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Abstract 

Carbocyclic nucleoside analogues have a distinguished history as anti-infectious agents, including key antiviral agents. Toxicity was 

initially a concern but this was reduced by the introduction of 5'-nor variants. Here, we report the result of our preliminary screening of 

a series of 5'-norcarbocyclic uridine analogues against protozoan parasites, specifically the major pathogens Leishmania mexicana and 

Trypanosoma brucei. The series displayed antiparasite activity in the low to mid-micromolar range and establishes a preliminary 

structure-activity relationship, with the 4',N(3)-di-(3,5-dimethylbenzoyl)-substituted analogues showing the most prominent activity. 

Utilizing an array of specially adapted cell lines, it was established that this series of analogues likely act through a common target. 

Moreover, the strong correlation between the trypanocidal and anti-leishmanial activities indicates that this mechanism is likely shared 

between the two species. EC50 values were unaffected by the disabling of pyrimidine biosynthesis in T. brucei, showing that these 

uridine analogues do not act directly on the enzymes of pyrimidine nucleotide metabolism. The lack of cross-resistance with 5-

fluorouracil, also establishes that the carbocyclic analogues are not imported through the known uracil transporters, thus offering forth 

new insights for this class of nucleosides. The lack of cross-resistance with current trypanocides makes this compound class interesting 

for further exploration. 

 

 

The protozoan parasites including Trypanosoma brucei and the various Leishmania species cause a spectrum of primarily tropical 

diseases in humans and animals. The subspecies T. brucei gambiense and T. b. rhodesiense cause African sleeping sickness, an 

infection that ultimately targets the central nervous system and is then invariably fatal.1 Other trypanosome species infect domestic 

animals, resulting in a significant impact on agriculture.2 Leishmania species cause various manifestations of leishmaniasis, divided in 

cutaneous, visceral and mucocutaneous forms.3 The treatments for all of these diseases are outdated, often toxic and their use is 

threatened by drug resistance.4 
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Carbocyclic nucleoside analogues are compounds in which a methylene group replaces the oxygen atom in the furanose sugar 

moiety.5 Because of this modification, carbocyclic nucleosides are more stable to enzymatic cleavage since the hemi-aminal of the 

glycosidic bond has been converted to a tertiary amine.5 The first naturally occurring carbocyclic nucleosides were neplanocin A6 and 

aristeromycin,7 which were found to exhibit high antiviral activity due to their inhibition of S-adenosylhomocysteine hydrolase 

(SAHase), an enzyme involved in many biological methylation reactions.8 Unfortunately, they also exhibited significant levels of 

toxicity due to the close resemblance of their triphosphate forms to ATP.8 

One approach to overcoming the issue of carbocyclic toxicity was the removal of the CH2 group of the 5’-hydroxymethyl, resulting 

in what are known as the 5’-norcarbocyclic nucleosides.9 Due to the truncated nature of the 5’-hydroxyl group, they are not recognized 

and phosphorylated by kinases, and are thus not converted to their corresponding triphosphates; however, a number of them still proved 

to be inhibitors of SAHase.10-14 This observation inspired the synthesis of numerous derivatives possessing a variety of different 

heterocyclic bases and other structural modifications/functional groups, which substantially extended their spectrum of biological 

activities.15-38 Like other nucleoside analogues, carbocyclic nucleosides can function as substrates and/or inhibitors of a large number of 

biologically significant enzymes and, because they are immune to phosphorylation reactions, the 5’-norcarbocyclic nucleoside 

analogues can serve as versatile tools for studying new biological targets.39  

 

Figure 1. Proposed 5’-norcarbocylic uridine nucleosides. 

In that regard, it was recently reported that 5’-norcarbocyclic nucleoside analogues can serve as HIV non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) with Ki’s of 5-19 M for wild type and 1-55 M for some mutant strains of HIV RT.22, 40 

Interestingly, some of the compounds from this group also proved to be potent inhibitors of M. tuberculosis H37Rv with MIC90 values 

between 10 to 40 µg/ml and MDR MS-115 with MIC90 values of 5 to 20 µg/ml. Importantly, both cases the 5’-norcarbocyclic 

nucleosides exhibited activity against resistant strains.41 

Because of the different types of biological activity observed against these very different but important pathogens, we decided to 

further investigate their activity. In that regard, we decided to screen the compounds against parasites, particularly since other 

carbocyclic 5’-nor nucleosides had shown anti-parasitic activity.13, 38, 42  A second impetus for our studies came from the observation 

that although pyrimidine biosynthesis is not essential in Trypanosoma and Leishmania parasites, many pyrimidine salvage enzymes 

have been validated as drug targets,43-46 and the incorporation of some pyrimidine analogues into nucleic acids and/or metabolic 

intermediates has been demonstrated in both species.47, 48 Moreover, 5'-Nor carbocyclic nucleosides have already demonstrated 

antitrypanosomal properties.27, 28  

In an effort to further explore those observations, we opted to combine the two scaffolds and pursue a series of C-5 substituted 5’-

norcarbocyclic uridine analogues (shown in Figure 1). New treatment options against leishmaniasis and trypanosomiasis are urgently 

needed, as the decades-old drugs have become ineffective from over-use.4, 49 By testing the compounds on various wild-type and drug 

resistant Trypanosoma and Leishmania strains, we established that not only is there is no cross-resistance with existing trypanocides, 

but the compounds do not utilize uracil transporters, making the development of resistance to 5’-norcarbocyclic uridines much less 

likely.  

The chemical routes to the various targets are straightforward and concise. Compounds 1-7, 9-12 and 14-20 were synthesized as 

described earlier.22, 40, 41, 50 Treatment of compound 315 with benzoyl chloride in pyridine gave derivative 8 (80%, Scheme 1).51 

Benzylation of 9 by 4-methoxybenzyl bromide led to product 13 (80%).52 



  Scheme 1. Synthesis of new 5’-norcarbocyclic uridine analogues. 

 

Compound 21 was synthesized from 1-(4′-hydroxy-2′-cyclopenten-1′-yl)-3-(4″-hydroxy-2″-cyclopent-en-1″-yl)-5-iodo- oxy-2″- uracil 

2250 via Sonagashira coupling reaction (70%).53 The structures of the synthesized compounds were elucidated by 1H NMR and 13C 

NMR16-18 and the spectra were in accordance with the proposed structures. 

Activity against Trypanosoma brucei. T. b. brucei bloodstream forms were grown in HMI-9 medium (Gibco, Paisley, UK) 

supplemented with 10% fetal bovine serum (FBS) (Gibco) exactly as described,54 and maintained in the log-phase of growth. 

 The 5’-norcarbocyclic pyrimidine nucleosides all displayed relatively similar activities against wild type Trypanosoma brucei 

(427WT)55 in our standard viability test56 based on the reduction of resazurin sodium salt (Sigma-Aldrich; blue, non-fluorescent) to 

resorufin (colorless, fluorescent) by live but not by dead cells.57 Pentamidine and 5-fluorouracil (5-FU) were used as non-nucleoside 

controls (Sigma-Aldrich). EC50 values were generally in the mid-micromolar range (Table 1) for all compounds, potentially indicating a 

common mechanism of action for this class of compounds.  

 The core 5’-norcarbocyclic uridine analogue (1) displayed an EC50 value of 37.6 ± 0.2 µM, and halogenation at position 5 (I, Br) or 

methylation at position 6 did not significantly change this (2, 3, 4), whereas aminophenyl or 4-methyl-aminophenyl on position 5 

slightly improved the activity (5, 6). Addition of benzoic acid residue to the 4’ position (7 - 9) likewise did not change the activity. We 

next explored the effect of substitutions on N3 of the 4’-benzoyl carbocyclic uridine analogues. N3 addition of benzoyl (12), benzyl (11) 

or 4-methoxybenzyl (13) did not substantially change the antiparasitic activity, but the addition of the 3,5-dimethylbenzyl group 

reduced the EC50 to 15.2 µM and 15.1 µM, respectively, for 10 and 14. A similar 3,5-dimethyl substitution on the 4’-benzoyl moiety 

was also highly favorable, yielding 17, with an EC50 of just 8.6 µM.  

The 3,5-dichloro substitution had a much lesser effect, however (compare 15 and 7), as did a 3-cyano substitution (16 and 18). As 

3,5-dimethyl additions on either the 4’ and N3-position aromatic substitutions both appeared favorable (17 and 14), it was then explored 

whether 3,5-dimethyl on both positions, yielding 19, would further increase the activity, but this analogue only exhibited moderate 

activity in the series (EC50 = 23.8 µM), although this was still better than the equivalent chlorinated analogue (20, EC50 =31.8 µM). As a 

result, it was concluded that electron donating groups such as methyl are favored on the aromatic rings, and that electron-withdrawing 

groups such as chlorine are unfavorable.  

Interestingly, compound 21, substituted with a long aliphatic chain at the 5-position, proved to be the most active among the tested 

compounds with an EC50 of 8.0 µM. Although this is not a large improvement over some of the other compounds, it shows that further 

improvements can be made by expanding the SAR in this area, which will be the subject of a follow-on study. Perhaps the long 

lipophilic chain at C-5, as well as the two 5’-norcarbocyclic ring substitutions (on N1 and N3), all making the uracil core much more 

lipophilic, may serve to aid in cellular uptake by trans-membrane diffusion, and increased cellular penetration often correlates with the 

strength of cellular effects.58 

The 5’-norcarbocyclic pyrimidine nucleosides were also screened against several other T. brucei cell lines in parallel. The clonal 

line B48 is highly resistant to the two main classes of trypanocides, the melaminophenyl arsenicals and the diamidines, due to the loss 

the TbAT1/P2 and HAPT1 drug transporters.54 Only two of the 5’-norcarbocyclic nucleosides displayed a statistically significant 

difference in EC50 values compared to 427WT (Table 1) and even then the differences were minor, with only a 10-20% difference as 

compared to the 164-fold difference in EC50 for the control drug pentamidine. As a result, we can conclude from this result that (1) 5’-

norcarbocyclic pyrimidines are highly unlikely to be cross-resistant with current trypanocidal treatments in human or veterinary use (i.e. 

pentamidine, diminazene, melarsoprol and cymelarsan), and (2) the mechanism of action of these analogues does not involve any of the 

currently known drug transporters of T. brucei, including TbAT1/P2, which is a nucleoside/nucleobase transporter that also recognizes a 

wide range of trypanocidal drugs.59-61 

The next cell line explored was a pyrimidine-auxotrophic clone, PYR6-5-/-, from which both alleles of the bifunctional gene Pyr6-5 

have been deleted, disrupting the last two steps of pyrimidine biosynthesis. As a result, the cells are solely dependent on pyrimidine 

salvage from the extracellular environment, which makes them hyper-sensitive to some pyrimidine analogues including 5-fluorouracil 

(5-FU).62 Several 5’-norcarbocyclic analogues were indeed significantly more active against this cell line than against the unmodified 



control 427WT, with up to 25% lower EC50 values. Again, these variations were relatively minor compared to 5-FU (30-fold 

sensitization; Table 1). Thus one can conclude that, unlike 5-FU62 the mode of action of these nucleoside analogues does not 

competitively intersect with the trypanosome’s pyrimidine salvage pathways, since the dearth of newly synthesized pyrimidine 

nucleotides would be expected to allow increased incorporation of the analogues, or increased binding to the enzymes of pyrimidine 

nucleotide metabolism.  

Finally, we tested all of the analogues on a cell line that was adapted to very high levels of resistance to 5-FU, T. brucei FURes 

(59.2-fold; Table 1).47 Surprisingly, almost all of the 5’-norcarbocyclics were in fact more active against this cell line. We consider this 

a strong indication that there is indeed a common mechanism of action for these compounds, as the adaptation to 5-FU has rendered the 

cells mildly more sensitive to almost all 5’-norcarbocyclic uridines. This hypothesis is further strengthened by the observation that there 

is a very good correlation between the resistance factors for each compound on PYR6-5-/- and FURes (P<0.0001; Fig. 2A, r2 = 0.66), 

although 5-FU resistance in this line has been linked to changes in sugar nucleotide metabolism rather than de novo pyrimidine 

biosynthesis.47 

 

 

Table 1. Effect of 5’-norcarbocyclic pyrimidine nucleosides on Trypanosoma brucei  

 

WT B48 PYR6-5-/- Tbb-5FURes 

EC50 EC50 RF EC50 RF EC50 RF 

1 37.6 ± 0.2 37.9 ± 1.5 1.0 34.6 ± 1.5 0.92 31.9 ± 1.9 0.851 

2 35.3 ± 0.7 36.2 ± 1.4 1.0 33.5 ± 1.8 0.95 30.8 ± 2.1 0.87 

3 37.3 ± 0.6 36.7 ± 1.6 1.0 35.7 ± 2.5 0.96 32.4 ± 1.8 0.871 

4 35.1 ± 0.8 38.7 ± 2.0 1.1 32.2 ± 2.5 0.92 28.8 ± 2.6 0.82 

5 28.1 ± 0.4 30.0 ± 1.0 1.1 21.4 ± 1.7 0.762 13.8 ± 1.5 0.493 

6 31.7 ±0.4 31.0 ± 1.6 1.0 24.7 ± 1.4 0.782 17.1 ± 1.2 0.543 

7 38.3 ± 0.7 38.1 ± 1.5 1.0 35.6 ± 1.6 0.93 32.3 ± 1.5 0.841 

8 29.8 ± 0.3 23.9 ± 1.5 0.82 25.3 ± 1.2 0.852 17.7 ± 1.7 0.593 

9 37.6 ± 0.9 38.1 ± 1.7 1.0 34.3 ± 1.5 0.91 32.0 ± 1.8 0.851 

10 15.2 ± 0.1 15.7 ± 0.2 1.0 15.9 ± 0.2 1.05 12.4 ± 1.1 0.82 

11 29.1 ± 0.4 25.5 ± 1.3 0.9 27.7 ± 0.9 0.95 21.0 ± 1.9 0.722 

12 33.1 ± 0.2 34.0 ± 1.0 1.0 32.3 ± 1.3 0.98 27.7 ± 2.0 0.841 

13 30.5 ± 0.3 27.2 ± 2.1 0.9 28.3 ± 0.8 0.931 20.3 ± 1.8 0.663 

14 15.1 ± 0.2 14.0 ± 0.8 0.9 15.6 ± 0.2 1.03 14.3 ± 0.5 0.95 

15 33.2 ± 0.5 34.8 ± 0.6 1.0 31.6 ± 1.1 0.95 26.7 ± 1.8 0.801 

16 37.8 ± 0.7 36.4 ± 1.0 1.0 34.9 ± 1.4 0.92 31.3 ± 1.3 0.832 

17 8.6 ± 0.4 8.7 ± 0.2 1.0 11.1 ± 0.5 1.291 8.7 ± 0.2 1.01 

18 27.9 ± 1.3 25.0 ± 1.8 0.9 26.4 ± 1.4 0.94 21.4 ± 2.4 0.761 

19 23.8 ± 1.9 21.9 ± 0.4 0.9 24.4 ± 1.6 1.03 20.2 ± 2.2 0.85 

20 31.8 ± 0.5 33.9 ± 1.1 1.1 29.5 ± 1.9 0.93 25.0 ± 2.5 0.791 

21 8.0 ± 0.1 9.0 ± 0.1 1.13 9.2 ± 0.4 1.15 7.5 ± 0.1 0.942 

5-Fluorouracil 66.0 ± 5.4 74.6 ± 7.7 1.1 2.3 ± 0.3 0.0343 3905 ± 88 59.173 

Pentamidine 0.0057 ± 0.0011 0.938 ± 0.097 1643 0.0051 ± 0.0010 0.89 

0.0061 ± 

0.0009 1.06 

All EC50 values were obtained using the Alamar blue assay and are given as averages in µM (±SEM), of 3-4 independent determinations. WT = wild-type 

sensitive control strain; B48 is a multi-drug resistant clone; PYR6-5-/- is a pyrimidine auxotrophic clone, hypersensitized to 5F-pyrimidines; Tbb-5FURes has 

been adapted to very high concentrations of 5F-uracil. Resistance Factor = EC50 (resistant clone)/EC50 (WT); n ≥ 4. 1, P<0.05; 2, P<0.01; 3, P<0.001



 

Figure 2. Analysis of the anti-protozoal activity of 5’-norcarbocylic uridine analogs. A. Correlation between the resistance factors (RF) of two T. brucei cell 

lines, 5FURes and PYR6-5-/-; the values were taken from Table 1. The correlation coefficient r2 was 0.66 and the slope was significantly non-zero (F-test; 
P<0.0001). B. Correlation between the pEC50 values (i.e. -logEC50) of the test compounds against T. brucei 427WT and L. mexicana wild-type (r2 = 0.84; slope 

non-linearity F-test: P<0.0001). The points in the red circle, representing compounds 11-13 were excluded from the linear regression. The green circle represents 

compounds 10, 14 and 17 as described in the body text. C. Representative cell viability experiment of several test compounds tested against T. brucei 427WT. 
The output is the fluorescence of the resazurin-metabolite resorufin, quantified in arbitrary units (AU). Highest concentration for each compound was 100 µM. D. 

Like frame C, but using wild-type L. mexicana. In this frame, the bottom value for the sigmoidal curve was fixed at the calculated lower value for compound 21, 

in order to allow extrapolation of the incomplete curves for 1 and 10. 

 

Activity against Leishmania mexicana. The 5’-norcarbocyclic nucleosides were also tested against Leishmania mexicana 

promastigotes, in order to assess whether they might possess general activity against kinetoplastid parasites. Promastigotes (insect-stage 

cells) of Leishmania mexicana of strain MNYC/BZ/62/M37935 were cultured in HOMEM (GE Healthcare, Pasching, Austria) 

supplemented with 10% FBS at 25 ˚C exactly as described.63 The viability assay for Leishmania was identical to that of T. brucei,48 

except for longer incubation times (72 h without resazurin versus 48 h, and 48 h with resazurin versus 24 h for T. brucei), owing to the 

slower rate of resazurin reduction by these cells.57  

The antileishmanial activity followed the same general trends as the trypanocidal activity, highly consistent with the notion that the 

same mechanism of action underpins their activity against both parasite species. The correlation between either the EC50 or pEC50 

values for L. mexicana and T. brucei was strong (r2 = 0.84 in both cases); however, there were three notable outliers, compounds 11 – 

13, where the pEC50 against Leishmania was substantially higher than expected by the trend line (Figure 2B, red circle). These 

compounds are the 5’-norcarbocyclic uridine nucleosides with 4’ and N3 aromatic substitutions, but without substitutions on the 2 and 4 

positions of either ring. Our analysis places them in a separate sub-category with improved activity against L. mexicana.  

Interpretation of the data suggests that these unsubstituted analogues still act on the same target, but that the specific enzyme target 

in Leishmania, unlike T. brucei, does not favor the 3,5-dimethyl substitution (compounds 10, 14, 17; green circle in Fig. 2B), probably 

because of a more favorable binding posture by the unsubstituted forms. The separate grouping of the unsubstituted 4’/N3-diaromatic 

nucleosides is further visualized in Fig. 2C-D, showing the sigmoid viability curves in the same order of potency for both parasite 

species, for compounds 1, 10, and 21, but not for 12.  

The compounds were also tested in parallel against a clonal line of L. mexicana that had been adapted to high levels of 5-FU 

(Lmex5FURes, 322-fold; Table 2). This cell line has a different adaptation to 5-FU than the Tbr5FURes cells, in that, instead of a 

metabolic adjustment, it has lost the capacity to take up uracil and 5-FU, due to the lack of the U1 uracil/5-FU transporter.47, 48 All of the 

compounds displayed equal or near-equal activity against Lmex5FURes and the control wild-type strain (Table 2), showing that none of 

them relied on the previously characterized U1 transporter for uptake.64  

Indeed, it is more likely that these nucleoside analogues are taken up through an NT1-type uridine/adenosine transporter, as these 

are far more permissive in allow uptake of uridine analogues (as opposed to the nucleobase uracil), allow at least some substitutions on 

position 5 of the pyrimidine ring without loss of affinity, and do not use N3 for interactions with the transporter binding pocket.48 

Regardless, it should be noted that the only compounds exhibiting a significant (although minor) increase in EC50 for a 5-FU adapted 

cell line were 11 and 13, two of the three ‘outliers’ from Fig. 2B, again underlining that their behavior is slightly different from the rest 

of the series, but only for L. mexicana.  

Table 2. Effect of 5’-norcarbocyclic pyrimidine nucleosides on Leishmania mexicana 

 
WT Lmex-5FURes 

EC50 EC50 RF 

1 97.0 ± 1.0 97.9 ± 1.0 1.01 



2 95.2 ± 0.6 95.6 ± 0.7 1.00 

3 97.4 ± 1.2 97.3 ± 0.5 1.00 

4 97.7 ± 1.7 102.0 ± 5.5 1.04 

5 94.1 ± 1.1 95.3 ± 0.8 1.01 

6 94.6 ± 0.8 96.7 ± 0.7 1.02 

7 94.8 ± 0.6 95.7 ± 0.4 1.01 

8 90.4 ± 0.7 91.9 ± 0.6 1.02 

9 94.1 ± 0.5 94.9 ± 0.8 1.01 

10 41.3 ± 6.4 38.6 ± 5.9 0.94 

11 34.5 ± 1.4 46.3 ± 1.0 1.343 

12 26.1 ± 1.2 22.6 ± 1.2 0.86 

13 33.8 ± 2.7 43.6 ± 1.3 1.291 

14 25.6 ± 0.9 28.5 ± 0.7 1.11 

15 81.5 ± 8.2 89.4 ± 0.9 1.10 

16 94.7 ± 0.9 96.3 ± 1.2 1.02 

17 31.8 ± 2.8 25.1 ± 1.6 0.79 

18 45.5 ± 3.4 52.6 ± 1.5 1.16 

19 38.9 ± 2.6 23.6 ± 0.8 0.612 

20 89.1 ± 2.6 91.4 ± 0.7 1.03 

21 11.8 ± 0.3 11.4 ± 0.3 0.97 

5-Fluorouracil 7.7 ± 1.2 2470 ± 218 3223 

Pentamidine 1.90 ± 0.16 1.63 ± 0.2 0.86 

All EC50 values were obtained using the Alamar blue assay and are given as averages in µM (±SEM), of 3-4 independent determinations. WT = wild-type 

sensitive control strain of L. mexicana; Lmex-5FURes has been adapted to very high concentrations of 5F-uracil. Resistance Factor = EC50 (resistant clone)/EC50 

(WT); n ≥ 4. 1, P<0.05; 2, P<0.01; 3, P<0.001. 

In conclusion, we have explored new chemical space for nucleoside analogues against the major kinetoplastid pathogens 

Trypanosoma and Leishmania. Several compounds displayed low micro-molar activity, with the two most potent ones, 17 and 21, 

displaying a similar activity against both species. Earlier we reported that compound 17 can act as an HIV NNRTI and we now expand 

its antimicrobial range with activity against protozoan parasites.22, 40   

Importantly, both 17 and 21 are effective against resistant forms of these pathogens (both resistant to other pyrimidines and to first-

line clinical drugs), which makes them ideal leads for further structure optimization. Previous attempts have primarily focused on purine 

nucleotides,38, 65-67 as all protozoan parasites lack the ability to synthesize purines de novo.68 However, it has become clear that many of 

the enzymes of the pyrimidine interconversion and salvage pathways are excellent drug targets in these parasites44-46, 69 and here we 

report a first-in-class example of antiparasitic activity against T. brucei and L. mexicana with an innovative series of 5’-norcarbocyclic 

uridine nucleosides.  

Our findings suggest a common target for 5’-norcarbocyclic uridine nucleosides in the kinetoplastid parasites, which is not likely to 

be an enzyme directly involved in the principal pyrimidine pathways, as the level of activity was unaffected by the (absence of) de novo 

pyrimidine biosynthesis or very high levels of resistance to 5-FU in T. brucei. The anti-parasite activity was also independent of the U1 

uracil transporter, as shown by the lack of cross-resistance in Lmex5FURes, and it is possible that (most of) these compounds, being 

quite lipophilic, diffuse across the parasite’s plasma membrane. While the cellular target is still unknown at this point, we have been 

able to define a preliminary structure-activity relationship. Further cellular studies are currently in progress to potentially identify the 

target, which will facilitate the further optimization of these structurally unique nucleoside analogues. The results of those studies will 

be reported elsewhere as they become available.   
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