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Biofilm community succession: a neutral perspective
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Abstract

Although biofilms represent one of the dominant forms of life in aqueous environments, our understanding of the assembly

and development of their microbial communities remains relatively poor. In recent years, several studies have addressed

this and have extended the concepts of succession theory in classical ecology into microbial systems. From these datasets,

niche-based conceptual models have been developed explaining observed biodiversity patterns and their dynamics. These

models have not, however, been formulated mathematically and so remain untested. Here, we further develop spatially

resolved neutral community models and demonstrate that these can also explain these patterns and offer alternative

explanations of microbial succession. The success of neutral models suggests that stochastic effects alone may have a

much greater influence on microbial community succession than previously acknowledged. Furthermore, such models are

much more readily parameterised and can be used as the foundation of more complex and realistic models of microbial

community succession.

The theory of ecological succession is one of the earliest and
longest-standing concepts in all of ecology [1–3]. Tradition-
ally, the theory has been applied to plant communities to offer
explanations of how the diversity and structure of an ecosys-
tem changes once it starts to establish or re-establish. For
example, after a forest fire has occurred, succession theory has
been used to describe the patterns of the plants which are able
to colonise the habitat in the immediate aftermath of the event
and also in the following generations, as some initial colonisers
become locally extinct, while others come to dominate or are
joined by future immigrant species.

After this initial work, the idea of ecological succession was
examined in other systems such as phytoplankton [4]. How-
ever, it is only really in the last decade or two that there has
been significant research on how the theory might apply to
microbial systems [5–8]. Largely, this has been due to tech-
nological and methodological limitations, which are only
now being broken down. The advent of molecular methods
to analyse and quantify microbial communities has allowed
for a revolution in microbial ecology [9]. As such, in the last
couple of decades, we have had for the first time the tools at
our fingertips to examine the question of succession in
microbial ecosystems.

In the past decade, there have been several studies looking
at microbial ecological succession within biofilm communi-
ties [6, 10–13]. These previous works have examined commu-
nity structure and its dynamics from the first establishing

colonisers through towards mature biofilms. Certain key
signatures of these communities have been noted, which have
been used as the basis for the development of conceptual
models of microbial community succession. These features
include:

(1) Community diversity increased rapidly during the
first phase of biofilm establishment before dropping
again in the intermediate stage as some of these initial
colonising species become locally extinct.

(2) Diversity increases again during the third phase of
biofilm development.

(3) The total biomass increased with time in all phases,
but cannot grow unbounded.

Additionally, when multiple successional trajectories under
the same conditions are examined, the community struc-
tures are seen to be initially similar, before diverging slightly
and then finally converging. The period of diverging simi-
larity is seen to coincide roughly with the intermediate
period of biofilm development, after the initial colonisation
but before establishing into a mature biofilm [6, 14, 15].

From these observed trends, conceptual models have
described ecological succession in microbial systems [5, 16].
These have been largely niche-based theories, focussing on
the roles that local competitive differences between species
and the distribution of resources might have on biodiver-
sity and its dynamics. For example, the model described
by Jackson and co-authors [17] can be summarised thus.
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Initially, the substrate is available to many colonisers who
can briefly settle, irrespective of competitiveness. Once in an
immature biofilm, then competition for near-universal
resources (such as space) eliminates the poorest competi-
tors. Finally, as the community matures, spatial heterogene-
ities arise and niches establish in which globally inferior
competitors may find local advantages and establish again
within niches. These mechanisms explain the first, second
and third observed successional phases, respectively.

These explanations are certainly viable and offer plausible
explanations of the mechanisms underlying microbial suc-
cession. They are, however, reliant upon many ecological
concepts which, in practice, are extremely difficult to enu-
merate. For example, quantifying the number of available
niches or the diversity of resources through time is far from
a trivial task. The complexity involved in such concepts has
proven prohibitive to the development of quantitative (and,
therefore, testable or verifiable) models. As such, the pro-
posed ecological models remain purely conceptual and have
not been formulated mathematically with quantifiable
parameters. Here, we demonstrate that a neutral commu-
nity model [18–20] is able to offer an alternative explana-
tion of observed patterns throughout all stages of biofilm
community development. We propose this alternative to the
previously suggested niche-based mechanisms to describe
the drivers of microbial community succession.

In recent years, the development of neutral community mod-
els has been one of the most discussed and controversial theo-
ries in ecological modelling [21–26]. According to this theory,
all individuals within a local community are assumed to be
competitively equivalent and the population structure is
shaped solely by chance migration and birth-death events.
Some critics have attacked these models, finding the central
assumption too strange and unrealistic [27]. However, a great
number of studies have found that such models are able to
reproduce abundance patterns of species across many scales,
from trees to fish, and to micro-organisms [28–30].

The neutral community which we apply is the variant on
Hubbell’s original model [19], as described in Woodcock et al.
[28]. In this model, the number of individuals in the ecosys-
tem NT, is assumed to be always constrained by finite resour-
ces and space, with all individuals equally able to compete for
them. At regular time intervals, one individual is selected uni-
formly at random and removed from the community (death)
and its space is instantaneously taken by a replacement, either
an immigrant selected from the stream, which acts as the
source community (immigration) or else a member of the
local community is selected at random and replicates itself
(birth). These alternative mechanisms occur with probabilities
m and 1�m, respectively (Fig. 1).

Initially, we assume that the underlying substrate hosts no
bacterial community, as was the case with the experimental
studies to which we compare our model results. The surface
is then fully populated up to its initial maximum capacity
via a pure immigration process from individuals within the

source community. After the initial community is assem-
bled, the system always remains saturated at size NT individ-
uals, with each death being replaced either by a new birth or
immigration event. We make one additional assumption,
namely that the community size per unit area initially
increases but always remains bounded. This is consistent
with observed data [6], as total population sizes increase as
the biofilm community moves from being two-dimensional
into three dimensions, but the biofilm cannot keep growing
to infinite thickness. For the analyses presented, we assume
that once the ecosystem reaches its first saturation, then
additional growth as the biofilm matures and thickens fol-
lows a logistic growth curve. That is, we assume that NT is
described by

NT tð Þ ¼NTmin
þ

NTmax
�NTmin

1þ e
�s t�NTmin
ð Þ

" #

where NTmin
is the maximum population size before the film

begins to thicken, NTmax
is the maximum population size in

the mature biofilm and s is an appropriately chosen con-
stant governing the rate of biofilm thickening. The exact
nature of the growth function does not affect the analyses,
provided it is monotonically increasing but bounded. For
example, if Monod-like growth is assumed, the same phe-
nomena are observed. The assumption of logistic growth is
made here for simple proof of concept.

Using the neutral community model, we simulated (using
MatLab) the early stage development of biofilms of approxi-
mately 1mm2 up to 100 mm2, with bacterial cell densities
increasing up to a maximal density of 108 cells cm�2. These
figures are consistent with the cell densities found in real
stream biofilms [6]. Furthermore, we took the biodiversity
parameter � to be 15, which is consistent with previous find-
ings for water-borne microbial systems [28]. The immigrant
source (in this case, the stream water) community was simu-
lated 100 times and the average of these repetitions used to
minimise noise. Parameter values for NT 0ð Þ and s were more
difficult to obtain from the literature, so many different values
of these were utilised to test proof of concept. We ran simula-
tions with many parameter pairs to see what effect varying
these could have on our conclusions. We found that our
results were not dependent upon selection from a narrow
parameter range. For any sensible parameter values for NT (0)
and s, the same mechanisms were in force and the resulting
successional trajectories showed the same key signatures. The
exact selection of these parameters did alter the points in time
at which the diversity–time plots entered each of the three
phases of development (initial growth – decline – second
growth phase) and how pronounced the rates of diversity loss
and gain were, but the same three phase diversity–time
dynamics were observed (Fig. 2).

We found that our neutral model was able to reproduce the
general trends which have been reported in the literature
and only previously explained through more complex
niche-based models. Not only were we able to reproduce all
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three phases of the observed diversity–time dynamics, but
the divergence and subsequent convergence of parallel tra-
jectories through time were also generated by our model
(Fig. 3). Using our neutral model, we replicated the
observed trend that when biodiversity is seen to decline in
the microbial community, trajectories became increasingly
dissimilar before converging again in the later phase when
the species richness increased for a second time.

The key features which forge the shapes of the diversity–
time and similarity–time plots [31] relate to the accruement
of rarer species and the space available in the biofilm to sup-
port them. In a purely neutral model, such as the one pre-
sented here, there are no competitive advantages for any
given taxa in the system. However, purely on the basis of
their inferior numbers in the community, it is the rarer taxa
that are most likely to be excluded when there is increased
competition for space or resources. Conversely, the chance
of accumulating rare taxa increases as additional resources
become available.

During the first phase of development, there is little compe-
tition for space or resources; any individuals arriving on the
substrate can colonise and begin to grow. This drives the
phase of initial biodiversity growth. Once the substrate is
fully saturated, it is more difficult for new individuals to

invade and establish. There is now competition for space
and new individuals are only able to immigrate into the
space vacated by local deaths. During this phase, the space
left by dying individuals of rarer taxa are most likely occu-
pied by the offspring of individuals already in the commu-
nity, and so total biodiversity is likely to decline. This forms
the second phase of succession. Finally, as the biofilm
matures and thickens, it increases in volume and can main-
tain a larger community size, leading to the sustenance of
increased species richness.

Considering the similarity–time relationship, it is during the
phase of biodiversity decline that parallel trajectories
diverge. Again, this is driven by the change in the ability of
rarer taxa to remain in each system. During this period,
when rarer species are undergoing chance local extinctions
in each trajectory, it is the case that a rare taxon which has
suffered stochastic extinction in one system may still be
established in another, hence their similarity declines. These
rarer taxa can re-establish themselves in the majority of tra-
jectories only when there is greater space available in the
mature biofilm. It should be noted, however, that like many
phenomena driven by the loss or accumulation of rare taxa,
our observed picture of their behaviour may be distorted by
limitations in current molecular methods [32].

An
individual in

the local
community
is randomly

selected and
leaves the

system (dies)

With
probability
(1-m), a

remaining
member of
the local

population is
randomly

selected to
replicate

itself (birth).

With probability
m, the vacant

space is filled by
an individual

chosen from the
outside

metacommunity
(immigration).

Metacommunity

With probability
(1-m)

With
probability

m

Fig. 1. Diagram illustrating the mechanisms governing community assembly for the neutral model. The left-hand channel shows new

individuals being born into the system. The right-hand channel illustrates immigration from the source metacommunity.
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This demonstrates that a simple zero-dimension neutral
model can replicate both the diversity–time relationship com-
monly seen in experimental studies of microbial community
succession, and the similarity–time dynamics for parallel tra-
jectories. Although some of the underlying assumptions may
seem overly simplistic, it cannot be dismissed as a viable alter-
native explanation to niche-based models of community
succession. What we have developed here is the first mathe-
matical model of these phenomena in microbial systems, one
based on quantifiable (and mainly directly measurable)
parameters, rather than qualitative concepts which are diffi-
cult, or perhaps even impossible, to measure.

Just because we are able to explain many of the features
observed in experimental systems does not mean that we
regard our model as the most accurate description of bio-
film community assembly. For example, there is consider-
able evidence for the effects of hydrodynamic regimes
shaping biofilm architecture [6, 33, 34]. This feature is not
incorporated into our zero-dimensional model and would
be required if seeking a reasonable description of communi-
ties at a broader scale than presented here.

Nonetheless, we maintain that this simple neutral model is a
good first step towards a more accurate description of
microbial community succession. It may perhaps seem sur-
prising to some just how much of the complexity of
observed abundance patterns can be explained by purely
stochastic birth-death-immigration events alone. Even
when complex biodiversity patterns are observed, these do
not preclude the possibility of the system being accurately
described by a neutral model. In one of his works on neutral
ecology [35], Houchmandzadeh describes the aim of the
theory as being ‘not to deny or diminish the role of environ-
mental factors, but to stress that the observation of patchy
spatial distributions of species in natural environments
should be not be considered surprising or non-random by
itself’. By looking at the stochastic birth-death-immigration
events in isolation of the regional competitive advantages,
we can first calculate how much of the observed community
behaviour may be attributed to demographic stochasticity.
Once this has been quantified, additional complexity can be
incorporated into the model development, where it is shown
to be required.
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Fig. 2. Diversity–time plots for biofilms of area 1mm2, 10mm2 and

100mm2. The simulations were run until a stable equilibrium was
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Fig. 3. Similarity–time plots for biofilms of area 1mm2, 10mm2 and

100mm2. Similarity is calculated using the Sorensen index. The

parameter values used in these simulations were identical to those

used for Fig. 2. Note that the time period during which the trajectories

are seen to diverge in similarity coincides with that of overall decrease
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