. 2006) – can be 

shown to be equivalent to fitting an inhomogeneous spatial point process model 

(Warton and Shepherd 2010, Aarts et al. 2012, Fithian and Hastie 2013, Hooten et al. 

2013, Renner and Warton 2013). 

The second class of models, developed for fine-scale telemetry data, also compares 

observed locations to a set of background points, but these background points are 

constrained to areas that are accessible to the animal from the previously observed 

location (a function of animal movement characteristics and sampling frequency). 

Each observed location is “paired” with a set of background/available points, 

resulting in highly stratified data. These data types are typically analyzed by fitting a 

conditional logistic regression (or equivalently, a discrete choice) model (Arthur et al. 

1996, Manly et al. 2002), and the fitted models are referred to as step-selection 

functions (SSF) (Fortin et al. 2005, Forester et al. 2009, Thurfjell et al. 2014) or 
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integrated step-selection functions (Avgar et al. 2016). Although these two classes of 

models share some features, calibration techniques developed for presence-absence 

(Harrell 2013) or presence-background data (Boyce et al. 2002, Johnson et al. 2006, 

Phillips and Elith 2010) do not easily generalize to step-selection functions because 

the data used to fit the latter models are highly stratified. Further, little work has 

been done to develop methods for validating step-selection models (but see Street et 

al. 2016). 

The popularity of SDMs, their propensity to fail when used to predict distributions 

in novel environments, and the current lack of sufficient diagnostics for evaluating 

models, especially those developed to analyze fine-scale telemetry data, are causes 

for concern. Here, we introduce a new method for model validation that can be 

applied across the entire spectrum of SDMs. Rather than focus on validating a binary 

response variable (    for presence locations and 0 for background locations), we 

proposed to validate models by comparing distributions of the explanatory variables 

at the observed and predicted presence locations – i.e., the habitat characteristics 

associated with the used locations. These plots, which we refer to as Used-Habitat 

Calibration plots or UHC plots, complement existing approaches for validating 

traditional (non-stratified) species distribution or habitat selection models and also 

fill a void by providing a way to validate step-selection functions. Through a series 

of simulated and empirical examples, we show how UHC plots can help with three 

fundamental challenges of habitat modeling: identifying missing covariates, non-

linearity, and multicollinearity. 
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Pooled-Survey Data Examples 

We begin by considering two simple simulation examples where the variables 

influencing species distribution patterns are known. These examples are useful for 

testing if model validation tools return sensible and informative results under 

known model misspecifications. In particular, we will use these examples to explore 

the ability of model validation tools to diagnose a missing predictor or the need for a 

non-linear term. To understand the data-generating process, let       describe the 

available or background distribution of covariate(s)   in environmental space (i.e., 

      gives the relative frequency with which different values or levels of    occur 

across the entire landscape). Further, let       describe the distribution of the 

covariate(s) at used (i.e., presence) locations. 

In our first example, constructed to explore the impact of a missing predictor, the 

species distribution was driven by elevation (  ) and precipitation (  ), with the 

species preferring sites at higher elevations and with lower levels of precipitation. In 

this example, the distribution of    and    in environmental space was assumed to be 

normal and centered to have mean 0:                 . We considered three 

different data-generating scenarios in which we set var(  ) = var(  ) = 4, but varied 

cor(     ) =       
 to explore how the effect of a missing predictor depends on the 

correlation among predictor variables. In the first scenario, we set       
   in both 

training and test data sets. In the second scenario, we set       
      in both 

training and test data sets, and in the third scenario, we set       
     in the training 

data set and       
      in the test data set. For each of these three scenarios, we 
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formed training data by choosing 100 presence locations, with the probability of 

selection proportional to              . We combined these locations with a set of 

10,000 randomly generated background points from          . We set     for the 

100 presence locations and     for the 10,000 background locations. We used the 

same approach to form a test data set of the same size (100 presence and 10,000 

background locations). 

We fit two different logistic regression models to the training data. First, we fit a 

model that included only elevation. Second, we fit a model that included both 

elevation and precipitation (the correct model). The estimated regression coefficients 

for elevation and precipitation were close to the data-generating values of 0.5 and    

whenever we fit the correct model (i.e.,    elev + precip; Table 1). The coefficient for 

elevation was also close to the data-generating value of 0.5 if we fit the model 

without precipitation, provided       
  . By contrast, the coefficient for elevation in 

the model without precipitation was too high when       
      and too low when 

      
     (Table 1). This type of bias, referred to as omitted-variable bias, is well-

known and is a function of cor(     ) and cor(       ) (Clarke 2005). 

We considered a second example to explore the effect of model misspecification, 

where the species distribution exhibits a non-linear response to temperature (  ). The 

optimal temperature for this species was set at     , with habitat suitability 

dropping off for warmer and colder temperatures. We again considered centered 

values of   , assumed to be normally distributed on the landscape with        

      . We formed test and training data using the same approach as in the previous 
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example, but with the probability of selecting locations proportional to         

  
  . 

We fit a model with only a linear effect of temperature on the logit scale and another 

that also included a quadratic term (the correct model). The coefficient for 

temperature was too low when we fit the model with only temperature, but the 

coefficients were close to the data-generating values of 2 and  1 when both 

temperature and temperature
2
 were included in the model (Table 2). 

In subsequent sections, we evaluate each model's ability to predict presence locations 

in the test data. R code (R Core Team 2015) for generating the data and performing all 

analyses in the paper, along with any associated output, have been archived within 

the Data Repository for the University of Minnesota (accessible here: 

http://doi.org/10.13020/D6T590; Fieberg et al. 2016). We have also included functions 

for simulating and analyzing these data in an R package named uhcplots hosted on 

GitHub (Fieberg and ArchMiller 2016). This package can be downloaded using the 

install_github() function in the devtools library: 

devtools::install_github(“aaarchmiller/uhcplots”). 

Calibration Plots 

Methods for validating models include goodness-of-fit tests, diagnostic plots to 

assess model assumptions (e.g., residual versus fitted plots), and calibration plots of 

observed versus predicted values, where the latter are formed using cross-validation 

or bootstrapping (Phillips and Elith 2010, Harrell 2013). Calibration plots are 

particularly useful since they provide an honest measure of model fit by using 
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different data sets to fit and then evaluate the model. Unfortunately, calibration plots 

have received relatively little attention in the species distribution literature (but see 

Phillips and Elith 2010). Because many ecologists are unfamiliar with calibration 

plots, we will work towards our suggested approach by first detailing the steps 

necessary for producing a calibration plot when  logistic regression is used to model 

binary (presence-absence) data. We then describe how calibration plots have been 

modified to work with presence-background data and illustrate these methods in 

conjunction with the above simulated data examples. With this foundation in place, 

we develop an alternative method of model calibration that focuses on the 

distribution of habitat characteristics at locations where the species is present. 

Calibration Plot for Presence-Absence Data 

Let   represent the presence or absence of a species, a Bernoulli random variable 

with mean that is dependent on covariates  ,                  . Further, let 

                refer to predictor and response data, respectively, used to fit the model 

and               refer to predictor and response data used to validate model 

predictions. In real applications, test and training data may be formed by data 

splitting, using  -fold cross-validation (Muscarella et al. 2014), or by sampling data 

with replacement multiple times (i.e., separate bootstrap samples; Harrell 2013, 

Fieberg and Johnson 2015). Alternatively, the model may be validated with data 

collected at another point in time or space, leading to a more stringent test of a 

model’s predictive ability. To produce a calibration plot with presence-absence data: 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

 

1. Estimate regression parameters,  ̂
     

, by fitting a logistic regression model to 

the training data                . 

2. Form predictions for the test data using       and the parameters estimated from 

the training data (i.e.,  ̂
     

 from step [1]):  ̂
    

 
          ̂

     
 

            ̂
     

 
. 

3. Form a calibration plot using one of three options: 

– Option 1: Bin the       data (e.g., based on quantiles of  ̂
    

). Plot the 

proportion of values where         in each bin versus mean  ̂
    

 in each 

bin. 

– Option 2: Fit a new logistic regression model to the test data, considering a 

single predictor,       ̂
     

 (i.e., the logit of the predicted values): 

logit                        
     ̂

     

 . Plot the fitted line with 

confidence intervals. 

– Option 3: Fit a more flexible, non-linear model (e.g., using regression or 

smoothing splines): logit                         ̂
     

 , and plot the fit of 

the model with confidence intervals. 

If the model is well-calibrated, we should see the binned values (option 1) or the 

fitted curves (options 2 and 3) line up well with the 1:1 line. Further, estimates of 

        should be close to (0, 1) (option 2) if the model is well-calibrated. If estimates 

of         are far from (0, 1), then one may choose to use         to re-calibrate the 

model (Giudice et al. 2012, Harrell 2013). 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

 

Calibration Plots for Presence-Background Data 

Presence-background data differ from presence-absence data in that the zeros (the 

background data) may be utilized by the species (i.e., they are not ‘true absences’). 

Boyce et al. (2002) and Johnson et al. (2006) developed a calibration plot for presence-

background data that has been widely used to validate habitat selection models fit to 

telemetry data using logistic regression. Rather than use predicted probabilities from 

the fitted logistic regression model in step [2], Boyce et al. (2002) suggested using 

        ̂
     

            ̂
     

  for model calibration. Although this approach 

might at first appear to be ad hoc, it can be justified by recognizing that most 

methods for analyzing presence-background data, including logistic regression, can 

be shown to be equivalent to fitting an inhomogeneous Poisson process (IPP) model 

(Warton and Shepherd 2010, Aarts et al. 2012, Fithian and Hastie 2013, Hooten et al. 

2013, Renner and Warton 2013). The likelihood for an IPP model, conditional on    

total used (i.e., presence) locations from area  , is given by: 

                  ∏
        

∫    
 

         

  

   

 

The    randomly (or systematically) sampled available (i.e., background) points 

serve to approximate the integral in the denominator: 

                ∏
        

∑   
     
           

  

   

  

where the    are quadrature weights used to approximate the integral in eq. (1) using 

numerical integration techniques (ideally, the number of background points should 

be large enough that regression parameter estimators do not change with the addition 

of more points; Warton and Shepherd 2010). Thus, conditional on the set of used and 
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available points (  ,   ), the probability of selecting each point is proportional to 

       . 

Boyce et al. (2002) and Johnson et al. (2006) suggested using  -fold cross-validation to 

form a binned calibration plot. After forming predictions via cross-validation, the 

plot is constructed via the following steps: 

1. Bin the       data using quantiles of         ̂
     

  and calculate the mean value 

of         ̂
     

  in each bin,    (  = 1, 2  ,      ). 

2. Determine the number of used locations in each bin,   
 . 

3. Determine the expected number of used locations in each bin,     
   

  
      

∑   
     
   

, where   
     is the total number of used (i.e., presence) locations in 

the test data set. (Note: this equation can be modified slightly if the number of 

locations in each bin is not constant, see Johnson et al. 2006). 

4. Plot   
  versus     

   along with a 1:1 line. As with presence-absence calibration 

plots, models with adequate fit should result in points that largely follow the 1:1 

line. 

Boyce et al. (2002) also advocated for calculating the Spearman correlation between 

  
  and     

  . As noted by Phillips and Elith (2010), the Spearman correlation 

provides an alternative, non-parametric method for assessing calibration. Johnson et 

al. (2006) also suggested fitting a linear regression model relating   
  to     

  , which 

should result in intercept and slope estimates close to 0 and 1, respectively, if the 

model is well-calibrated. Lastly, we note that Phillips and Elith (2010) proposed a 
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similar presence-background calibration plot using statistical smoothers to evaluate 

fit, thus avoiding the need to bin the data. 

Application of Presence-Background Calibration Plots to Pooled-Survey Data Examples 

Following Johnson et al. (2006), we constructed presence-background calibration 

plots for the models fit to each of the simulated pooled-survey data sets (Fig. 1, Fig. 

2). In the first example, both models resulted in calibration plots that roughly 

followed the 1:1 line as long as       
 was the same in the test and training data (Fig. 

1A D). When       
 differed between the test and training data, the calibration plot 

for the elevation-only model differed significantly from the 1:1 line (Fig. 1E), whereas 

the correct model remained well-calibrated (Fig. 1F).  Another noteworthy feature of 

the calibration plots, particularly those for the correct model (Fig. 1B, D, F) or the 

elevation-only model in the case where       
= -0.3 for training and test data (Fig 1C), 

is a clustering of observed and expected counts near 0, except for the largest bin. This 

tight clustering reflects the high discriminatory ability of the models (i.e., they are 

able to clearly identify those points that have the highest relative probability of use). 

In the second example, the model containing only a linear effect of temperature 

resulted in a calibration plot with points that were widely scattered, and although the 

regression line was close to the 1:1 line, the    is 0.04, suggesting the model did a 

poor job of predicting presence points in the test data (Fig. 2A). By contrast, the 

points in the calibration plot for the correct model, containing both temperature and 

temperature
2
, closely followed the 1:1 line (   = 0.99; Fig. 2B) suggesting this model 

was well-calibrated. 
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In summary, using presence-background calibration plots, we were able to correctly 

identify poorly calibrated models when we were missing an important predictor (but 

only when the correlation among predictor variables changed between training and 

test data sets; Fig. 1E) or when we needed to include a non-linear term (Fig. 2A). By 

themselves, however, these plots provide little additional insight into what might be 

causing the lack-of-fit or ways that the model might be improved. 

Used-Habitat Calibration (UHC) Plot 

A variety of residual plots (e.g., partial residual plots, added variable plots) have 

been developed to evaluate the potential for missing predictors or the need for non-

linear terms in linear and generalized linear models (e.g., Kutner et al. 2005, Moya-

Laraño and Corcobado 2008). Here, we develop a simple method for producing 

calibration plots that accomplish these same goals, but we use out-of-sample 

predictions. Specifically, we develop calibration plots that evaluate how well a 

model predicts the characteristics associated with the used (presence) locations. We 

call this type of plot a Used-Habitat Calibration plot (or UHC plot) and describe the 

steps for producing such plots below (see Fig. 3 for an illustration of the steps in the 

context of the first simulation example using the model with elevation but without 

precipitation). 

Let   represent the full suite of explanatory variables included in the fitted model, 

  
     the total number of used (i.e., presence) locations in the test data set, and   the 

covariates of interest (these may be covariates already included in the model or 

additional covariates that may be under consideration for inclusion in the model). 
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The dimension of   may be greater than that of  , for example, if one chooses to 

begin with a simple model before progressively considering more complex models 

with additional covariates. Further,   may contain covariates that are available in the 

test data but are absent from the training data (e.g., if the model is applied to a new 

site where additional covariate data have been collected). In the example illustrated 

in Fig. 3,   includes only elevation, but   includes both elevation and precipitation. 

1. Summarize the distribution of   at the used (i.e., presence) points in the test data 

set,      . In our examples, we use a kernel density estimator to represent       

(solid black lines/density plots in Fig. 3; Wand and Jones 1994). Similarly, 

summarize the distribution of   at the available (i.e., background) points in the 

test data set,       (dashed red lines/density plots in Fig. 3). Differences between 

these two densities signal that the covariate will be an important predictor of the 

species distribution. 

2. Fit a model to the training data set. Store  ̂ and    ˆ   ̂  to characterize the 

uncertainty in the parameters (ignoring the intercept if using logistic regression). 

Assuming we have a large enough sample for  ̂ to be approximately normally 

distributed, we can draw samples from a multivariate normal distribution, 

   ̂     ˆ   ̂ ), to account for uncertainty in the estimated parameters. This 

uncertainty may alternatively be captured using a non-parametric bootstrap or 

via samples from a posterior distribution (if implementing the model in a 

Bayesian framework); bootstrapping could also be used to account for parameter 

uncertainty in machine learning applications (e.g., models fit using random 
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forests, artificial neural networks, etc.). We will refer to the distribution 

capturing uncertainty in  ̂ as the joint parameter distribution to recognize that 

this will be a multivariate distribution if more than one covariate is included in 

the model. 

3. Do the following   times (with loop index  ): 

a. To account for parameter uncertainty, select new vector of parameter 

values randomly from their joint parameter distribution,   . 

b. Estimate the relative probability of selection for the test data (given by eq. 

(2)):                        . 

c. Select a simple random sample of   
     observations from the combined 

(presence and background) test data, with probabilities of selection 

proportional to            from step [3b]. 

d. Summarize the distribution of   associated with the points chosen in step 

[3c],  ̂
 

     (gray lines/density curves in Fig. 3). 

4. Compare the observed distribution of covariate values at the presence points, 

      (black solid lines) from step [1], to the predicted distribution of these 

characteristics,  ̂
 

     (gray bands) from step [3], across the   simulations. One 

option is to overlay       (from step [1]) on a 95% simulation envelope 

constructed using the  ̂
 

     (Fig. 3). Alternatively, one might choose to plot the 

      and        quantiles of        ̂
 

    . We include functions in the 

uhcplots package for constructing these plots and illustrate the latter type of plot 
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in supplementary files archived with the Data Repository for the University of 

Minnesota (Fieberg et al. 2016, Fieberg and ArchMiller 2016). 

Application of UHC Plots to Pooled-Survey Data Examples 

To create UHC plots for the pooled-survey data examples, we constructed 1,000 

predicted distributions of habitat covariates at the presence points in the test data set 

(i.e.,         in step [3]) using the models fit to the training data, accounting for 

uncertainty in  ̂ by drawing new values in each simulation from a multivariate 

normal distribution (the asymptotic distribution of  ̂; step [3a]). We compared 

observed (black solid lines) and predicted distributions (gray bands representing 

95% simulation envelopes) of elevation and precipitation (Fig. 4) and temperature 

(Fig. 5) at the presence locations. We also overlaid distributions of elevation, 

precipitation, and temperature at the background locations,    (red dashed lines; Fig. 

4, Fig. 5). Note that the distributions of elevation and precipitation at the presence 

locations (solid black lines) were shifted to the right and left, respectively, relative to 

the background distributions of these covariates (red dashed lines) (Fig. 4). These 

results reaffirm that this species tends to be found at locations with higher elevations 

and lower levels of precipitation. In the second example, the distribution of 

temperature at the used locations was also shifted to the right relative to the 

background distribution (Fig. 5). In addition, the used distribution was much more 

peaked compared to the background distribution of temperature, which suggests that 

this species prefers a more narrow range of temperatures than represented by the 

background locations. 
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In the first example, the UHC plots provided evidence that the correct model with 

both elevation and precipitation was well-calibrated across all three data-generating 

scenarios (Fig.  4C D, G H, K L) because the distributions of elevation and 

precipitation at the presence locations (solid black lines) fell mostly within the 

simulation envelopes generated by the fitted model (gray bands). By contrast, the 

elevation-only model never accurately predicted the distribution of precipitation 

values at the presence locations (Fig. 4B, F, J). On the other hand, it predicted the 

distribution of elevation at the presence locations whenever       
 was the same for 

both training and test data sets (Fig. 4A, E). Lastly, the elevation-only model failed to 

predict either the distribution of elevation or precipitation at the presence locations 

when the correlation between elevation and precipitation differed between the 

training and test data (Fig. 4I, J). It is worth noting that in the case where       
 

     for both training and test data sets, the elevation-only model's predictions were 

well-calibrated (Fig. 1C, Fig. 4E) even though the logistic regression parameter 

estimate for elevation was too large (0.80, SE = 0.06) relative to the data-generating 

value (0.5) (Table 1). These latter two results serve as a nice reminder that regression 

coefficients reflect partial correlations that are influenced by the suite of predictors 

included in the model, and are not causal effects (Fieberg and Johnson 2015). 

Furthermore, models may predict well in the presence of collinearity only when the 

correlation among predictors remains the same in training and test data (see e.g., 

Dormann et al. 2013). 

In the second simulation example, we fit a model with only a linear effect of 

temperature on the logit scale and another that also included a quadratic term (the 
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correct model). When the model included only temperature, the coefficient for 

temperature was too low, but the coefficients were close to the data-generating values 

of 2 and  1 when both temperature and temperature
2
 were included in the model 

(Table 2). The predicted distribution for temperature was rather broad and similar to 

the available distribution when only a linear effect of temperature was included in 

the logistic regression model (Fig. 5A). By contrast, the distribution of temperature 

values at presence points was rather peaked, with values of       or    rarely 

used (Fig. 5A). The extreme avoidance of low and high values of temperatures 

suggests that a quadratic effect of temperature might be needed. When we included 

the quadratic term for temperature in the logistic regression model, the distribution 

of temperature values at the observed locations fell within the 95% simulation 

envelope (Fig. 5B), confirming that this model was well-calibrated. 

In summary, UHC plots helped to identify a missing predictor (precipitation) and 

also the need for a non-linear term (for temperature). It is also noteworthy that the 

missing predictor was identified in two scenarios where the model appeared well-

calibrated when using a traditional presence-background calibration plot (Fig. 1A,C 

and Fig. 4B,F) (both scenarios involved predictive distributions in cases where       
 

remained the same in training and test data sets). 

Evaluating Spatial Predictions and Model Transferability 

An important goal of most SDM applications is to predict species distributions in 

novel landscapes, which requires that models are “transferable” to other sites, 

environments, and time periods. If we have location data from multiple sites, then 
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we can evaluate transferability by fitting a model to some sites and then predicting 

the distribution of locations at the others (Matthiopoulos et al. 2011). UHC plots can 

then be used to identify areas in space where the model does a poor job of predicting. 

To accomplish this goal, we can include   and   spatial coordinates in  , the matrix of 

habitat characteristics we wish to predict at the out-of-sample used locations. 

To illustrate this idea, we return to our simulation example where the species 

distribution was driven by elevation (  ) and precipitation (  ), with the probability 

of selecting locations proportional to              . We simulated uniformly 

distributed   and   spatial coordinates for the presence and background locations 

associated with two landscapes (a test and a training landscape), allowing the 

correlation among ( ,  ) spatial coordinates and the habitat predictors (     ) to 

differ between the two landscapes (Table 3, Fig. 6). We again fit two models to data 

collected from the training landscape: the first included only elevation and the 

second included elevation and precipitation (the correct model). We then evaluated 

how well these models predicted the spatial distribution of presence points in the 

test landscape by creating UHC plots for the ( ,  ) spatial coordinates. 

The presence locations in the test landscape were largely concentrated in the 

southeast (large   and small  ; Fig. 6). The correct model accurately predicted the 

distribution of ( ,  ) spatial coordinates (Fig.  6C, D).  By contrast, the model 

containing only elevation resulted in a predicted distribution that was relatively 

uniform in space and for which the  - and  -coordinates were not well calibrated 

(Fig. 6A, B) . This example illustrates how spatial UHC plots could be used to 

identify missing predictors (e.g., the poor calibration in Fig. 6A, B might lead an 
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analyst to consider adding precipitation to the model because it follows a SE-NW 

gradient in the test landscape). These results also have important implications for 

management. In particular, one should be wary of using the elevation-only model to 

determine areas to conserve given the model's poor transferability. Lastly, we note 

that one can use functions in the ENMeval package (Muscarella et al. 2014) to 

construct UHC plots with spatially-stratified cross-validation in cases where data are 

available from a single site. We illustrate this approach in a vignette associated with 

the uhcplots package (Fieberg and ArchMiller 2016). 

Step-Selection Functions 

An alternative way to motivate the IPP likelihood, eq. (1), can help with 

conceptualizing generalizations of this approach to longitudinal data. With telemetry 

data, we may consider the distribution of resources or environmental conditions at 

the used (i.e., presence) points,      , as being selected from a distribution of values 

at available (i.e., background) points,      , with the selection function       

        taking us from the distribution of available locations to the distribution of 

used locations by way of spatial covariates,  , and a set of regression parameters,   

(Lele and Keim 2006): 

            
              

∫                     
 

 
If all areas are equally available,          is uniform in space (and thus, a constant), 

getting us back to eq. (1) (Aarts et al. 2012). Selection functions have similarly been 

used to correct for biased sampling procedures (Patil and Rao 1978), to study natural 
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selection (Manly 1985), and were first introduced in the context of foraging and 

habitat selection by McDonald et al. (1990); the theory for estimating selection 

functions is well developed under the label “weighted distributions” (Patil and Rao 

1977).   

Historically, radio-telemetry studies allowed animals to be located once to several 

times per day. Telemetry-based SDMs typically assumed these locations could be 

treated as independent, with parameters estimated by comparing these locations to 

randomly sampled (“available”) sites from within an animal’s estimated home range 

(Fieberg et al. 2010). This approach was often justified by noting that animals had 

sufficient time to reach any area within their home ranges between successive 

locations. The advent of Global Positioning System (GPS) data and associated 

hardware and software now allows researchers to assess habitat use with much finer 

temporal resolution. As a consequence, however, telemetry locations collected close 

in time also tend to be close in space, and the only sites available to an animal shortly 

after one observation are those accessible to the animal from the previous location, 

within the time step. 

Step-selection functions were developed to address these concerns (Fortin et al. 2005, 

Forester et al. 2009, Avgar et al. 2016). Rather than treat locations as independent and 

assume a uniform distribution for      , step-selection functions treat movements 

between locations as independent. Background locations specific to each telemetry 

location are generated by considering the previous location, the time between 

successive locations, and the movement characteristics of the study species – in 

particular, step lengths (distances between consecutive points collected at fixed 
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temporal intervals) and turn angles (change in bearing between consecutive 

locations) (Thurfjell et al. 2014, Avgar et al. 2016). Background locations are generated 

by sampling step lengths and turn angles from their empirical distributions (Fortin et 

al. 2005) or from appropriate statistical distributions (e.g., exponential or gamma for 

step length, von Mises for turn angles) (Forester et al. 2009, Avgar et al. 2016). Step 

lengths and turn angles are then combined with the location at the previous time 

point to generate possible movement paths, and as a result, distributions of available 

points that are location-specific. To guard against misspecification of the step length 

and turn angle distributions (or, alternatively, to estimate parameters in assumed 

statistical distributions describing these movement characteristics), one can include 

as covariates various functions of the distance between points and angular deviations 

from the previous step (Forester et al. 2009, Avgar et al. 2016). 

The likelihood for these data is similar to that for the inhomogeneous Poisson 

process model, except that we now have stratified data (one stratum for each 

observed location and its associated available locations generated by the random 

movement paths): 

                ∏
           

∑    
  
           

 

   

 

where   is the number of strata,    is the number of locations (used plus available) in 

stratum  , and       are the covariates associated with the     point in the     stratum 

(with       giving the covariates for the used location). 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

 

Calibration Plots with Step-Selection Functions 

It is unclear how traditional presence-background calibration plots (e.g., Boyce et al. 

2002, Johnson et al. 2006, Phillips and Elith 2010) might be adapted to step-selection 

functions. In particular, it is not clear how we should account for the strata, which 

contain a fixed number of used locations (usually one). By contrast, UHC plots, can 

be adapted to step-selection functions with only two minor changes: 1) rather than fit 

a logistic regression model in step [2], we can fit a conditional logistic regression 

model; 2) rather than select a simple random sample in step [3c], we can select a 

stratified random sample (i.e., selecting one point from within each stratum). No 

other modifications are necessary. 

Here, we illustrate the application of UHC plots to step-selection functions fit to 

moose (Alces alces) telemetry data. From 2010-2015, technicians captured 170 adult 

female moose in northeastern Minnesota. Technicians fitted moose with Iridium 

GPS radiocollars (VECTRONIC Aerospace GmbH, Berlin, Germany) recording 

animal locations at 4.25, 2, and 1.065-hour fix rates. For a full description of capturing 

and deployment protocols see Carstensen et al. (2014). We selected a single animal 

with data from summer 2013 and summer 2014 and subsampled data collected at 

higher fix rates to achieve a consistent 4.25-hour fix rate ± 0.25 hours. We excluded 

fixes within 24 hours of deployment and those with horizontal dilution of precision 

>10 (Rempel and Rodgers 1997). This left a total of 689 used locations in both 2013 

and 2014. 

We generated 10 available locations for each used location by randomly selecting 10 

step lengths and 10 turn angles to project the animal forward in time from the 
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previous location (see Street et al. 2016 for full description of data development). We 

defined resource availability at used and available locations as the proportional cover 

of four land cover types within a 50 m radius buffer (identified in the National Land 

Cover Database 2011; Jin et al. 2013): deciduous forest (decid50), mixedwood forest 

(mixed50), coniferous forest (conif50) and treed wetlands (treedwet50). 

We fit three conditional logistic regression models to the moose data using the clogit 

function in the survival package of Program R (R Core Team 2015, Therneau 2015), 

treating locations from 2013 as training data and locations from 2014 as test data. In 

the first model, we included decid50, mixed50, conif50, and treedwet50 as 

explanatory variables. In the second model, we included the same set of predictors, 

except we dropped mixed50. Lastly, we fit a model containing only mixed50. We also 

included step length (divided by 1,000 to scale the magnitude of the regression 

coefficient to that of the land cover classes) in each of the models to accommodate 

bias introduced by using parametric distributions for generating step-lengths 

(Forester et al. 2009, Avgar et al. 2016). 

In the original step-selection model, the coefficient for conif50 was negative, whereas 

the coefficients for decid50, mixed50, and treedwet50 were all positive; of these, only 

the coefficient for mixed50 was statistically significant (Table 4). When we dropped 

mixed50 from the model, the coefficients in the step-selection function changed 

drastically; the coefficients for decid50 and treedwet50 even changed sign (Table 4). 

The coefficients for all of the compositional predictors left in the model were 

negative (and all statistically significant), which likely reflects the fact that having 

more of any one of these habitat types within 50 m meant having less of mixed50. 
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This series of models nicely illustrates some of the challenges involved with 

modeling compositional data due to multicollinearity among the predictors (Graham 

2003, Cade 2015). 

To produce UHC plots for these models, we again simulated 1,000 used test data sets, 

drawing new regression parameters each time from    ̂     ˆ   ̂  . The UHC plots 

were similar for all three models, with the distribution of the covariates at the used 

points in the test data set largely falling within the predicted distributions for each of 

the explanatory variables (Fig. 7). These plots suggest that the models are well-

calibrated, but also that the information about selection can be captured by a single 

compositional predictor, mixed50 (Fig. 7I L). 

Discussion 

The combination and popularity of open source software (Ghisla et al. 2012, R Core 

Team 2015), remote sensing technologies, and a plethora of modeling approaches has 

facilitated the application of models linking plant and animal locations to 

environmental variables. Further, geographic information systems (GIS) make it easy 

to produce maps depicting predicted distributions for sampled and unsampled areas. 

But, how good are these models and the maps they produce? Should we trust models 

to predict distributions in novel environments, particularly when they are 

constructed by considering a large suite of often multicollinear predictors (Dormann 

et al. 2013)? These questions are of utmost importance to wildlife managers and 

conservation biologists, and thus it is not surprising that they have garnered 

significant attention lately from ecologists working across a wide range of taxa 
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(Vanreusel et al. 2007, Moreno-Amat et al. 2015, Torres et al. 2015, Duque-Lazo et al. 

2016, Huang and Frimpong 2016). 

Most popular approaches to fitting species distribution or habitat selection models 

rely on comparing observed locations of individuals to randomly or systematically 

selected locations that describe the background distribution or availability of 

resources or environmental conditions. Frequently, the combined presence-

background data are modeled using binary regression models, with      for 

observed locations and 0 for background locations (Johnson et al. 2006, Fithian and 

Hastie 2013). This treatment of the data originally led to much concern and confusion 

among practitioners who recognized that background points (with     ) might 

actually be used by the species (e.g., Keating and Cherry 2004). Recent connections 

between common modeling approaches (e.g., MaxEnt, spatial logistic regression) and 

inhomogeneous Poisson process models have clarified both the role of the 

background points (they serve as quadrature points in eq. (1); Warton and Shepherd 

2010) and also the interpretation of regression parameters (they describe systematic 

variation in the log intensity of the Poisson process model; Aarts et al. 2012, Fithian 

and Hastie 2013, Renner et al. 2015). 

As more researchers become aware of these connections, we expect to see a similar 

paradigm shift in terms of the methods proposed for validating species distribution 

and habitat selection models. Traditionally, methods for validating species 

distribution models have mimicked or modified approaches developed for presence-

absence data. They have treated the number of presence locations as random, and 

have focused on how well the models do at predicting whether locations are “used” 
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or “available”. By contrast, UHC plots consider the number of presence locations as 

fixed, and instead focus on validating a model’s ability to predict the characteristics 

(i.e., the biotic and abiotic factors used to model distribution patterns) at these 

locations using out-of-sample data. Our simulation examples demonstrated the 

utility of UHC plots for identifying missing covariates and nonlinearities that should 

be included in the model as well as how these plots can be used to identify areas in 

space that are poorly predicted. Our empirical example, based on moose movement 

data, demonstrated how this approach can accommodate the stratified nature of step-

selection functions and, further, how UHC plots can be used to provide insights into 

the effect of multicollinearity, particularly when considering compositional data. 

Future work should focus on exploring the use of UHC plots to suggest possible 

transformations (e.g., log, step functions) or to detect other forms of model 

misspecification (e.g., the need for interactions). Simulated data are critical to these 

efforts since they allow one to evaluate model performance in scenarios where the 

factors driving the underlying species distribution are known (Miller 2014, Leroy et 

al. 2016). 

Recently developed approaches for assessing fit of spatial point process models offer 

another promising alternative to UHC plots considered here (Baddeley et al. 2005, 

2013, Renner et al. 2015). Specifically, one can plot residuals against spatial covariates 

or smoothed residuals versus spatial location (e.g., Easting, Northing). These types of 

plots are available in the spatstat library of Program R and have a strong theoretical 

basis (Baddeley et al. 2008). The advantage of the approach we suggest is that it can 

be applied more generally, as we have demonstrated with fitted logistic regression 
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models and step-selection functions. The ability to construct simulation envelopes 

for out-of-sample data is another advantage, especially since most applications of 

species distribution models consider a large suite of explanatory variables and often 

allow for considerable model complexity, leading to data-driven models that may be 

overfit and perform poorly when applied to new data (Giudice et al. 2012, Harrell 

2013). 

Understanding what motivates animals to move from one location to another, and 

how the broad-scale patterns of resources and risk affect the distribution of a species 

in the landscape is of critical importance to the management and conservation of 

wildlife and plant species. For models of species distributions to be useful, they must 

be more than shots in the dark. They must be able to make predictions about how a 

species will respond to new environmental conditions presented at different 

locations in space and time in the face of anthropogenic landscape change. By 

comparing model predictions to out-of-sample data, UHC plots can identify 

important features that are well-predicted and others where improvement is needed. 

This process can shed light on how best to modify models, provide important 

insights into factors driving the distribution of species, and ultimately enhance the 

reliability and generality of conservation and management recommendations. 
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Table Legends 

Table 1. Estimated regression parameters ( ̂) and their standard errors (SE) for 

logistic regression models fit to training data in the first cross-sectional data 

simulation. The marginal distribution of elevation (  ) and precipitation (  ) on the 

landscape was given by a multivariate normal distribution with mean vector = (0,0), 

and var(  ) = var(  ) = 4. We considered three different data-generating scenarios in 

which we varied cor(     ) (= 0, -0.3, or 0.3). The true species distribution was 

proportional to              . 

    elev     elev + precip 

cor(     )  ̂
  

 SE   ̂
  

 SE  ̂
  

 SE 

0.00 0.42 0.05  0.42 0.06 -1.04 0.07 

-0.30 0.80 0.06  0.52 0.06 -0.99 0.07 

0.30 0.27 0.05  0.57 0.06 -0.97 0.06 
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Table 2. Estimated regression parameters ( ̂) and their standard errors (SE) for 

logistic regression models fit to training data in the second cross-sectional data 

simulation. The marginal distribution of    on the landscape,       , was Normal: 

             . The relative probability of use (or presence) was proportional to 

          
    

Model  ̂
  

  SE   ̂
  

   SE 

     0.24 0.05   

       
  2.21 0.35 -1.05 0.17 
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Table 3. Correlation among spatial coordinates ( ,  ) and habitat covariates in 

training and test data in the simulation to evaluate areas in space where the model 

predicts poorly. The marginal distribution of elevation (  ) and precipitation (  ) on 

the landscape was given by a multivariate normal distribution with mean vector = 

(0,0), and var(  ) = var(  ) = 4. The true species distribution was proportional to 

             . 

 Correlation 

Variables Training data Test data 

  ,    0.33 0.29 

 -coordinate,    0.68 0.57 

 -coordinate,    0.33 -0.29 

 -coordinate,    0.35 -0.30 

 -coordinate,    0.67 0.57 
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Table 4. Parameter estimates (SE) from step-selection functions fit to moose (Alces 

alces) data in Minnesota using conditional logistic regression. Covariates measured 

the proportional cover of 4 land cover types within a 50 m radius buffer: deciduous 

forest (decid50), mixedwood forest (mixed50), coniferous forest (conif50), and treed 

wetlands (treedwet50). We also included step length (divided by 1,000 to scale the 

magnitude of the regression coefficient to that of the land cover classes; step) to 

accommodate bias introduced by using parametric distributions for generating step-

lengths. 

 Model 

Variable (1) (2) (3) 

decid50 0.49 -0.60  

 (0.33) (0.19)  

mixed50 1.38  1.03 

 (0.24)  (0.16) 

conif50 -0.30 -1.37  

 (0.38) (0.27)  

treedwet50 0.40 -0.70  

 (0.31) (0.16)  

step -6.33 -6.44 -6.39 

 (0.25) (0.25) (0.25) 
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Figure Legends 

Figure 1 Presence-background binned calibration plots using the method outlined in 

Johnson et al. (2006) applied to simulated data for a species whose distribution was 

driven by elevation (  ) and precipitation (  ). The marginal distribution of    and 

   on the landscape,          , was Normal:                 . We considered three 

different data-generating scenarios in which we set var(  ) = var(  ) = 4, but varied 

cor(     ) =       
 (represented by separate rows of panels). The relative probability 

of use (or presence) was proportional to              . Panels depict observed 

versus expected numbers of presence locations within 10 bins formed using 

estimated relative probabilities of selection,         ̂
     

            ̂
     

   where 

      is a matrix of covariates in the test data set and  ̂
     

 is a vector of regression 

parameter estimates obtained by fitting one of two logistic regression models to the 

training data (the two models are represented by the different columns). Overlaid is a 

regression line (black line with shaded  95% confidence intervals) relating observed 

and expected numbers of presence locations in each bin. A well-calibrated model 

should closely follow the 1:1 line (dashed line). 
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Figure 2 Presence-background binned calibration plots using the method outlined in 

Johnson et al. (2006) applied to simulated data for a species whose distribution was 

driven by temperature (  ) and temperature
2
. The marginal distribution of    on the 

landscape,       , was Normal:              . The relative probability of use (or 

presence) was proportional to           
    Panels depict observed versus expected 

numbers of presence locations within 10 bins formed using estimated relative 

probabilities of selection,         ̂
     

            ̂
     

   where       is a matrix of 

covariates in the test data set and  ̂
     

 is a vector of regression parameter estimates 

obtained by fitting one of two logistic regression models to the training data (the two 

models are represented by the different columns). Overlaid is a regression line (black 

line with shaded 95% confidence intervals) relating observed and expected numbers 

of presence locations. A well-calibrated model should closely follow the 1:1 line 

(dashed line). 
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Figure 3 Steps for producing a Used-Habitat Calibration Plot. Step 0: Split the data 

into test and training data sets (used points are shown in blue, available points in 

red). Step 1: Summarize the distribution of the explanatory variables (here 

precipitation and elevation) at the presence points (solid black lines/density plots) 

and background points (red dashed lines/density plots) in the test data set,       and 

     , respectively. Step 2: Fit a model to the training data set, storing  ̂ and its 

uncertainty     ˆ   ̂ ). In this example, the distribution of locations is driven by 

elevation and precipitation, but only elevation has been included in the model. Step 

3: Do the following   times (with loop index  ): (a) To account for parameter 

uncertainty, select new   parameter values,   , from the joint parameter distribution 

describing the uncertainty in  ̂; (b) Estimate                    
 for the test data; (c) 

Select a simple random (cross-sectional) or stratified random (step-selection function) 

sample of   
     observations from the combined (use and available) test data, with 

probabilities of selection proportional to            from step [3b]; (d) Summarize the 

predicted distribution of elevation and precipitation using the points chosen in step 

[3c],  ̂
 

    . Step 4: Compare the observed distribution of covariate values at the used 

points,       from step [1], to the predicted distribution of these characteristics, 

 ̂
 

     across the   simulations. One option is to overlay       on a 95% simulation 

envelope constructed using the  ̂
 

     (gray bands). Step 5: Reevaluate or modify the 

model as necessary. In the above example, the UHC plots would suggest that we 

should include precipitation in the model. 
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Figure 4 Used-Habitat Calibration (UHC) plots for the first simulation example 

where the species distribution was driven by elevation (  ) and precipitation (  ). 

The marginal distribution of    and    on the landscape,           (red dashed 

lines), was Normal:                 . We considered three different data-

generating scenarios in which we set var(  ) = var(  ) = 4, but varied cor(     ) = 

      
 (represented by separate rows of panels). The relative probability of use (or 

presence) was proportional to              . The observed distribution of 

elevation and precipitation at the presence (i.e., used) points in the test data set is 

given by the solid black lines, with a 95% simulation envelope for these distributions 

given by the gray bands. Predictive distributions were formed using one of two 

models fit to training data, a model with elevation only (left two columns) or 

elevation and precipitation (the correct model; right two columns). A model is well-

calibrated if the observed distributions (solid black lines) fall within the simulation 

envelopes. 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

 

 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

 

Figure 5 Used-Habitat Calibration (UHC) plots for the second simulation example 

where the species distribution was driven by temperature (  ). The marginal 

distribution of    on the landscape,        (red dashed lines), was Normal: 

             . The relative probability of use (or presence) was proportional to 

          
    The observed distribution of temperature at the presence points in the 

test data set is given by the solid black lines, with a 95% simulation envelope for 

these distributions given by the gray bands. Predictive distributions were formed 

using one of two models fit to training data, a model with temperature (linear term 

only; Panel A) or temperature and temperature
2
 (the correct model; Panel B). A model 

is well-calibrated if the observed distributions (solid black lines) fall within the 

simulation envelopes. 
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Figure 6 Used-Habitat Calibration (UHC) plots for spatial coordinates ( ,  ). The 

species distribution was driven by elevation (  ) and precipitation (  ). The marginal 

distribution of    and    on the landscape,           (red dashed lines), was Normal: 

                . The relative probability of use (or presence) was proportional to 

             . Top panels depict the background distribution of elevation and 

precipitation in the training and test data landscapes, with presence points overlaid 

in yellow and black triangles. In the bottom panels, the observed distribution of 

elevation and precipitation at the presence points in the test data set is given by the 

solid black lines, with a 95% simulation envelope for these distributions given by the 

gray bands. Predictive distributions were formed using one of two models fit to 

training data, a model with elevation only (panels A and B) or elevation and 

precipitation (the correct model; panels C and D). A model is well-calibrated if the 

observed distributions (solid black lines) fall within the simulation envelopes. 
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Figure 7 Used-Habitat Calibration Plots for step-selection models fit to moose (Alces 

alces) data in Minnesota. We considered three different models (represented by the 

three rows of panels), each containing a different subset of covariates (as indicated 

above each row of panels). Covariates in the models measured proportional coverage 

of deciduous forest (decid50), mixedwood forest (mixed50), conifer forest (conif50), 

and treed wetland (treedwt50) within a 50 m buffer of each location. We also 

included step length (divided by 1,000 to scale the magnitude of the regression 

coefficient to that of the land cover classes; step) to accommodate bias introduced by 

using parametric distributions for generating step-lengths. Panels depict the 

distribution of available and used locations in the test data set (red dashed and solid 

black lines, respectively), along with 95% simulation envelopes for the predicted 

distribution of these habitat covariates at the used locations from the fitted step-

selection functions. A model is well-calibrated if the observed distributions (solid 

black lines) fall within the simulation envelopes. 
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