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Abstract. The four-qubit states |x/), exhibiting genuinely multi-partite entangle-
ment have been shown to have many interesting properties and have been suggested
for novel applications in quantum information processing. In this work we propose a
simple quantum circuit and its corresponding optical embodiment with which to pre-
pare photon pairs in the ‘ X > states. Our approach Uses hyper-entangled photon pairs,
produced by the type-I spontaneous paramietric doewn-conversion (SPDC) process in
two contiguous nonlinear crystals, together with/a set of simple linear-optical transfor-
mations. Our photon pairs are maximally hyper-entangled in both their polarisation
and orbital angular momentum (QAM).vAfter one of these daughter photons passes
through our optical setups.we obtain photon pairs in the hyper-entangled state | XOO>7
and the |xij> states can berachieved,by further simple transformations.

PACS numbers: 42.50.Dv
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1. Introduction

Quantum entanglement is known to be at the heart of quantum cemputation, and
quantum information, in which it is the fundamental resource of many information
processing tasks including quantum dense coding, quantum cryptography and quantum
teleportation [1, 2, 3, 4, 5, 6, 7, 8]. It is also required for violation of.thefamous Bell
inequality [9] and other demonstrations of quantum nonlocality [10]. While bipartite
entanglement is rather well understood [11, 12, 13], the propertiessand. characteristics of
the various types of multipartite entanglement remain a topic of active Tesearch [14, 15].
In particular, there is much research to show that multipartite entanglement is
helpfully employed in several quantum communication protoeels, ‘including universal
error correction [16], quantum secret sharing [17], telecloning [18], and deterministic
secure quantum communication [19]. As one might €xpect, inereasing the number of
entangled particles leads to stronger and more dramatic demenstrations of nonlocality,
or we could say that entangling greater numbers-of,particles leads to a wider range of
nonclassical effects that can be observed [20, 24]. There.are two well-known classes of
genuinely tripartite entangled states: the,Greenberger-Horne-Zeilinger (GHZ) state

|GHZ) = —=(]000) + |111) ) age, (1)

7
and the W state

W) = —(1001) + [010) %4100} e 2)

V3

These are inequivalent under stochastic local operations and classical communication
(SLOCC), which means they canmet be converted to each other under SLOCC
operations [22]. For this reason, each of these has distinct entanglement properties.
With the GHZ state, the Bell—t?pe inequality is maximally violated [23, 24], and it can
be employed for open-destination teleportation by using the protocol of A. Karlsson and
M. Bourennane [25].7On the'othier hand, and in contrast to the GHZ state, losing one
of particles in the W-statéxdoes not make its reduced state separable [26]. Each of these
may be extended/to more.than three particles in a natural way:

1
GHZ)w =—— (10)®Y +]1)%N) 3a
GHZ) f (1) + 1)) (30)
W) Z 0)#07Y 1) j0) 2. (30)
In 2006 Yeo and Chua proposed a new type of four-qubit entangled state [27]
X00> ‘CO> + ‘C1>)abcd7 (4(1)
Xij>:a ®0]®I®I’XOO>, (4b)
with

1
¢ > = (10000) — [0011) —[0101) +[0110)), (4c)

1
¢ = 5 (11001) + 1010) + [1100) + [1111)), (4d)
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where ¢/ are the Pauli matrices and I = ¢° is the identity operator. Thesé states
cannot be transformed into the four-qubit forms of the GHZ and W states by SLOCC
and so form a distinct class of entangled states. In fact the state |x**) appearedyalso
in an earlier study by Lee et al of entanglement teleportation [28], which showed that
this state can be produced by a nonlocal transformation of the tensoréproduct of EPR
states : |®F)_,, ® |®F),,, where |®F) = (]00) + [11))/v/2 [5]. Unlike other classes
of multipartite entangled states, the entanglement of these states does not originate
from the entanglement between any particle with any others but purely from pairs of
particles [27]. For example, there is maximum entanglement between t};following pairs:
(a,b) and (c,d), and (a,c) and (b,d), and some non-maximal éntanglement between (a,d)
and (b,c). As with the product of EPR states, these states can be used to teleport an
arbitrary two-qubit state from one place to another distant place and can also be used as
resource of quantum dense coding [27, 28]. Moreoverj as the sixteen x-type states form
an orthonormal basis for the four-qubit space, they provide a néw type of representation
for four-qubit systems [29].

The entanglement properties of the y-typeentangled states have been of interest in
the quantum information field. It has begen shown recently that these entangled states
have been employed as a quantum resourcee inwarious, recently proposed protocols. By
utilizing the non-locality of the y-type entangled states as a quantum channel, several
quantum information splitting protoeolss[30, 31, 32] and a quantum state splitting
scheme [33] can be achieved. Dong el alyproposed the scheme to teleport an arbitrary
two-photon polarization state by using a two-photon, polarization-entangled y state as
the resource for teleportation [34], where the criterion of faithful teleportation is given
in [35, 36]. This scheme is the realization of the protocol given previously by [37].
Additionally, making use of'swapping entanglement of the entangled y states, several
quantum protocols for quantim secure communication [19, 38, 40, 41] and quantum
steganography [39] avere présented. Lin et al presented the protocol for the quantum
secure direct commumication by applying quantum superdense coding [42].

The novel properties and applications of the y states led, naturally, to interest in
how they mightabe prepared efficiently. In 2009, Liu and Kuang proposed that these
entangled statés'may.befgenerated in four atomic qubits by employing the interaction
between light and four atems placed in four separate optical cavities [29]. In the same
year, Wang,and Zhang published a scheme with which to produce these states with
a simple experimental setup employing maximally and non-maximally polarization-
entangled,photons to encode the state of the output photons [43].The aim of our work
is to propose an alternative scheme to generate the states |x“) by using two hyper-
entangled photons, which are maximally entangled in both their polarization and orbital
angular momentum.

The structure of this paper is as follows. Section 2 introduces a required
transformation that results in an entangled photon pair in the state |x"), along with
its corresponding quantum circuit. In section 3 we explain how each optical element
affects the composite state, polarization and orbital angular momentum, of a light beam.
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Laser Pump BBOs

B

Optical Scheme

Figure 1. The optical alignment to create hyper-entangled photon pairs by coherent
sequential spontaneous parametric down-conversions (SPDC),

Finally, section 4 presents our proposed optical system for implemefiting the quantum
circuit and further transformations of the |x%°) to prepare any one of the states |x%).

2. Transformation of two entangled photons

In [44], photons that are hyper-entangled in both their polarization and orbital angular
momentum (OAM) are obtained by employing a»35lsnm Argon ion laser with 120
mW power pumping two connected [-barium borate (BBO) crystals whose optical axes
perpendicularly aligned. Photon pairs generated from the first crystal are horizontally
polarized, while the second crystal produees the vertiéal polarization. As the non-linear
crystals are in close proximity, the spatial modes,of the output photons originating in
each of the crystals are identical. Thusythe (unnormalized) state of the emitted photon
pairs is

(IHH) + |[VV)Yap® (IRL) +@|GG) + [LR))4p ()

where H and V' denote horizontal andwertical polarizations, respectively, while R, L and
G represent the modes with OAM +h, —h and 0 respectively for each photoni. The
superscripts p and o indicate the polarization and orbital angular momentum states,
respectively, while the subscripts /A and B indicate that it is the state of photon A or
B respectively. The'sealar quantity o is determined by mode-matching conditions. The
photon pairs are also entangled in their emission times and frequencies, but in this work
this type of entanglement, is important only in that it allows the use of arrival time at
the detectors to'select uniquely photon pairs that are entangled. It is evident that we
can obtain the maximally hyper-entangled state if the |GG) component is omitted. This
may be achieved by spatial filtering to remove the beam centre or, more rigorously, by
employing & mode-sorter [47] to select only odd-valued OAM states. The selected state
of the emitted photon pairs then becomes
@) o|wt) = L(HH) +[VV)ap © (RL) + |LR)%s

= 2100} + 1) © (101) +10))%5 (©
To 6btain (6) we encode |H)” (|]V)*) to be |0)” (]1)”) and |R)® (|L)°) to be |0)° (]1)°).
We can finally rewrite the state in terms of the superposition of the product states of

1 The precise form of this state contains also states with higher orbital angular momentum, but the
relative sizes of these contributions can be controlled[45, 46].

Page 4 of 14
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Figure 2. The quantum circuit corresponding to the transformationiof the state of
photon B given in (8), where |p) 5 and |o) 5 are the polarization‘and OAM parts of the
composite state of the photon.

the photons A and B as

X).45 = 510004101}, + [01)4 100) 5 + 103 [11) 8T, 10) ). (D)

The first qubits of photons A and B, in this equation,mow represént polarization states
of these photons while the second represent their OAM states, so that, for example,
|01) , represents the composite state |H)” |L)? of the photon A. We note the symmetric
property of the photon pair: swapping the states of photens A and B leaves the state
unchanged. To obtain |x%), the state of one of thé photons should be transformed as

000, — —=(10) = [01)),
01, — <= 100) — i .
100 — =108 [11))5,
110~ <5 (116] + 0T

The above transformation is described by the quantum circuit shown in figure 2. The
first quantum gate in the cireuit is the CNOT gate such that the target qubit will be
flipped if the associated contreliqubit is |0). If the swap gate is not included, we obtain

TR + X)), (9a)
with

e %(|0000> —10011) — |0110) + [0101)), (9)

)\1> = ;(|1001> +[1010) + [1100) + [1111)) = ]g1>, (9¢)

whieh'is thestate |x*) proposed by Lee et al in 2002 [28]. Including the swap gate at
the end sefves only to ensure that the OAM state of the photon B is realized to be the
third qubit while its polarization is the last. After the given transformation, the state
of the photon pairs turns out to be

) = 2= ([¢®) + |¢*))a, (10)
V2

as desired.



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - JOPT-104010.R2

Proposed optical realization of a two photon, four-qubit entangled x state 6

3. Optical realization

Before discussing the proposed optical system realizing the given tramsformation, we
first explain how each of the optical elements we will employ act on the composite
state of the photons. Let us start with birefringent wave plates, the, effect of which
on polarization of light is well known. Both half- and quarter- wave.plates are wave
retarders; their function is to delay the phase of the polarization/component lying in
the direction of their slow axes by the phase m and 7/2 relativerto,the phase of the
perpendicular component. The Jones matrices, which are used tofdéscribe effects of
optical elements on optical polarization, are for quarter andshalf'wave plates:

cosf —sinb 10 cosf siné
Jq(e)_<sin9 cosf )(0 i)(—sin@ cosH)

[ cos?’0+isin®f (1 —i)sinfcosh
(1 —1i)sinfcos® sin?f fieos’d )’

Jh(6) = cosf —sind 1 0 cosf) siné
PP sing cosf 0 -1 —~sinf cos®

cos20 sin26
N ( sin20 — cos 26 ) (115)

(11a)

The angle 6 gives the orientation, relativesto the horizontal, of the fast axis [48, 49].
As these birefringent wave plates affect only the polarization of photons while leaving
the OAM modes unaffected, the, total effects’of these wave plates on a composite state
correspond to the transformation

I, o)y =J, &1 |p,\0> with 7= q,h, (12)

where |p,0) and [p/, o') are thé composite states of a photon before and after passing
through the optical elements.

A Dove prism is an optical element frequently employed in optical orbital angular
momentum experiments, which acts to flip the sign of the orbital angular momentum
of light. For example, in this work it converts the OAM mode from [ = 1 to —1 or
vice versa. A< Doveiprism, whatever shape it is, was originally invented to invert an
image, which means«f it is included into the path of a light beam, it will generally
give some refle¢tion and refraction to the beam. As, according to the Fresnel equations,
both reflection and refraction introduce change in beam polarization, a Dove prism has
a particular effect on both polarization and OAM modes of an incident beam depending
on/its individual shape. In this work we consider M-shaped Dove prisms, which are
shown in figure 4, as their Jones matrix is rather simple. Indeed this type of Dove prism
was originally invented to be a quarter wave retarder [50]; thus its effect on polarization
isssimply the same as a quarter-wave plate, with Jones matrix:

JD:<(1) ?) (13)

Page 6 of 14



Page 7 of 14

©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - JOPT-104010.R2

Proposed optical realization of a two photon, four-qubit entangled x state 7

Therefore, we can describe its effect on a composite state by
Ip',0") = Jp ® a” |p,0) . (14)

As a result, if one wishes only to invert the OAM state of an incident beam while leaving
its polarization unaffected, one needs to add a quarter-wave plate before or affer the
Dove prism to compensate its phase retardation effect.

Another optical element that will be discussed is a polarizing beam splitter (PBS).
Its function is rather obvious in its name as it splits an optical beamninto two different
distinct beams whose travelling paths depend on the optical polarization of the beam.
In this work all PBSs are considered to transmit horizontal and reflect vertical polarized
beams. Therefore, we can treat each type of optical beams sepatately, and it allows us
to realize control gates for composite states such that the polarization and OAM states
are the control and the target qubits respectively.

As an illustration of the operation of these deviges, let us'eonsider the interferometer
given in figure 3. The first PBS separates the ineidentsbeam into two different paths.
The horizontally and vertically polarized beams travel aléng the internal paths 1 and
2 of the interferometer respectively, and they are/combined again at the second PBS.
Therefore, if we introduce a Dove prism together with a quarter-wave plate into one of
these paths, the overall effect will be to flip thexXOAM state of the composite system
for just one component of polarisations=,that corresponding to the path in which these
optical elements are put. For example,iin figure 3, we put a Dove prism and a quarter-
wave plate into the path 2, ge that if thelincident beam is horizontally polarized, it
will be forced to travel along the path 1 and not encounter any elements affecting its
composite state, and its composite state is untouched. On the other hand, if the beam
is vertically polarized, it will ]%3 only permitted to go along the internal path 2 and
encounter both the M-shaped/Doye prism and the quarter-wave plate. The OAM part
of the composite state s flipped in this case. This means that for a composite state of
polarization and OAM the interferometer given in this figure acts as a CNOT gate such
that if the polarizatiom.qubits the control qubit in this case, is [1)” the OAM qubit will
be inverted, whilé it is left, unchanged if the control qubit is |0)”. Devices built on this
principle have been msed successfully, to measure both the OAM and the spin for light
at the single photon level [47, 51, 52].

At this peint, one can notice that, according to (115), single-qubit gates, such as
the Pauli gates and Hadamard gates, for polarization can be realized by appropriately
orientated half- wave plates. For example, the realizations of the Z- and X-gates are just
half-wave plates having fast axes parallel to and oriented at an angle /4 with respect
to the horizontal plane. The Y-gate of polarization qubits can be obtained by using the
fact thatvo*c” = io?Y which means we have to use two half-wave plates with different
orientation to realize the Y-gate.

The complex amplitude of a Laguerre-Gaussian (LG) beam has the phase dependent
term, exp(il¢) where [ is the orbital angular momentum quantum number of the light
beam [53]. Thus when one rotates the beam by an angle « this term will become
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Path 1 \

PBS

Path 2 90°

\ PN

Dove prism Qw

Figure 3. This figure shows the interferometer that realizes the CNOT gate for the
composite state by adding an M-shaped Dove prism andra.quarter-wave plate with its
fast axis at angle m/2 with respect to the horizontal plane into path 2. Alternatively,
the same result can be given without the quarter-wave plate if both internal paths are
adjusted such that the relative phase shift between different polarizations becomes a
global phase shift of photons. 4

exp(il(¢ + «)), or in other words rotation of‘an LG beam contributes a phase shift of
A = la [54, 47]. An optical beam can be rotated by suitably oriented Dove prisms. A
non-rotated Dove prism gives a non-rotatedyreflected image, and when the Dove prism
is rotated by an angle (3, the reflected image is rotated through 23. Non-rotated Dove
prisms act as an X-gate for OAM qubits as'they change the OAM state of an optical
beam to be the opposite stategfrom, |l) to |—I). The single-qubit Y- and Z-gates for
OAM can be implemented as'follows: ‘a'Dove prism rotated by 7/4 with respect to the
vertical plane transforms an OANM, qubit as

0)° — "2 |1,
1)” 32 [0y

when [ = +1. Thig'is exactlythe transformation corresponding to acting with a Y-gate

(15)

on a qubit. As we know that c”c¥ = io?, one can implement the Z-gate of OAM qubits
by using two Deve prisms: non-rotated and rotated by 7/4 Dove prisms, respectively.
We must algo remember to take account of the fact that each Dove prism has an effect
on the polarization,/as discussed above. The total effect of the rotated Dove prism at
angle #/on a composite qubit can thus be written as

y | 0 6219
i) =a0e (S ) no (10

To eompensate for this a quarter-wave plate should be added before or after each Dove
prism. The physical realizations of the Pauli gates are depicted in figure 4.

All effects of optical elements we discussed above on composite qubits are
summarized in table 1.

Page 8 of 14
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Y-gate

27 Figure 4. The particular alignments of M-shaped Dove prisms together with quarter-
wave plates, to compensate their polarization effect, which provide physical realizations
of the Pauli gates for OAM qubits when /'=+1. The dashed arrows represent the fast
31 axes of the quarter-wave' plates:

34 4. Optical system

36 In this section, we seek an (optical system that transforms the composite state of
the photon B so as to prepare photons A and B in any one of the entangled states
39 |x7). We start with the/opti¢al transformation corresponding to the quantum circuit
40 in figure 2. This quantum eircuit’ includes two different CNOT gates, two single-qubit
42 gates, Hadamard and Y-gates, and the swap gate at the end. We use optical elements
43 corresponding to each of these.

44 The principle of the first CNOT gate in the circuit is that if the control qubit,
46 the polarizatiomsqubit, is in the state |0)”, then the target qubit, the OAM qubit,
47 will be flipped, avhile ithis left unchanged if the control qubit is [1)”. As mentioned
in the previous section, the CNOT gates in the quantum circuit can be realized by

52 Table 1. Summary of the effects of optical elements on composite qubits

54 Optical Elements Effects on composite qubits

56 Quarter-wave plate fast axis at angle 6 Uy(0) = Ju(0) @ 1
57 Halfswave plate with fast axis at angle 8 Uy,(6) = Ju(0) ® T

2i0
59 Rotated M-shaped Dove prism at angle § Up(6) = J,(0) ® < 80219 eo )
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interferometers with a M-shaped Dove prism in one of their internal paths. Regall that
the logical qubits, |0)” and |1)”, are encoded as horizontal and vertical pelarization
states, |H) and |V'), respectively. This means we can realize the first CNOT gate by, the
same interferometer as given in figure 3, but the Dove prism must be in the internal path
1, the path associated with the horizontally polarized component of $he input beam,
rather than path 2. As the Dove prism leaves horizontal polarizationfunaffected, we do
not need to add a quarter-wave plate in this case. The second CNOT gate is slightly
different from the first one as it will flip the target qubit if theteontrel qubit is in the
state |1)”, and do nothing if the control qubit is |0)”. This means the second CNOT
gate can be exactly realized as the interferometer in figure 3.

According to (11b), we can explicitly see that the Jones maftrices of half- wave
plates with optical axes in the horizontal plane and at the,angle 7/8 are exactly the
matrix representations of the Pauli Z and Hadamard gates respectively. This implies
the Hadamard and Z gates in the circuit can then be realized as appropriately oriented
half-wave plates.

Recall that even without the swap gate at the end we still arrive at a realization
of the state |x%°). The swap gate of the quantum eircuit can be implemented easily by
relabelling the composite state of photon B assmentioned earlier. With this swap gate,
Yeo’s version of the |x%) state is finally obtained.The optical system corresponding to
the quantum circuit given in figuré 2 is‘illustrated in figure 5.

With (4b), once we obtain |x%°), afy of the 15 other y-type four-party entangled
states can be generated using only local Pauli operations:

X”> =0'® o’ ®[®[‘XOO>AB-
At this point our task is te i{Qplement Pauli gates for both polarization and OAM
states. As mentioned in section 3,-the Pauli gates of polarization and OAM qubits can
be implemented by half-wavé plates and Dove prisms (together with quarter-wave plates
to compensate the polarization effect of these Dove prisms) respectively. For example,
the tensor productrefithe Pauli X and Y operators for polarization and OAM qubits,

respectively, o7 @ c¥, can\be realized by a half-wave plate with fast axis at angle 7/4

and a 7/ 4—rot;ted M-shaped Dove prism together with a quarter-wave plate with its
fast axis at m/4 with.respect to the horizontal plane. It follows that an arbitrary state
|x*) in the set’ of y~type states can be realized by applying birefringent wave plates
and M-ghaped Dove prisms with specified orientations after the optical system shown

in figure 5.

5. Conclusion

We have presented the operation required to transform the maximally hyper-entangled
state of a photon pair, obtained from SPDC process, into |x*), a state with genuine
four-party entanglement. We have shown the effect of each optical element we use
on the composite state, and an optical system suitable for preparing |x°’) has been

Page 10 of 14
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g PBS

Mirror
: ~ N
7
8 Dove ptism
9
10
11
12 irm\ \ PBS
13 v Glass
14 22.5°
15 HW / ~_
16
17 HW /
18 N

90° Mirror

2 w N N\
21 -~ T e
22 Dove prism Qw
23
24
25 S S A - A
26 Glass PBS
27
28 Figure 5. This figure shows our proposed optical system corresponding to the
29 quantum circuit given in figure 2. The lengths of the pieces of glass in the
32 two interferometers are/Selected so‘as to compensate for the delay associated with
32 propagation through the Dove prisms. The quarter wave plate in the second
33 interferometer can be removed ifithe interferometer path length is suitably adjusted.
34
35 , 3 . _
36 proposed. To obtain any other of the ystype states | /), further simple transformations
37 are required and these may be\ realized using birefringent wave plates and M-shaped
gg Dove prisms.
40 As the proposed optical system requires only readily available linear optical
j; components, preparation of ‘the desired states should be possible using current
43 technology. Unlikesprevioustwork the proposed scheme does not require any post
44 selection, so the efficieney of successful transformation does not depend, intrinsically,
jg on the efficiency of\photon detectors. We hope that our scheme for the production of
47 elements of this glass of multipartite entangled states may be realized experimentally
48 and that doingfso will give us better insight of multipartite entanglement, and enable
gg the demonstration’of novel quantum information protocols.
51
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