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a b s t r a c t

High-performance computing on heterogeneous platforms in general and those with FPGAs in particular
presents a significant programming challenge. We contend that compiler technology has to evolve to
automatically optimize applications by transforming a given original program. We are developing a
novel methodology based on type transformations on a functional description of a given scientific kernel,
for generating correct-by-construction design variants. An associated lightweight costing mechanism
for evaluating these variants is a cornerstone of our methodology, and the focus of this paper. We
discuss our use of the roofline model to work with our optimizing compiler to enable us to quickly
derive accurate estimates of performance from the design’s representation in our custom intermediate
language.We show results confirming the accuracy of our costmodel by validating it on different scientific
kernels. A case study is presented to demonstrate that a solution created from our optimizing framework
outperforms commercial high-level synthesis tools both in terms of throughput and power efficiency.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Higher logic capacity and maturing high-level synthesis (HLS)
tools are drivers to mainstream adoption of FPGAs in high-
performance computing (HPC) and big data. The fine-grained flex-
ibility of an FPGA comes with the challenge of figuring out and
programming the best architecture for a given scientific kernel.
HLS tools like Maxeler [23], Altera OpenCL [6], Xilinx SDAccel [27]
and LegUp [3] have raised the abstraction of design entry consid-
erably andmade it easier to program FPGAs. Parallel programmers
with domain expertise are however still needed to fine-tune the
application for performance and efficiency. ‘‘Portable’’ heteroge-
neous frameworks like OpenCL are playing an important role in
making heterogeneous computing more accessible, but they are
not performance-portable across devices [24]. The performance
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portability issue is all the more acute with FPGAs. We contend
that the design flow for HPC needs to evolve beyond current HLS
approaches to address the productivity gap between the capacity
of modern devices and our ability to efficiently program them.
Our proposition is that for true performance portability, the design
entry should be at a higher level of abstraction, and that the task
of generating architecture-specific parallel code should be done by
the compilers

Our proposal is to allow design entry at a fundamental and
generic abstraction, inspired by functional languages with expres-
sive type systems like Haskell1 or Idris.2 The resultant flow, which
we call the TyTra flow, is based on type-based program transfor-
mations (or type transformations for short) as shown in Fig. 1. The
design entry is at a pure software, functional abstraction, with no
explicit parallel programming required by the user.We transfer the

1 http://www.haskell.org.
2 http://www.idris-lang.org/.
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Fig. 1. The TyTra design flow, showing design entry in a functional language, to
an optimized FPGA solution. The dotted line marks the stages that are currently
automated.

Fig. 2. The use case of the costmodel that is integrated inside the TyTra design flow.

task of variant generation, search space exploration and converg-
ing on the optimal solution to the compiler. Program variants are
generated using type transformations and translated to the TyTra
intermediate language (IR). The compiler internally analyses the
variants and emits code in a hardware description language (HDL),
which is integratedwith an existingHLS programming framework.

A key enabler of our approach is the performance and cost
model embedded inside our flow, based on roofline analysis [31].
An automated search space explorer based on the roofline model
is an entirely novel proposition to the best of our knowledge, and is
the main contribution of this paper. The use case of our cost model
is shown in Fig. 2. A one-time set of synthetic micro-benchmark
experiments are required for eachnewFPGA target. Then, given the
IR descriptions of multiple, functionally equivalent design variants
of a given kernel,weobtain estimates of their cost andperformance
on a roofline model, and pick the best performing variant from the
search space. Note that the performance estimate on the roofline
requires estimates of FPGA resource utilization and achievable
memory bandwidth for each variant, and our methodology for
calculating these estimates forms an important contribution of this
work.

Our work is oriented towards the general area of high-
performance scientific computing. Such applications are generally
amenable to streaming, leading to pipelined implementations on
FPGAs, and our framework is optimized for this pattern. However,

Fig. 3. The TyTra platform and memory model. Both these models map OpenCL
abstractions to the FPGA architecture.

in principle, our approach is meant to be generic and comprehen-
sive.

The remainder of the paper is organized as follows: We first
present the models of abstraction that we have developed or
adopted in our framework. We then show how design variants are
generated in the search space using type transformations, and how
these variants are represented in our custom IR. Next we present
the roofline analysis model, followed by a section on how our IR
based compilation approach allows us to quickly and accurately
estimate the parameters required for the roofline analysis.We give
an illustration of a comparative roofline analysis in the TyTra com-
piler, and an optimization case study using our approach. We fi-
nally present some related priorwork before concluding the paper.

2. Models of abstraction in the TyTra framework

In general, we have adopted the models as defined in the
OpenCL standard [28] wherever possible, as this provides us with
a familiar anchor, and suits our aim of eventually making our
compiler work not just for FPGAs but for truly heterogeneous
platforms.

2.1. Platform and memory hierarchy model

The platformmodel, based on theOpenCLmodel, alongwith the
memorymodel described later, is shown in Fig. 3. The Compute Unit
is the unit of execution for a kernel. The Processing Element (PE)
is the custom datapath unit created for a given kernel, and may
be considered equivalent to a pipeline lane, which may be scaled
(i.e. replicated) for parallelism if there are enough resources on the
FPGA.

As with the platform model, we adopt the OpenCL abstractions
to describe thememory hierarchy on the FPGA, also shown in Fig. 3.

2.2. Kernel execution model

The execution model too is adopted from the OpenCL standard,
using terms like kernel, work-item, work-group, NDRange, global-
size, and kernel-instance. Readers are referred to the OpenCL stan-
dard [28] for the definition of these terms.
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Fig. 4. The three forms of execution based on how the memory hierarchy is
traversed across multiple iterations of the top loop.

2.3. Memory execution model

A typical host–device partitioned application can have different
forms of execution with respect to data movement across the
memory hierarchy, asmultiple kernel-instances3 are executed. This
form effects the achievable performance significantly. Hence, our
framework requires a structured way of taking this into account
when estimating performance.

We have defined three forms of memory execution scenarios,
which can be understood with reference the memory hierarchy
(host ↔ device-DRAM ↔ device) and to Fig. 4. Form A is where
the top loop – the one that repeatedly executes the kernel over
the entire index-space (generally the time loop in scientific appli-
cations) – is outside the host↔device-DRAMmemory transfers, so
these transfers take place on every iteration. A Form B execution is
where the time loop is inside the host↔device-DRAM transfer, but
outside the device-DRAM↔device transfer, so the host↔device-
DRAM transfer happens only once. The iterations in a kernel-
instance then access the data from the device-DRAM, i.e. the global
memory. Form C is where the arrays for all work-items are small
enough to fit inside the local memory. In such a case, the time loop
over the kernel-instance is inside both the host↔device-DRAM
and device-DRAM↔device transfers.4

2.4. Data pattern model

Streaming from the globalmemory is equivalent to looping over
an array. Since the pattern of index access has a significant impact
on the sustained bandwidth (see Section 6.3), this needs to be
modelled. Our prototype model currently considers two patterns:
contiguous access and strided access with constant strides. We
plan to explore more sophisticated models in future versions.

3. Generating variants in the search space through type trans-
formations

A defining feature of our compiler is the generation of the
search space by creating correct-by-construction variants from a
functional, high-level, baseline description of a kernel through type
transformations. Each programvariantwill have a different cost and
performance related to its degree of parallelism. Using our roofline
based cost model, we can then select the best suited instance in a
guided optimization search.

3 A kernel-instance is execution of the kernel for all work-items in the NDRange.
4 We expect this model to evolve to take into account tiling the NDRange such

that we can have a finer-grained spectrum between these three main forms.

Exemplar: Successive over-relaxation (SOR)

We consider a SOR kernel, taken from the code for the Large
Eddy Simulator, an experimental weather simulator [21]. The ker-
nel iteratively solves the Poisson equation for the pressure. The
main computation is a stencil over the neighbouring cells (which
is inherently parallel).

We express the algorithm in a functional language. Functional
languages can express higher-order functions, i.e. functions that
take functions as arguments and can return functions. They sup-
port partial application of a function, and have strong type safety.
These features make them suitable as a high-level design entry
point, and for generating safe or correct-by-construction program
variants through type transformations. We use a dependently-
typed functional language Idris because it supports dependent
types which the type transformations require [2]. This feature is
crucial for our purpose of generating program variants by reshap-
ing data and ensuring correctness through type safety.

The baseline implementation of the SOR kernel in Idris is

1 ps = map p_sor pps p rhs cn

p, rhs, and cn are the original vectors in the application, which are
passed to the function pps that returns a single new vector equal
to size of the 3D matrix im.jm.km. Each element of this vector is a
tuple consisting of all terms required to compute the SOR, i.e. the
pressure p at a given point, and its 6 neighbouring cardinal points,
the weight coefficients cn and the rhs term for a given point.

Each tuple from this 3D matrix is passed to the computation
kernel p_sor which computes the new value for the pressure:

1 --’pt’ is the tuple passed to p_sor
2 --which then returns new pressure
3 --based on original and delta
4 p_sor pt = reltmp + p
5
6 --extract scalars from tuple ’pt’
7 where
8 (p_i_pos ,...,p,rhs) = pt
9

10 --compute pressure delta ’reltmp’
11 reltmp = omega * (cn1 * (
12 cn2l * p_i_pos + cn2s * p_i_neg
13 + cn3l * p_j_pos + cn3s * p_j_neg
14 + cn4l * p_k_pos + cn4s * p_k_neg )
15 - rhs) - p

The high-level function map performs computations on a vector
without using explicit iterators. So map applies p_sor to every
element – which is a tuple – of the 3D matrix returned by pps,
resulting in the new pressure vector ps of size im.jm.km.

Our purpose is to generate variants by transforming the types
of the functions making up the program and inferring the program
transformations from the type transformation. The details and
proofs of the type transformations are available in [30]. In brief, we
reshape the vector in anorder and size preservingmanner and infer
the corresponding program that produces the same result. Each re-
shaped vector in a variant translates to a different arrangement of
streams, over which different parallelism patterns can be applied.
We then use our cost model to choose the best design.

As an illustration, assume that the type of the 1D-vector is t
(i.e. an arbitrary type) and its size im.jm.km, which we can trans-
form into e.g. a 2-D vector with sizes im.jm and km:

1 pps : Vect (im*jm*km) t --1D vector
2 ppst: Vect km (Vect im*jm t) --transformed 2D vector
3
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Fig. 5. Using type transformations like reshapeTo, a baseline program which
represents processing all im.jm.km items in a single pipeline fashion (top) is
converted to a program that representsN concurrent pipelines, eachnowprocessing
(im.jm.km)/N elements.

Resulting in a corresponding change in the program:
1 --original program maps over 1D
2 ps = map p_sor pps
3
4 --reshaping data
5 ppst= reshapeTo km pps
6
7 --new program with nested map over 2D
8 --with parallelism annotation
9 pst = map-par (map-pipe p_sor) ppst

where map p_sor is an example of partial application. Because ppst
is a vector of vectors, the outer map takes a vector and applies the
function map p_sor to this vector. This transformation results in a
reshaping of the original streams into parallel lanes of streams, im-
plying a configuration of parallel processing elements (pipelines)
in the FPGA. Such a transformation is visualized in Fig. 5.

By applying different combinations of parallelism keywords
pipe, par and seq, and reshaping along different dimensions, the
search space very quickly explodes even on the basis of a single
basic reshape transformation. Developing a structured, accurate
and fast evaluation approach is a key challenge of our approach.

4. Expressing designs in the TyTra intermediate representation
language

The high-level description of the application kernel is described
in Section 3 and not directly costable. Generating and then costing
HDL code through synthesis andplace-and-route on the other hand
is too time-consuming. Our approach is to define an Intermediate
Representation (IR) language, which we call the TyTra-IR. With
reference to Fig. 1, the TyTra-IR captures the design variants gen-
erated by the front-end type transformations, which can then be
costed. The IR has semantics that can express the platform, mem-
ory, execution, design space and streaming data pattern models
described in the previous section.

The TyTra-IR is used to express the device-side code only, and
models all computations on a dataflowmachine rather than a von-
Neumann architecture. The host–device interactions are managed
by using the shell of a commercial HLS tool around the TyTra
generated kernel.

The TyTra-IR is strongly and statically typed, and all compu-
tations are expressed using static single assignments (SSA). The
compute language component and syntax are based on the LLVM
IR [18], with extensions for coordination, memory access and par-
allelism. It has two components: the Manage-IR and the Compute-
IR. The Manage-IR has semantics to instantiate memory objects,
entities that can be the source or sink for a stream. Typically, a

Fig. 6. Design configurations in the IR currently supported by the TyTra compiler.

Fig. 7. A typical configuration generated by the TyTra compiler showing a coarse-
grained pipeline where one of the peer kernels uses a custom combinatorial func-
tion.

memory object’s equivalent in software would be an array. Stream
objects are used to express the connection between a processing
element and a memory object.

The Compute-IR describes the PE(s), which typically is a
pipelined implementation of the kernel datapath. The PEs are
constructed by creating a hierarchy of functions, which may be
considered equivalent to modules in an HDL like Verilog. How-
ever, these functions are described at a higher abstraction than
HDL, with a keyword specifying the parallelism for the function.
These keywords are pipe (pipeline parallelism), par (thread par-
allelism), seq (sequential execution) and comb (a custom com-
binatorial block). By using different parent–child and peer–peer
combinations of functions of these four types, we can practically
capture the entire search space for an FPGA target. The currently
supported set of configurations shown in Fig. 6 are those suitable
for our application use case, i.e. HPC applications amenable to
streaming, pipelined implementation on FPGAs. As an illustration,
Fig. 7 shows the configuration tree created for multiple lanes of
a coarse-grained pipeline where one of the peer kernels uses a
custom combinatorial block.

5. Roofline analysis for evaluating variants in the search space

Given such a framework as just described for representing
design variants, the crucial requirement is being able to evaluate
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Fig. 8. The original roofline model [31], showing a memory-bound and a compute-
bound kernel.

these variants for cost and performance.We use the rooflinemodel
inside our automated compiler as a systematic framework for
evaluating design variants in the search space. Also, as it is a very
visual performance model, it is useful for manual optimizations.

The roofline analysis [31]was introduced as amodel to estimate
the performance of a particular application on a multicore archi-
tectures. Since then, it has been adopted for GPUs [15] as well as
FPGAs [8]. The model was based on the observation that ‘‘For the
foreseeable future, off-chip memory bandwidth will often be the
constraining resource in system performance’’. The architectural
constraints are captured by two rooflines, one representing the
achievable Computational Performance (CP), and the other repre-
senting the reachable memory bandwidth (BW). These rooflines
are plotted on a plot of performance (GFLOPS/s) vs operational or
computational intensity (CI), which is defined as FLOPS per byte
of DRAM traffic. The CI captures an algorithmic feature, that is, it
predicts the DRAM bandwidth needed by a kernel. The proposed
model brings together two architectural features – computational
performance and memory performance – and one algorithmic
feature, the computational intensity. The performance of a kernel
is defined in the model as follows (shown visually in Fig. 8):

Attainable Performance(FLOPS/s) = min(CP, BW · CI).

5.1. Roofline model for FPGAs

Silva et al. [8] presented their extended roofline model for
FPGAs. They observed that the straightforward approach of fixed
rooflines that are hardware dependent no longer works for FPGAs.
On FPGAs, the algorithm itself defines the architecture, and hence
the rooflines for both the computation and thememory bandwidth
have to be adapted for each algorithm. Also, instead of floating-
point operations, they use byte operations (BOPS) as more suitable
for FPGA targets.

They also add the scalability parameter (SC), which captures the
replication of the PE. This scalability is determined by the available
resources on the FPGA. The scalability (SC) is defined as follows:

SC = Available-resources/Resource-consumption-per-PE
Hence, the performance roof becomes
CPFPGA = CPPE · SC
And, the attainable performance is as follows:
Attainable Performance(BOPS) = min(CPPE · SC, CI · BW ).

6. Roofline analysis in the TyTra flow

We have developed a prototype compiler that can parse the
TyTra-IR of a design variant, and plot its performance on the
roofline model. The compiler can also emit synthesizable HDL
code for the kernel pipeline (see use case diagram in Fig. 2). Our

cost model for estimating the variables in the roofline model is
primarily an empiricalmodel, described as follows in the context of
the roofline analysis model and themodels developed in Section 2.

6.1. Estimating roofline analysis parameters in the TyTra flow

Our starting point was the expression developed in [8] for the
attainable performance on FPGAs:

Attainable Performance(BOPS) = min(CPPE · SC, CI · BW ). (1)

Our main contribution is in how we estimate the four variables
in Eq. (1). In our framework, they are calculated on the basis of
a set of parameters that depend on the target device, the kernel,
and its design variant. Table 1 lists all these parameters, their key
dependence (program, target hardware, design variant) and how
we evaluate them in the TyTra compiler framework.

Device peak computational performance: CPPEAK
Thehorizontal roof in the rooflinemodel refers to thepeak com-

putational capacity of the device, which is typically provided by
the vendors. However, the FPGA adaptation of themodel presented
in [8] replaces this fixed roof with a dynamic one that depends on
the algorithm in addition to the device. The roof in their work is
determined by the CP of one PE, scaled to the maximum possible
in that device, and we work with their definition:

CPPEAK = CPPE · SC . (2)

Computational performance of one PE: CPPE
We have developed an expression for CPPE that is generic

enough to accommodate the various configurations that can be
created on an FPGA.

We started from the basic definition of the computational per-
formance for one PE, CPPE , which is

CPPE =
total bytes executed per kernel instance

time taken
. (3)

This expression can be expanded based on the parameters de-
scribed in Table 1:

CPPE =
NGS · NWOPK · NBPW
NOFF+KPD

FD
+

NGS ·LPI ·NI
FD·DV

. (4)

The numerator is the total number of byte operations in the kernel-
instance. The first term of the denominator is the time taken to
fill offset buffers and the kernel pipeline. Then, the second term
accounts for the time taken to execute all work-items given that
the offset buffers and pipelines were full.

For most applications where NGS ≫ NOFF + KPD, we can use the
asymptotic performance by ignoring the time taken to fill offset
buffers and kernel pipeline in Eq. (4). This gives us the simplified
expression:

CPPE =
FD · NWOPK · NBPW · DV

LPI · NI
. (5)

Processing element scaling: SC
We restrict the scaling SC of the PE up to 80% utilization of any

of the four FPGA resources, as 100% utilization of FPGAs is generally
not possible [26]. We need an estimate of device utilization by
the kernel PE as well as the base platform peripheral logic. This is
taken up in Section 6.2. Once we have these estimates, the scaling
is determined by whichever one of the four resources on the FPGA
runs out first:

SC = min
(
MaxLE
UtilLE

,
MaxFF
UtilFF

,
MaxDSP
UtilDSP

,
MaxRAM
UtilRAM

)
. (6)
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Table 1
The parameters required to calculate the four main variables of the roofline model, along with their key dependence,
and the way they are evaluated in the TyTra compiler.

Param’ Description Key Dependence Evaluation Method

NGS Global-size of work-items in NDRange Kernel Parsing IR
NWOPK Word operations per kernel Kernel Parsing IR
NBPW Bytes per word Kernel Parsing IR
NOFF Maximum offset in a stream Kernel Parsing IR
KPD Pipeline depth of kernel Design-variant Parsing IR
FD Device’s operating frequency Design-variant and device Parsing IR
LPI Latency per instruction Design-variant Parsing IR
NI Instructions per PE Design-variant Parsing IR
DV Degree of pipeline vectorization Design-variant Parsing IR
NWPT Words per memory I/O tuple Kernel Parsing IR
MaxX Maximum available resource of type X Target device Architecture description
UtilX Utilization of resource of type X Design-variant Parsing IR

Maximum attainable bandwidth: BW
The peak bandwidth to host and global memory is typically

available from vendor datasheets. However, an estimate of achiev-
able memory bandwidth is more relevant, and a must for the
roofline model. This is especially relevant in FPGAs where the per-
formance tends to bememory-bound (see Fig. 8). The distinction of
forms of memory execution as presented in Section 2.3 is relevant
here. Form B is the most common pattern, where the bandwidth
of concern would be the DRAM (global memory) bandwidth. Our
approach for making this estimate is discussed in Section 6.3.

Computational intensity: CI
This is a critical parameter of the model that ties characteris-

tics of the algorithm to the architecture. In our framework, it is
straightforward to calculate it from the parameters available to us
inside our framework:

CI =
NWOPK

NWPT
. (7)

We have now presented our approach to calculating all four
terms in Eq. (1) needed to estimate the attainable performance. Two
aspects however need further elaboration and are discussed in the
following sections: estimating device utilization (to calculate the
scaling factor SC), and achievable bandwidth to the DRAM.

6.2. Resource-Utilization cost model

The scaling of a PE, and even the question of whether or not a
single PE can fit in the FPGA, is determined by the available on-
chip logic and memory resources. The resources are taken up by
(1) the kernel PE, and (2) the peripheral logic or base platform that
connects this PE to the memories via data streams.

6.2.1. Estimating Kernel PE resource utilization
Our observation is that the regularity of FPGA fabric allows

a simple empirical model to be built for most primitive instruc-
tions. As an example, consider the trend-line for LUT requirements
against bit-width for integer division shown in Fig. 9. It was gener-
ated from 3 data points (18, 32 and 64 bits) frommicro-benchmark
experiments on an Altera Stratix-V device. We can now use it for
polynomial regression and interpolation, e.g., for 24 bits, and get an
estimate of 654 LUTs, which compares favourably with the actual
figure of 652 LUTs. A multiplier requires two different kinds of
resources: DSP-elements and LUTs. Both these resources show a
piece-wise-linear behaviour with respect to the bit-width, with
clearly identifiable points of discontinuity, also shown in Fig. 9. This
results in a relatively trivial empirical model. Other primitive IR
instructions have similar or simpler expressions that we can use to
estimate their resource utilization. We thus calculate the overall
resource cost of the kernel by accumulating the cost of individual
IR instructions and the structural information implied in the type of

Fig. 9. ALUTs used in unsigned integer division (see polynomial regression), and
ALUTs and DSP-elements used in unsigned integer multiplication, on a Stratix-V
device.

each IR function.With reference to Fig. 7, if a kernel is identified as a
pipe, then each of its instruction requires dedicated resource on the
FPGA, along with pipeline registers. If we have a par function with
child pipe functions, then each of the children requires dedicated
logic resources.

6.2.2. Estimating base platform resource utilization
An estimate of the overhead of the peripheral logic or shell

provided by a vendor base platform is crucial if wewant to estimate
the maximum scaling. For small kernels especially, this will dom-
inate the resource consumption. This estimate is somewhat tricky
however as the internal structure of the base platform is not visible
to us.

Our use-case of primarily interfacingwith the host or DRAM via
data streams simplifies this estimate. We have designed a simple
micro-benchmark for the Altera OpenCL base platform where we
instantiate a minimalist pass-through kernel, and synthesize the
shellwith varying the number of streams or varying number of PEs.
Linear regression gives us the expressions we can insert into our
compiler for generating the resource estimates of the shell, which
are then added to the estimates of the kernel. The total resource
utilization estimates are then used by our compiler for calculating
the maximum possible PE scaling for a given kernel.

Our solution for estimating the base platform resources is based
on two observations: first, changing the number of input streams
has a marginal impact on the utilization of registers and LUTs,
but significant impact on the utilization of BRAM (see Fig. 10a);
second, scaling the PE has significant impact on the utilization of
registers and LUTs, but marginal impact on that of the on-chip
BRAM (See Fig. 10b). We hence use simplifying assumptions5 to

5 Even with a ±2% margin of error, we can assume the register and LUT usage to
be independent of number of input streams, and the BRAMusage to be independent
of PE scaling (apart from one outlier).
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(a) For different number of input streams. (b) For different values of PE scaling (1 input stream in all
cases).

Fig. 10. The resource cost of the base-platform that creates streams feeding the TyTra-generated PE. One output stream in all cases, and word-size is 32 bits. Target is a
Stratix-V device programmed with Altera-OpenCL.

Fig. 11. An empirical model of the dependency of sustained bandwidth on data size
and contiguity of data, based on 32-bit integers. The horizontal axis represents one
dimension of a square array, so it is also the stride in case of strided access. Results
are based on Alpha-Data’s ADM-PCIE-7V3 board with a Xilinx Virtex 7 device. The
performance can be improved with optimizations.

avoid the complete matrix of synthesis experiments (all possible
combinations of number of PEs and streams). Since the kernel
compilation is independent of the host array (stream) sizes, this
has no impact on the resource utilization of the base platform.

6.3. Estimating sustained memory bandwidth

A significant variable in the throughput expressions is the band-
width to the host or the device DRAM. While the peak bandwidth
can easily be read off the datasheets, the sustained bandwidth
for various streams in a particular design varies with the access
pattern, size, and other parameters as well. We performed a set of
experiments by extending the STREAMbenchmark [19] to OpenCL,
based on the work done in [9] for GPUs. Specifically, we tested the
effect of having the data streams access data contiguously and in
a strided manner, and changing the size of the streams and the
strides. The results are shown in Fig. 11. They highlight the im-
portance of taking into account the factors effecting the sustained
bandwidth for any realistic costmodels.We have incorporated this
empirical model into our compiler, and continue developing the
stream benchmark.

7. Using the roofline cost model in the TyTra compiler – an
illustration

We have developed a prototype compiler that accepts a design
variant in TyTra-IR, estimates its cost and performance and plots it
on the roofline model, and if needed, generates the HDL code for it.
The flow is shown in Fig. 12.

Fig. 12. The TyTra back-end compiler flow, showing the estimation flow (blue/first
three stages) and code generation flow (yellow). The starting point for this subset of
the entire flow is the TyTra-IR description representing a particular design variant,
ending in the generation of synthesizable HDL which can then be integrated with a
HLS framework. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Wecreated somedesign variants of the SORkernel generated by
type transformations as discussed in 3. Fig. 13a shows the TyTra-IR
for the baseline configuration which is a single kernel-pipeline.
The Manage-IR which declares the memory and stream objects is
not shown.

Note the creation of offsets of input stream p in lines 6-9, which
create streams for the six neighbouring elements of p. These offset
streams, together with the input streams shown in lines 2-4 form
the input tuple that is fed into the datapath pipeline described in
lines10-15. Fig. 14 shows the realization of the kernel as a pipeline
in the FPGA as generated by the TyTra compiler. The same SOR
example can be expressed in the IR to represent data parallelism by
adding multiple PE lanes, corresponding to a reshaped data along
e.g. four rows, by encapsulating multiple instances of the kernel-
pipeline function shown in Fig. 13a into a top-level function of
type par, and creating multiple stream objects to service each
of these parallel kernel-pipelines. This variant’s IR is shown in
Fig. 13b.
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(a) Single PE. (b) Scaled (x4) PEs.

Fig. 13. Abbreviated TyTra-IR code for the two variants of the SOR kernel.

7.1. Roofline analysis of the design variants using our cost model

We use the high-level reshapeTo function to generate variants
of the program by reshaping the data, which means we can take a
single stream of size N and transform it into L streams of size N

L ,
where L is the number of concurrent lanes of execution in the cor-
responding design variant. This high level translation transforms
to scaling the number of PEs.

Fig. 15 shows the roofline plots of 5 variants thus generated.
The first variant has a single PE, and the computational intensity
CI intersects the computational roof CPPE of the design. So this
variant is compute-bound. With the performance well below the
peak computational capacity of the device for this algorithm (the
blue dotted line), there is clearly room for improvement.

In the next variant, there are now 2 PEs, and since the design
is still compute-bound, we see a proportional increase in perfor-
mance. For the next variant,with PEs scaled to 4, the computational
roof moves even further upwards, and we are almost at the inter-
section of compute and bandwidth roofs. This is the ideal situation
as we are making the best use of both the available computation
and bandwidth capabilities. One can predict that further scaling
will not yield any improvement as the design moves into the
memory-bound region. This is confirmed by the twomore roofline
graphs showing the PEs scaled to 8 and 16, respectively, yet the
performance constrained at what was estimated for a scaling of 4.

The limit of PE scaling itself is determined by our device utiliza-
tion model, and is used to determine the CPPEAK (blue-dotted line).
Ifwe donot encounter thememory roof first, we can in theory scale
the PE until we reach CPPEAK .

We can see from the roofline plots that we can improve the
performance of this design by either improving the sustained
bandwidth to the memory which is still below peak, or by car-
rying out an algorithmic or memory buffering optimization that
increases the computational intensity. If, for another design, the
limiting factor was CPPEAK , then the optimization focus would be
on reducing device utilization, e.g. by using reduced precision
arithmetic.

Wehighlight here that the estimator is very fast: the current im-
plementation, although written in Perl, takes only 0.3 s to evaluate
one variant. This ismore than 200× faster than e.g. the preliminary
estimates generated by SDAccel which takes close to 70 s.

We like to point out that while the cost-model does facilitate
the evaluation of the search-space by providing a light-weight
high-level route to estimates, on its own it does not simplify the
search-space. The issue of simplifying the design search-space is
important in its own right, as it can very quickly explode to an
unmanageable number even for relatively small applications. We
are currentlyworking on an approach to simplify the search-space,
but that is outside the scope of this paper.

Fig. 14. Pipelined datapath of the SOR kernel as generated by the TyTra compiler.
Only pass-through pipeline buffers are shown; all functional units have pipeline
buffers as well. The blocks at edges refer to on-chip memory.

7.2. Accuracy of the cost model

Preliminary results on relatively small but realistic scientific
kernels have been very encouraging. We evaluated the estimated
vs actual6 utilization of resources for the kernel pipelines, and
throughput measured in terms of cycles-per-kernel-instance in
Table 2.We tested the costmodel by evaluating the integer version
of kernels from threeHPC scientific applications: (1) The successive
over-relaxation kernel from the LES weather model that has been
discussed earlier; (2) The hotspot benchmark from the Rodinia
HPC benchmark suite [4], used to estimate processor temperature

6 The actual resource utilization figures are based on full synthesis, and actual
cycle-counts are from RTL simulations. The design entry for these experiments is
in Verilog RTL. The RTL is generated from TyTra-IR description using our back-end
compiler.
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Fig. 15. Evaluation of variants for the SOR kernel generated by applying the PE-scaling transformations. We get dividends from scaling until we hit the memory-wall at a
scaling of 4.

based on an architectural floorplan and simulated powermeasure-
ments; (3) The lavaMD molecular dynamics application also from
Rodinia, which calculates particle potential and relocation due to
mutual forces between particles within a large 3D space.

These results confirm that an IR defined at an appropriate
abstractionwill allowquick estimates of cost and performance that
are accurate enough for relative comparison of design variants in
the search space.

Currently our cost model has two limitations which we are
investigating. First, it does not anticipate the optimizations done
in the relevant synthesis tool. We will however require better
visibility into the behaviour of synthesis tools like Quartus if we are
to have a realistic, nuancedmodel for such synthesis optimizations,
and we will explore this in the future. Secondly, the accuracy we
see in Table 2 is for the kernel estimates only. When we compare
the performance of a complete solution (kernel logic generated
by tytra, shell logic based commercial HLS tool) with the TyTra
estimate, the accuracy is relatively lower (see Fig. 17), though
we still achieve the primary purpose, i.e., finding the best design
variant.

8. Case study: Comparison of a TyTra-generated solutions
against HLS tools

A working solution using an FPGA accelerator requires a base
platform or shell on the FPGA to deal with off-chip IO and other
peripheral functions, along with an API for accessing the FPGA
accelerator. We use commercially available frameworks to imple-
ment this shell, and the TyTra-generated HDL code for the kernel.
We will now compare this hybrid approach against the baseline
using only the HLS tool, for two different frameworks.

Maxeler’s MaxJ [23] is an HLS design tool for FPGAs, and pro-
vides a Javameta-programmingmodel for describing computation
kernels and connecting data streams between them. The exper-
imental setup for the experiments on the Maxeler framework is
shown in Fig. 16.

The CPU implementation (cpu) is compiled with gfortran -
O2. The first FPGA implementation is using only the Maxeler flow
(fpga-maxJ),which incorporates pipeline parallelismautomatically

Table 2
The estimated vs actual6 performance and utilization of resources, the formermea-
sured in terms of cycles-per-kernel-instance (CPKI), for the kernel of three scien-
tific applications. Percentage errors also shown. All are executed as Form-C imple-
mentations (see Section 2.3).

Kernel LUT REG BRAM DSP CPKI

Hotspot (Rodinia)
Estimated 391 1305 32.8K 12 262.3K
Actual 408 1363 32.7K 12 262.1K
% error 4 4.2 0.3 0 0.07

LavaMD (Rodinia)
Estimated 408 1496 0 26 111
Actual 385 1557 0 23 115
% error 6 3.9 0 13 3.4

SOR
Estimated 528 534 5418 0 292
Actual 534 575 5400 0 308
% error 1.1 7.1 0.3 0 5.2

extracted by the Maxeler compiler. The second FPGA implementa-
tion (fpga-tytra) is the design variant generated by the TyTra back-
end compiler, based on a high-level type transformation that intro-
duced parallelism (4×PEs) in addition to pipeline parallelism. We
collected results for different dimensions of the input 3D arrays,
i.e. im, jm, km, ranging from 24 elements along each dimension
(55 KB) to 194 elements (57 MB).

8.1. Performance comparison

The performance comparison of Maxeler-only (fpga-maxJ) and
Maxeler-TyTra hybrid (fpga-tytra) is shown in Fig. 17. Note that
fpga-maxJ could in principle be optimized manually to achieve
a similar performance as fpga-tytra, but we deliberately use an
unoptimized baseline for fpga-maxJ. Our contention is that by
using our approach, one can obviate the need to carry out manual
optimizations in an HLS tool like Maxeler. Hence, our competition
is an unoptimized HLS solution.

Apart from the smallest grid-size, fpga-tytra consistently out-
performs fpga-maxJ as well as cpu, showing up to 3.9× and 2.6×
improvement over fpga-maxJ and cpu, respectively. At small grid-
sizes though, the overhead of handling multiple streams per input
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Fig. 16. The Maxeler-TyBEC hybrid solution. The dotted line identifies what is
programmed using the Maxeler HLS tool (shell). The solid/red line identifies the
logic programmed with TyTra generated code (kernel). The overlap indicates that
stream generation from on-chip Block-RAMs can be done by either.

and output array dominates and we have relatively less improve-
ment or even a decrease in performance. In general, FPGA solutions
tend to perform much better than CPU at large dimensions.

An interesting point to note for comparison against the baseline
CPU performance is that at the typical grid-size where this kernel
is used in weather models (around 100 elements/dimension), the
fpga-maxJ version is slower than cpu, but fpga-tytra is 2.75× faster.
These performance results clearly indicate that a straightforward
implementation on an HLS tool will not be optimal and manual
effort would be required; the TyTra flow can automate this.

If we look at the fpga-tytra-est column in Fig. 17, we can see
that the estimates are not as accurate as the kernel-only estimates
in Table 2. The introduction of the shell adds a degree of inaccuracy
to the performance estimate, which in the worst case in this par-
ticular example is off by 2.35×. However, the use-case of finding
the best variant from a search-space is still very much applicable
as these results show.

To further qualify our approach,we compared it against another
commercial HLS tool, Altera-OpenCL (AOCL), using a 2DSORkernel.
The run-time, normalized against a baseline CPU implementation,7
is shown in Fig. 18.

The advantage of our approach to FPGA programming is starkly
demonstrated in this experiment, where – using an approach
similar to the one described for the Maxeler-TyTra experiment –
the Tytra solution (with an AOCL shell) yields an order of magni-
tude better performance than the AOCL-only solution on the same
FPGA.8

8.2. Energy comparison

For the energy figures, we used the actual power consumption
of the host+device measured at the node’s power socket using

7 A faster Xeon CPU along with higher data locality for 2D stencil would explain
why the CPU performs much better than the FPGA in this experiment, as compared
to the one on Maxeler.
8 As opposed to the fpga-tytra or the fpga-maxj solution, we were unable to use

on-chip buffers for stencil data in the fpga-aocl solution, as AOCL failed to synthesize
within available resources (see Fig. 19). Hence, the fpga-aocl solution accesses the
main memory for every data-point in the stencil, which affects its performance.

a WattsUp power meter. For a fair comparison, we noted the
increase in power from the idle CPU power, for both CPU-only
and CPU-FPGA solutions. As shown in Fig. 17, FPGAs very quickly
overtake CPU-only solutions, and fpga-tytra solution shows up to
11× and 2.9× power-efficiency improvement over cpu and fpga-
maxJ , respectively. The energy comparison further demonstrates
the utility of adopting FPGAs in general for scientific kernels, and
specifically our approach of using type transformations for finding
the best design variant.

8.3. Resource utilization comparison

Previous results show the optimized hybrid TyTra solution
compared with baseline, unoptimized solutions using HLS tools.
Here, we compare what happens when we compare like-for-like
variants, that is the same optimization using the two approaches,
with theAOCL tool as the baseline. The results are shown in Fig. 199

Wealso compare the effect of varying the array sizes for both cases,
which effect the size of internal buffers for stencil data, and hence
effect resource utilization.

We can see that the resource utilization is comparable for the
baseline solution with one PE. However, when we optimize the
design by replicating the PEs, then the AOCL-only solution – which
implements the optimization by changing the number of compute-
units in the OpenCL code – takes up much more resources than
the AOCL-TyTra solution, especially in the utilization of BRAMs. A
similar observation is made for the case when we fix the design
to one PE, and change the size of data.10 In fact, the AOCL-only
solution do not even synthesize in most cases as the available
BRAM resources are exceeded. These results make a strong case
for using our flow not just to generate or evaluate the variants, but
also to implement them based on our generated HDL code.

9. Related work

We can discuss related work from three different perspectives,
i.e., in relation to raising the design-entry abstraction above con-
ventional high-level languages in general, high-level programming
approaches specific to FPGAs, and cost/performancemodels devel-
oped for FPGAs.

Our observation that there is a requirement for a higher ab-
straction design entry than conventional high-level languages is
not novel in itself. For example, researchers have proposed algo-
rithmic skeletons to separate algorithm from architecture-specific
parallel programming [5]. SparkCL [25] brings increasingly diverse
architectures, including FPGAs, into the familiar Apache Spark
framework. Domain-specific languages (DSL) are another way to
raise the design abstraction within the scope of a particular appli-
cation domain, and numerous examples can be found for FPGAs.
For example, FSMLanguage for designing FSMs [1], and CLICK for
networking applications [16].

There is considerablework that deals specificallywith Program-
ming FPGAs using conventional high-level programming. Such
approaches raise the abstraction of the design-entry from HDL
to typically a C-type language, and apply various optimizations
to generate an HDL solution. Our observation is that most so-
lutions have one or more of these limitations that distinguish
our work from them: (1) design entry is in a custom high-
level language, that nevertheless is not a pure software language

9 Full synthesis results are used, apart from cases where design could not syn-
thesize because required resources exceeded availability, in which case we used
estimated resources emitted by AOCL.
10 Wehave found that theMaxeler framework is more efficient at using resources
even when the PE-replication optimization is implemented entirely in Maxeler.
However, that requires more programming effort as compared to simple pragma
based optimization in AOCL.
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Fig. 17. Comparing performance and energy differential of the SOR kernel for different sizes of grid, normalized against the CPU-only solution. The figures are for 1000
iterations of the kernel. Setup: Intel-i7 quad-core processor at 1.6 GHz, 32 GB RAM, and an Altera Stratix-V-GSD8 FPGA.

Fig. 18. Runtime of the 2D-SOR kernel for AOCL-only and AOCL-TyTra hybrid for
different sizes of grid, normalized against the CPU-only solution. Setup: Intel Xeon
E5 quad-core at 2.4 GHz, 64GB RAM, and an Altera Stratix-V-GSD5 FPGA.

and requires knowledge of target hardware and the program-
ming framework [6,12,23], (2) compiler optimizations are lim-
ited to improving the overall architecture already specified by
the programmer, with no real architectural exploration [3,6,12,23],
(3) solutions are based on creating a soft microprocessors on the
FPGA and are not optimized for HPC [3,14], (4) the exploration re-
quires evaluation of variants that take a prohibitively long amount
of time [12], or (5) the flow is limited to very specific application
domain e.g. for image processing or DSP applications [11]. The
Geometry of Synthesis project [29] is more similar than others,
with its design entry in a functional paradigm and generation of
RTL code for FPGAs, but does not include automatic generation
and evaluation of architectural design variants as envisioned in
our project. A flow with high-level, pure software design entry
in the functional paradigm, that can apply safe transformations
to generate variants automatically, and quickly evaluate them to
achieve architectural optimizations, is to the best of our knowledge
an entirely novel proposition.

Comparison with work related to cost models is another di-
mension. We have used the work described in [7] on extending
the roofline analysis for FPGAs. However, our work is fundamen-
tally different as we are only using the abstractions offered in
the roofline analysis model; the manner in which we actually
generate and represent variants, and estimate the cost parameters
are entirely novel contributions of our work. Kerr et al. [13] have
developed a performance model for CUDA kernels on GPUs based
on empirical evaluation of a number of existing applications. Park
et al. [22] create a performance model for estimating the effects of

loop transformation on FPGA designs. Since our type transforma-
tions can be viewed as a different abstraction for achieving similar
outcomes, so there is a strongparallel between theirwork andours.
However, their work seems to focus on loop-unrolling, and is fun-
damentally different in terms of design entry and variant genera-
tion. Dent et al. presented costmodels for area, time andpower [10]
which is based on theMATLAB-based FANTOM tool. Their approach
of using an empirical model based on actual synthesis experiments
resonates with our approach. However, their estimation model
works on generated HDL whereas we make estimates at a higher
abstraction, and our approach of generating and evaluating vari-
ants is fundamentally different. Ref. [17] presents another cost es-
timation approach comparable to ours, where regression analysis
is done on empirical data from synthesis tools to create resource
estimation models, which are then used at compile-time on FPGA
designs programmed at a high-level using the SA-C language. Their
work does not estimate performance however, and the overall
context is very different from the TyTra flow. More recently, the
authors in [20] have presented an analytical model, but their focus
is on estimating dynamic and static power of various architectures.

10. Conclusion

FPGAs are increasingly being used in HPC for accelerating sci-
entific computations. While the typical route to implementation is
the use of HLS frameworks like Maxeler or OpenCL, they may not
necessarily expose the parallelism opportunities on an FPGA in a
straightforward manner. Tuning designs to exploit the available
FPGA resources on these HLS tools is possible but still requires
considerable effort and expertise. We have presented an original
flow that has a high-level design entry in a functional language,
generates and evaluates design variants using a cost model on
an intermediate description of the kernel, and then emits HDL
code. We have developed abstractions used to create a structured
cost model, and discussed our use of the roofline model to au-
tomatically cost and evaluate design variants. We have shown
how our empirical approach to costing designs represented at an
intermediate level allows us to calculate all parameters required to
plot the performance of a design variant on the roofline model.

We have illustrated the use of our roofline-based cost model
to evaluate different variants of the SOR kernel. The accuracy of
the cost model was shown across three different kernels. A case
study based on the SOR kernel from a real-world weather model
was used to demonstrate the high-level type transformations. It
was also used to give an illustration of a working solution based
on HDL code generated from our compiler, shown to give better
performance than the baseline solutions on both Maxeler and
Altera-OpenCL. In addition, we showed that even if the design op-
timizations were to be programmed in the HLS tools, our approach
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Fig. 19. Normalized FPGA resource utilization, AOCL-only against AOCL-TyTra, for equivalent design variants. The dots represent maximum available resource, so if the dot
is inside a plot, it means the required resource exceeds availability and did not synthesize.

gives much more efficient resource utilization on the basis of its
generated HDL code.

We are currently in the process of automating the generation
of design variants from high-level code. Also, we are working to
extend our cost model code generator to floating point as well
more complex arithmetic operations. We are also validating the
cost model and code generator with larger and more complex
kernels, while expanding the set of available transformations. Our
approach to extending the cost-model is to keep evolving the
TyTra-IR as we experiment with more applications and trans-
formations, and ensuring the cost-model remains complete by
providing an analytical or an empirical model for all valid TyTra-
IR instructions. Ultimately, our work aims to provide a solution
which has a high abstraction design entry, and in addition will
automatically converge on the best design variant from a single
high-level description of the algorithm in a functional language.
We are also working on evolving our flow to include legacy code
written in languages typically used for scientific computing like
Fortran or C.
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