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Abstract—The Internet of Things (IoT) offers the ability
to analyze and predict our surroundings through sensor
networks at the network edge. To facilitate this predictive
functionality, Edge Computing (EC) applications are developed
by considering: power consumption, network lifetime and
quality of context inference. Humongous contextual data from
sensors provide data scientists better knowledge extraction,
albeit coming at the expense of holistic data transfer that
threatens the network feasibility and lifetime. To cope with this,
collaborative machine learning is applied to EC devices to (i)
extract the statistical relationships and (ii) construct regression
(predictive) models to maximize communication efficiency. In
this paper, we propose a learning methodology that improves
the prediction accuracy by quantizing the input space and
leveraging the local knowledge of the EC devices.

Keywords-edge analytics; predictive intelligence; edge com-
puting; collaborative machine learning;

I. INTRODUCTION

An IoT environment comprises billions of interconnected
sensing and computing devices, things, which sense and
share contextual information, hereinafter referred to as con-
text. Contexts are also capable of performing localized
analytics like linear regression, outliers detection, and clas-
sification. Things include anything ranging from smart-
phones, military sensors [1], to Radio Frequency Identifi-
cation (RFID) tags found in everyday products. As more
contextual data are made available, opportunities arise for
analytics and statistical learning applications that extract
context information and reason about it. The smart grid has
been recognized as an important form of IoT since it allows
a two-way contextual information flow which produces new
perspectives in energy management[2]. Furthermore, there
is an interest for the visualization of a tactical battlefield
that can only be achieved through contextual data collected
from sensor networks. Making all this context interpretable
and useful is challenging as it needs to be sensed, collected,
inferred, transferred, and stored [3].

To extract and infer contextual information from the
IoT network edge, contextual data is read from sensor &
actuators nodes, which measure the temporal-spatial field
of a specific area. Contextual (scalar) parameters can be
e.g., humidity, temperature, wind speed. This context is then
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relayed to a sink node, hereinafter referred to as sink (back-
end-system) for further processing and inference [4]. The
back-end-system has access to more computational power
compared to sensing nodes. In a traditional system, all
these sensors generate massive amounts of context and,
periodically, transmit it to the sink. In turn, sink restructures
the data more effectively to transmit them to another system
further up the hierarchy or locally stores them for further
processing and/or analytics tasks, e.g., regression analysis.
Howeyver, in this scenario, the IoT network transfer drains
power and, as the network scales, this effect is emphasized
even more. This motivated us to depart from the traditional
system and to propose an approach for pushing intelligence
it terms of machine and statistical learning [5] to the edge
of the network and close to the source of the contextual
information as possible in a collaborative manner. L.Bottou
et al. [5] state that large-scale incremental machine learning
attempts to outrun the exponential evolution of computing
power. This paper shows that in the case of edge-centric col-
laborative machine learning, incremental (on-line) learning
algorithms on the network edge are capable of processing
large amounts of contextual data with comparatively less
computing power and less network overhead when compared
to the traditional sensor-back-end systems approach.

A. Related Work & Contributions

The baseline approach for regression analytics tasks (like
prediction and classification) on the cloud is to periodically
transfer all the raw data from each sensing device of the
edge. The back-end-system located on the cloud has no
power consumption limitations and has access to more
computing resources when compared to the sensors, thus,
performing advanced analytics once the data is collected.
As previous studies have outlined [6],[7], [8] this approach
is very straightforward to implement but has gross disadvan-
tages, such as high energy consumption and high network
bandwidth due to the streaming of raw data over the edge
network. To tackle these disadvantages, we refer to EC
[9], which pushes the computation away from the cloud to
the edges of the network. Our approach is to adopt this
methodology by placing the computational logic inside the



sensors (in-network intelligence) away from the back-end-
system. F. Bonomi et.al [10] describe EC as a large number
of nodes geographically distributed supporting real-time in-
teractions, wireless access, and heterogeneity. Furthermore,
on-line regression analytics are the essential component for
EC due to the requirement of context awareness in [oT
environments. M. Rabinovich and Z.Xiao [11] describe an
application content delivery network based on EC. They
produce a middleware platform for providing scalable access
to Web applications. Currently, EC is being promoted as
a strategy to achieve highly available and scalable Web
services. [12] Our intention is to extend the functionality
of EC and enable contextual regression analytics tasks in-
network accessible from the back-end-system while, at the
same time, maximizing network efficiency and quality of
analytics.

Contributions: In this work, we propose a novel col-
laborative machine learning model at the IoT network edge
that achieves both: (i) highly accurate prediction results over
regression analytics tasks and (ii) scalability of the IoT edge
network. Using incremental machine learning on the network
edge, our methodology exploits the relationship of the con-
text collected to extract knowledge and predict new context.
Instead of transmitting raw contextual data in the network,
we only transmit the inferred knowledge, i.e., the minimum
sufficient statistics, which encapsulates and approximates
the underlying data at the edge. [Desideratum 1:] Our
rationale is based on the idea that each computing and
sensing device, independently trains an on-line, local, linear
regression model, which is then transferred to the back-
end-system. This ensures network efficiency by avoiding
transmitting the data; only meta-data corresponding to model
parameters. The system then has access to all the received
local models and, when queried for certain prediction /
analytics queries, it has to intelligently select which model(s)
to engage. [Desideratum 2:] We acknowledge that the
received regression models from all the edge nodes might
not be equally accurate amongst all the input space during
the analytics tasks. Hence, we further adopt adaptive vector
quantization to intelligently determine and aggregate the
best regression models for each subset of the input space.
We provide a comprehensive performance and comparative
assessment to showcase the applicability of our model in
terms of prediction accuracy and quality of regression results
in the IoT network edge.

II. RATIONALE & PROBLEM DEFINITION

We consider an EC/IoT environment with a set of sensors
(edge nodes) and sinks with paths leading from the sensors
to the sinks. Sensors are only connected with one sink with
the aim of the network being to transfer captured context
to the back-end-system, which is the entry point to a cloud
system. Let us focus on one instance of the whole network
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Figure 1. EC/IoT environment with a network of computing/sensing nodes
(sensors) and sinks supporting regression analytics tasks.

as shown with the black circle in Figure 1; although our
concepts are extended to the entire network.

Each sensor S; gathers data contextual about the space
around it. Each contextual datum at time ¢ consists of
the multivariate vector x € R? which is referred to as
input and scalar y € R, which is referred to as output.
Vector x and scalar y can represent any data sensed by the
sensor, e.g., temperature, humidity, acidity, luminosity, CO»
concentration, where we seek to learn the local regression
function f; : x — y at node \S;. The pair (x,y) comprises
the context at sensor S; at time ¢. Each sensor S; captures a
stream of pieces of context {(x/,y¢)}72,. One of the main
challenges is the collection of context from the sensors [3].
Both vector x and y are part of the contextual information
sensed from S; at time instance ¢, such that sensor S;
models the relationship between x and y by observing the
data in real-time and extracting the local regression function
filx) =y.

Multivariate stochastic gradient descent [5] is a model
used to incrementally learn the f; from multiple pieces of
context on each sensor S;. Assuming that there exists a linear
relationship, this linear model allows us to predict y based
on the input x. The hypothesis hy(x) of the d-dimensional
linear model is defined in (1). The 6; = [01,...,04]"
represents the weights of the local linear regression function,
i.e., determine the mapping between each x; and y. As
sensor .S; captures context the weights are updated in an
on-line fashion as explained in [5].

d
ho(x) =00+ Y _ Oy, (1)
k=1

Challenge 1: Sinks store context pairs of each of their
connected devices and allow access through querying. The
baseline solution is to transfer all the data pairs (x,y) from
the sensors to the sink and then learn one global linear
regression model at the sink. We argue that this is inefficient
as all the context pairs must be transmitted over the network.

Problem 1: Given a set of sensors at the network edge,
find a methodology to locally learn the underlying contextual
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Figure 2. Linear regression example with two local regression functions

fo and f1 from sensors’ Sp and S; contextual data, respectively, and global
regression function at the sink/back-end-system.

functions f; for each sensor S; and efficiently update the
back-end-system without transferring contextual data in the
network.

Challenge 2: Now, the purpose of regression analytics
tasks in EC is to query a system and then provide us (e.g.,
analysts, data scientists) with predictions. The regression
analytics query we are dealing with is of the form ¢ = (x)
and we expect prediction output ¢ as a result [6]. In the
ideal scenario, the back-end-system knows which sensor .S;
to use for the prediction of y, so it can directly apply the
corresponding function f; given a query ¢(x). However, in
real-life applications this is not possible, thus, the average
prediction is used, i.e., g(x) = § = 1 Y7 | f;(x). Consider
the raw contextual data of two sensors in Figure 2, where
we can observe the local linear regression functions of both
sensors fy and f7, and the average regression line % It
is obvious that the average line is heavily biased by sensor
So, thus, certain ranges of x mapped by sensor S;’s function
are not supported. We argue that the average is not ideal in
most scenarios and instead should adopt a methodology to
optimally choose the models that obtain the minimum error.

The back-end-system has access to all the contexts of the
connected sensors. For each query ¢(x), a simple solution
is to predict the result using the average from all local
functions, but as above-mentioned from our example, not
all local regression models have been trained on the same
subset of the input space x. This raises the challenge on
whether for each query ¢(x) there exists an optimal subset F
of these regression models, which is more accurate than the
average of all models in terms of prediction error. Departing
from Problem 1, in which we have efficiently learned the
local regression models f;, we have to cope with finding

this optimal subset of models in light of minimizing the
prediction error on the sink node.

Problem 2: Given a set of trained and up-to-date local
regression functions f; at the sink, find a methodology
to select a subset F of those functions to minimize the
prediction error w.r.t. the average regression model.

III. EDGE-CENTRIC LEARNING

Resources in a sensor are reserved for communication,
processing and data sensing. It has already been established
that data transmission consumes much more energy when
compared to the processing and data sensing tasks [13], [4].
In a naive solution, the sink has access to all the context
pairs from all sensors and it trains a global linear regression
model. In our approach, the sink does not collect any data
from the sensors, instead, it stores all functions f;. It is worth
noting that each function f; models only the relationship
between x and y from those vectors x captured by sensor
S;. The functions f; do not store any information about
sensor S;’s underlying data distribution. Hence, each sensor
S, estimates the underlying distribution of the captured input
data space x by using adaptive vector quantization[14],
which in general is different for any other sensor S;. Based
on this input space quantization, as it will be shown later,
the sink deals with Problem 2.

A. Local Regression Model Learning

Consider a network of n sensors and each sensor S; is
receiving a new piece of context pair (x,y) at time instance
t and incrementally updates the #; parameter. Since each
sensor has limited resources (computational and storage
limitations), we adopt on-line Stochastic Gradient Descent
(SGD) [15] to incrementally update 6,Vi. Using SGD we
avoid storing a history of contexts; instead, we exploit each
new pair (x,y) to locally update the current 6; and then
we discard this pair. After a period of learning, the model’s
parameter 6; is delivered from S; to the sink. The local
models, i.e., the corresponding 6’s, are sent to the sink at
a fixed number of steps 7, hereinafter referred to as local
epoch. The local epoch T defines the number of training
context pairs used to locally train the regression model
before transmitting it to the sink.

B. Local Quantization Model Learning

We further enhance our learning model by extracting
clusters ¢ € R? of the input space x € R¢ for each sensor S;.
Using these clusters, the system is able to determine whether
a function f; is familiar to the input x or not given a query
q(x). To estimate the clusters for each .S; we used the on-line
K-Means vector quantization algorithm [16]. The K-Means
algorithm allows us to have a fixed number of K clusters c
for each sensor S;. Every new pair (x,y) captured at sensor
S; updates both the on-line regression parameter #; and the
cluster vectors {ci}#_ ;. These vectors are the clusters of



the function f;’s underlying input data distribution and are
transfered along with 6; to the sink. For each cluster ¢ we
record the number of times it has been updated ¢(c) and the
prediction error e = (y—4)2, where § = f;(x) is the current
prediction at sensor S;. Algorithm 1 summarizes both the
local regression and quantization local learning at the edge
network (note: 1 € (0, 1) is the learning rate used for both
on-line K-means and SGD-based linear regression training).

Algorithm 1: Edge-centric Learning Algorithm

1 Function Sink ():

2 for each epoch T € {1,2,...} do

3 for each sensor S; in parallel do

4 | (0;,{ck}E ) <Sensor (i)

5 end

6 end

7

8 Function Sensor (i):

9 t+0

10 while ¢ < T do

1 (x,y) = context (1)

12 adaptation of linear model: Af; + n(y — 0;x)x
13 prediction: § = f;(0,x)

14 error: e = (§ — y)?

15 closest cluster: ¢* = arg ming||x — cx||
16 adaptation of cluster: Ac* + n(x — c*)
17 update: ¢(c*) + {(c*) + 1

18 update: e(c*) « e(c*) + z(i—*)(e —e(c"))
19 t—t+1

20 end

21 Return 60;, {c;}/, to Sink.

After receiving the trained linear models and the cor-
responding K clusters {6;, {c; x }o 1, {lix}y, {ein iy}
from each sensor S;, the sink node has all the information
available to proceed with query analytics tasks, i.e., to
answer to the regression query ¢(x). By using these clusters,
the sink chooses a subset of the functions {f;}?_ ; which
provide the lowest prediction error to ¢(x). The assumption
is that the selected functions have seen plenty of training
input vectors x similar to ¢(x) and, thus, should be able
to predict the output § more accurately. We propose two
algorithms which define this closeness:

Distance Average (DA). In DA, we define closeness r
of function f; to the query ¢(x) as the Euclidean distance
between the query point x of the regression query ¢(x) and
the closest cluster ¢; from the clusters set of f;:

r; =|x—c}l. 2)

K3

Reliable Average (RA). Initial experiments on the Beijing
Air Quality dataset [17] demonstrated that some clusters c
are updated more frequently, which means they are very
experienced while others are barely used. Hence, we define

closeness of the query ¢(x) to function f; by taking into
consideration the number £+ and the prediction error e(c})
of the closest cluster ¢ to the query point x:

1 1 —Lex
T ldexp el T T F expee) +exp i, (3)

Ti

A low distance ||[x — c|| and a low error e are rewarded
while a low number /. value is penalized. Note: /. and e
are scaled in [0,1] for all the models in the sink.

Given a regression query ¢(x) issued to the sink, the
closeness r; is computed for each linear model f;. The subset
of models F C {fi,...,f,} which are involved in the
prediction §j (answering) of the regression query ¢(x) are the
models with the top-C' closeness values, with C' = | F| < n.
Then, the prediction ¢ derives from the average of the
predictions §; = f;(x) : f; € F, given the query ¢(x),
ie.,

C
g:%ij(x);fjef. (4)
j=1

IV. PERFORMANCE EVALUATION

We evaluate the performance of our method with sensor
networks which have power and computation limitations,
thus, adopting machine learning models to greatly improve
prediction accuracy and increase efficiency. We use the real
air quality data-set [17] collected from air quality monitoring
stations in Beijing to evaluate the prediction accuracy of
our method. There are n = 36 independent sensors (IoT
devices) transmitting knowledge to the sink, thus, we obtain
n = 36 different local regression models. In total there
are 147,101 rows of data, such that on average there are
approximately 4086 data elements for each sensor. We chose
three contextual parameters from the dataset and verified
that there was a correlation among them: x; is PM25_AQT
and xo is PM10_AQI. These parameters x = [z7, 2]
represent the concentration levels of fine particulate matter
(air pollutant) with an aerodynamic diameter of less than 2.5,
1.0 respectively. We consider y as the contextual parameter
NO2_AQI, which represents the concentration levels of
Nitrogen Dioxide. These gases are emitted by all combustion
processes and have a negative impact on human life, example
Nitrogen dioxide is linked with the summer smog [18].
Figure 3 shows the whole normalized dataset with a global
linear regression plane over the context pairs (x,y).

We are assessing the prediction accuracy of our method-
ology with the baseline and average solutions. Furthermore,
we analyse the sensitivity of our model w.r.t. parameters:
C'; number of models to average, and K'; number of clusters
per device while keeping number of epochs 1" = 100. In our
comparative assessment we compare the methodologies:

« Baseline model (BL): all contextual pairs are transmit-

ted from all sensors to the sink and a single global
regression model is trained.
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Figure 3. 3D graph plot of the normalized context pairs (x,y) along with
a linear regression plane.

[[ Model  Prediction error || [[ Model  Prediction error ||
BL 0.1152 BL 0.114
1 0.1182 RA 0.1156
RA 0.1218 1 0.1176
DA 0.1266 DA 0.1208
AVG 0.1284 AVG 0.128
Table T Table 11

AVERAGE RMSE. MINIMUM RMSE.

o Ideal model (I): Since this is a test scenario we know
from which sensor S; each test data is taken. Thus, the
learning model f; is used to predict the result.

« Average model (AVG): All regression models are aver-
aged.

« Distance Averaging model (DA): The top-C' models are
considered for regression w.r.t. the Euclidean distance-
based closeness value are averaged in (4).

o Reliable Averaging (RA): The top-C' models are con-
sidered for regression w.r.t. closeness in (3) and aver-

aged in (4).
To experiment with the hyper-parameters C' and K, we ran
the test scenario with the following ranges C' € {1,...,n},

K € {1,...,10}. The learning rate for both the on-line K-
means and SGD linear regression was set to = 0.01. Each
combination was repeated 10 times and the result averaged
to remove any bias. In each run, a random 30% of the dataset
was used for testing.

Tables I and II show the average and minimum prediction
Root Mean Squared Error (RMSE) for each model, respec-
tively. As expected, the BL model has the least error but it
has to transmit the raw data at each step. Close behind it we
find the I model, in which only the model from the device
which owned the test data was used. This proves that, if we
manage to create a mechanism that perfectly guesses which
is the probability distribution of the query point x, we can
approach this level of accuracy. In fact, AVG, which is an

| BL
- 1
e~ AVG
m 0.13 || —— DAK = 1)
% —+ DA(K = 2)
> e DA(K = 5)
- = -DA(K = 10)
0.12 | |-e- RA(K = 1)
-5- RA(K = 2)
! ! \ \ -+- RA(K =5)
0 5 10 15 |—e—RA(K = 10)

Number of involved models C = | F|

Figure 4. RMSE vs. C for various K.

average over all the models, performs significantly worse
than I model. When compared to the BL model, the RA
model performs 50.2% better than the AVG model. This is
attributed to the fact that we are taking into consideration
the derived prediction error e(c*) of the local model whose
cluster c* is the closest to the incoming query point x and
not only dealing with the distance of c* to x. Notably, we
obtain 88.9% improvement in the minimum error (Table II)
with RA when compared to the AVG model. We observe
that the RA model approaches the BL and I models.

Figure 4 shows the performance of the models in terms
of RMSE against number of involved models C' = |F|
for different K number of clusters per regression model.
Overall, the worst performance by the RA and DA models
is obtained with C' = 1, i.e., we are taking only the top-1
model w.r.t. closeness value. This suggests that no matter
how detailed our clusters are (i.e., a high K value), we still
obtain a high RMSE since only one model is used. As C'
increases, we can observe that the models are more accurate,
since more knowledge from similar models is fused together.
The RA model clearly outperforms the other models with
C € {3,4,5} and even performs better than the I model.
This indicates that RA successfully manages to learn the
input data space by finding the most reliable regression
models in F. However, as C' increases further, i.e., C' > 10,
thus involving more regression models in F, we inevitably
gradually approach the AVG model, in which C' = n. We
found that the minimum RMSE for RA with K = 1 is
achieved with C = 4, i.e., 11% of number of the models.

Figure 5 shows the RMSE against epoch T for all the
models with K = 1 and C' = 4. This setting corresponds
to the best performance of the RA model. We can observe
that from the first epoch, the DA and RA models are much
more accurate than the AVG model. At the beginning since
the clusters are fluctuating frequently (due to the on-line
K-means algorithm), DA and RA perform very similarly.
However, as sensors capture more context pairs, RA out-
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performs DA due to the inclusion of the prediction error
in the closeness value. This indicates that including more
information in the clusters greatly improves our capability
in understanding which regression models to select when
averaging. The averaging function allows us to aggregate
knowledge, which minimizes errors and gaps of knowledge,
but at the same time we cannot aggregate all the knowledge
together without any sense of the underlying data.

Figure 6 shows the RMSE against epoch 7' for all the
models with K = 10 and C' = 1. This setting corresponds
the worst performance of the RA model but still managed
to surpass the AVG model. Since there is only one model
selected, i.e., C' = 1, it heavily relies on picking the correct
one; by selecting the wrong model, it incurs a huge penalty
as there is no averaging in (4). At the beginning RA and DA
models behave similarity w.r.t. RMSE, but eventually the
RA model consistently manages to choose more appropriate
regression models in F. On the other hand, the DA model
is not able to pick the best model as it consistently performs

much worse than the AVG model.

V. CONCLUSION

This paper focuses on leveraging the network edge with
machine learning distributed over IoT sensing and comput-
ing devices for improving prediction accuracy and com-
munication efficiency. We propose two model variants (the
DA and RA models) that successfully increase prediction
accuracy by aggregating pieces of knowledge from similar
local regression models derived from sensors. We introduce
the concept of model closeness by adopting adaptive vector
quantization of the input data space combined with regres-
sion performance statistics.

Our future research agenda includes the applicability of
the RA model variant in deep-learning tasks, especially
when the contents of the federated contexts are not iden-
tically distributed. Whilst we recognize that the proposed
methodology can be further enhanced, this should serve
as a reference point for further research in the field of
collaborative machine learning in IoT environments.
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