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Abstract 

There has been increasing recognition that the alarming surge in allergy and 

autoimmunity in the industrialised and developing worlds, shadows the rapid 

eradication of pathogens, such as parasitic helminths. Appreciation of this has 

fuelled an explosion in research investigating the therapeutic potential of these 

worms. This review considers the current state-of-play with a particular focus on 

exciting recent advances in the identification of potential novel targets for 

immunomodulation that can be exploited therapeutically. Furthermore, we 

contemplate the prospects for designing worm-derived immunotherapies for an ever-

widening range of inflammatory diseases, including, for example, obesity, 

cardiovascular disease and ageing as well as brain developmental disorders like 

autism.  
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Worms really may be good for you, after all  

An evolutionary viewpoint of the development, regulation and function of the immune 

system is gaining increasing traction. This reflects awareness that, in addition to 

shaping metabolism and the function of major organs [1, 2], co-evolution with 

commensal and environmental microbes and “Old Friend” infections has generated a 

mammalian immune system that optimises the symbiotic survival of bacteria, fungi, 

latent viruses and parasites (macrobiota), whilst minimising pathological 

consequences for the host [3-6].  Specifically, exposure to such persistent, tolerated 

infections rather than the more recently evolved “crowd infections” (e.g. childhood 

viruses, like measles) that diametrically either kill or induce protective immunity, 

appears to be required early in life for induction of the regulatory networks that 

prevent autoimmunity and allergic inflammatory responses to harmless agents, and 

also for the homeostatic resolution of infection-fighting inflammation, once the 

pathogen is cleared [3-6]. Recognition of this balanced education of the immune 

system has revolutionised our understanding of how its dysregulation provides a 

unifying mechanism for the development of allergic and autoimmune inflammatory 

disorders, metabolic syndrome, and the chronic low-grade inflammation that 

characterises ageing. The alarming rise in each of these appears to shadow the 

dysbiosis of the macrobiota resulting from the sudden and swift eradication of 

organisms like helminths in rapidly developing societies (Fig. 1). Likewise, it 

accounts for the epidemiological evidence that, rather than protect against allergic 

and autoimmune inflammatory disorders, ‘crowd infections’ may even trigger them, 

reconciling findings that previously were perceived as flaws in the Hygiene 

Hypothesis [3]. 
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Despite the fact that “therapeutic” infection with parasitic worms may not always 

result in improved clinical outcome and may even exacerbate the target pathology 

[7], there has been intense focus on exploiting the immunoregulatory actions of 

helminths to develop novel therapies to treat disease. Extensive studies (reviewed 

[8-10]) have strongly evidenced the potential of worm therapy in animal models and 

although less consistent, particularly with respect to allergic responses, this has 

been supported by epidemiological data from endemic regions. Indeed, there are 

striking inverse incidences between infection with filarial nematode worms and both 

rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) [11-13], as well 

as a lower prevalence of filarial infection in type 2 diabetes patients, in India. 

Likewise, lower body mass index and fasting blood glucose levels have been 

reported in those with a history of schistosomiasis in rural China [14]. Further support 

is provided by health initiatives such as deworming being associated with increases 

in the prevalence of atopy in endemic areas, an outcome that is now questioning the 

wisdom of current mass eradication programmes [10]. Collectively, these 

observations have driven clinical trials of therapeutic infection with pig whipworm 

(Trichuris suis) and human hookworm (Necator americanus) in a range of allergic 

and autoimmune inflammatory diseases as well as autism (reviewed in [9]). 

However, despite the reported success of helminth self-infection in combating 

inflammatory bowel diseases (IBD) like ulcerative colitis [15] and other autoimmune 

and allergic inflammatory disorders and their neuropsychiatric comorbidities such as 

anxiety and autism [16],  the ability of worm therapy to consistently improve clinical 

outcome, apart from some promising results in coeliac disease [17, 18], remains 

disappointingly unproven to date [9, 10, 19]. Nevertheless, and because it is not 

ideal that patients are treated with live pathogens, great strides have been made in 
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recent years in identifying the roles and targets of molecules excreted-secreted (ES) 

by helminths (secretome; [20-23]) to modulate the immune response and promote 

tissue repair (Box 1): this raises the exciting possibility that ES can potentially be 

exploited as biologics and/or form the basis for the development of small molecule 

drugs [19-26].   We shall therefore discuss the current focus areas of helminth-based 

therapy that are advancing our understanding of development of the immune 

response and its dysfunction in disease, concentrating on the identification of novel 

and safe targets of potential therapeutic intervention.  

 

Infection with parasitic worms helps identify key immunoregulatory 

mechanisms  

Type 2 (Th2) immune responses are induced to clear parasitic helminth infections, 

but the worms have evolved a variety of mechanisms to elicit regulatory responses 

that promote their survival and counter the Th1/Th17-mediated pathology that would 

likely arise in the absence of such a modified Th2 response [8]. These regulatory 

responses notably involve regulatory B- and T-cells and macrophages (often termed 

M2 or alternatively-activated [AAM] macrophages) and the production of a range of 

cytokines, particularly IL-10, IL-35 and TGF-β, and AAM products like RELMα, 

Arginase and Ym1 [27]. Such regulatory responses have the serendipitous side-

effect of also alleviating aberrant inflammation irrespective of its phenotype, 

explaining the ability of helminths to target both Th2-driven allergic and Th1/Th17-

driven autoimmune inflammation [8]. 

 

In addition to highlighting their therapeutic potential, studies investigating 

immunomodulation by helminths have identified and validated key regulators of 
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disease pathogenesis. For example, regulatory T cell responses (Treg, Tr1 and 

iTR35 cells) are induced to limit inflammation in chronic helminth infection [8, 28] and  

protection against allergic and autoimmune disease by helminths is increasingly 

recognised as involving the mobilisation of a variety of regulatory B cells (Bregs) 

which, in some cases, appear responsible for consequent induction of protective 

regulatory T cell responses [29-32]. Thus, in models of acute asthma, whilst transfer 

of splenic and lung-derived Marginal Zone (MZ)-like Breg populations, induced upon 

infection with Schistosoma mansoni, conferred protection against ovalbumin (OVA)-

induced airway hyper-responsiveness (AHR) in an IL-10-dependent but Treg-

independent manner [29], a splenic T2-MZP subset of Bregs afforded protection in 

an IL-10- and regulatory T cell-dependent manner [29-31].  Likewise, a CD19+CD23hi 

population of B cells induced by Heligmosomoides polygyrus reduced development 

of house dust mite (HDM)-induced airway inflammation and also experimental 

autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS) in mice. 

However, in the case of EAE, protection did not appear to be dependent on IL-10 

production by such B cells [33], despite this being the case for MS patients in 

endemic areas [32, 34].  

 

More recently, the use of helminth infection models has identified novel roles for 

eosinophils and basophils [35-37] in regulating Th2-, innate lymphoid cell (ILC)-, and 

AMM-mediated immunity and thus in fighting infection, maintaining metabolic 

homeostasis in adipose tissue and promoting tissue repair [38-40]. Moreover, these 

models have highlighted the role of tuft cells, specialised epithelial cells that are 

found in low numbers in healthy gut tissue but are expanded in response to a range 

of helminth infections and initiate ILC-2-mediated inflammatory and goblet cell 
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responses that promote worm expulsion [41-43]. Similar epithelial effects may also 

pertain in the lungs [43, 44], where ILC2 cells are recruited not only to mediate 

helminth-induced lung inflammation [45] but also to promote tissue repair [46]. 

Furthermore, IL-22 which can be produced by ILC3s to inhibit systemic inflammation 

by combating bacterial infection and promoting gut barrier integrity [47], similarly 

promotes expulsion of both Nippostrongylus brasiliensis and Trichuris muris by 

stimulating goblet cell responses [48].  Such IL-22-driven effects are reminiscent of 

those observed in protection against ulcerative colitis following self-infection with 

Trichuris trichiura where the accumulation of Th22 cells in the mucosa was also 

associated with goblet cell hyperplasia and mucus production [15].  

 

Collectively these recent studies investigating immune responses to helminths have 

advanced our fundamental understanding of the molecular and cellular mechanisms 

underpinning type-2 immunity and have highlighted not only previously unsuspected 

interactions between cells of the innate and adaptive immune systems but also 

amongst these cells and their stromal environments (Fig. 2).   

 

Helminth-based therapies to reset immune homeostasis  

Although immunomodulation arising from helminth infection may be a result of the 

induction of regulatory T cell responses [8], the therapeutic effects of this may be a 

fortuitous consequence of bystander suppression. Consistent with this, although ES 

products can induce IL-10 regulatory responses [22], there is less evidence that they 

induce Tregs.  Nevertheless, ω1, an ES product from S. mansoni induces Tregs in 

NOD mice [49] and a TGFβ mimic in H. polygyrus ES was found to drive their 

differentiation in vitro [50]. However, none of the protection afforded by ES-62, a 
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particularly well-characterised secreted product of Acanthocheilonema viteae that 

protects against both allergic and autoimmune inflammation is achieved in this way 

[22, 25, 26]. Indeed, helminths or their products appear able to dampen inflammation 

in Th1/Th2/Th17-associated pathologies by modulating various distinct targets that 

may differ depending on the model investigated.  

 

Thus, an inflammatory disease-centric approach may have obscured an intrinsic 

mode of action of helminth ES products, namely to restore immune homeostasis 

irrespective of the phenotype of aberrant inflammation. This may explain the findings 

that ES-62 can both reinstate the Th1/Th2 balance away from Th2 in airway 

inflammation by inducing IFNγ whilst inhibiting Th1/Th17 responses in collagen-

induced arthritis (CIA)  [22, 25, 26]. However, ES-62 does not achieve the latter by 

invoking a compensatory induction of Th2 cytokines, but rather, by harnessing the 

inflammation-resolving, tissue repair properties of IL-22 in the arthritic joint [51, 52]. 

By contrast, ES-62 exhibits inverse effects on the IL-17/IL-22 inflammatory axis 

whilst preventing disease development in the MRL/Lpr mouse model of SLE [53].  

Rationalising this, whilst Th17 cells can act as master regulators of Th1 and Th2 

responses, IL-17 and IL-22 can exhibit dual pathogenic and inflammation-resolving 

properties even within the same disease model depending on the stage of pathology 

and inflammatory microenvironment [52, 53]. The homeostatic effects of ES-62 can 

also be explained in terms of its ability to reset inflammatory MyD88 signalling to 

normal levels and, in doing so, generate IL-10-producing Bregs that are associated 

with its protection against CIA, lupus-like nephritis and chronic airway inflammation 

and remodelling [53-55].  Consistent with this, transfer of splenic B cells from ES-62-

conditioned mice is sufficient to prevent development of autoantibody production and 
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pathogenic Th22 responses as well as reset the protective M2:M1 cell balance in the 

kidney in recipient lupus-prone mice [53]. Such a key role for MyD88 downregulation 

in preventing disease is supported by lineage-specific deficiency in the adaptor 

molecule being sufficient to abrogate lupus-like (B cells) [56, 57] and high fat diet 

(HFD)-induced cardiovascular (myeloid and endothelial cells) [58] pathologies in 

inflammatory mouse models. The mechanisms exploited by ES-62 remain to be fully 

delineated but involve the homeostatic induction of selective autophagy, which 

normally acts to limit TLR-driven inflammation, to degrade MyD88 and downstream 

effectors [59, 60].  

 

By contrast, Wmhsp60 of Wolbachia (an endosymbiont of many filarial nematode 

species), which inhibits autophagy via stimulating counter-regulatory mTOR 

signalling, drives TLR4-MyD88-mediated inflammation that results in a senescent, 

inflamm-ageing-like phenotype of monocytes [61]. Wolbachia appears to be 

important for embryogenesis, growth and survival of many filarial parasites and there 

is increasing evidence that the inflammatory responses it elicits contribute to the 

(potentially catastrophic) pathology resulting from parasite death and loss of helminth 

immunomodulation. As normal monocyte function can be restored and inflammation 

limited by the use of the mTOR inhibitor, rapamycin, these findings provide a 

potential breakthrough on how to prevent the severe adverse effects associated with 

anti-filarial chemotherapy [61].  

 

Helminth infections modulate the epigenetic landscape of inflammatory cells  

The macrobiota can shape immune responses by modulating hematopoiesis  

(“Trained Immunity”) via processes that can become dysfunctional in inflammatory 
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disease, cancer and ageing [62], with many of these defects in the regenerative 

potential of haemopoietic stem cells reflecting changes in their epigenetic landscape 

that are potentially therapeutically reversible. Interestingly, helminth induction of 

AAMs involves epigenetic modifications to drive the required transcriptional program 

[63]. Specifically, an H3K27 demethylase termed Jumonji domain containing-3 

(Jmjd3) has been shown to be essential for macrophage differentiation, activation 

and helminth-induced M2 polarisation [64].  Moreover, Histone Deacetylase-3 

(HDAC3)-deficient macrophages exhibit a phenotype similar to IL-4-induced AAMs 

[65] and consistent with this, pulmonary inflammation resulting from exposure to S. 

mansoni eggs, which is limited by AAMs, was found to be reduced in mice with 

HDAC3-deficient macrophages [63]. Further support that helminths and their 

products can impact on epigenetic regulation of macrophage responses was 

provided by the imprinting of M2 polarisation and associated IL-10 responses by T. 

suis soluble products being reversed by HDAC inhibitors that resulted in reduced 

histone acetylation of the TNF-α and IL-6 promoters [66]. Moreover, suppression of 

M1 responses in a Mesocestoides corti model of neurocysticercosis is associated 

with reductions in activating H3K4Me3 and H3K9/14Ac marks at the promoters of 

TNF−α, IL-6, NOS2, MHC-II and CIITA [67]. 

 

Helminths can likewise impact on DNA methylation and relating to this, S. mansoni 

infection drives induction of a functionally plastic population of CD4+ T cells that can 

be distinguished by its unique DNA methylation signature, relative to classical Th1 

and Th2 phenotypes [68].  Furthermore, studies exploiting dendritic cells (DCs) that 

lack the methyl-CpG-binding protein, Mbd2, showed that such cells were defective in 

their ability to induce Th2 responses to helminths and allergens and this was 
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associated with multiple changes in their transcriptional programme associated with 

H3K9/K14 acetylation marks and consequently, regulation of chromatin structure 

[69]. Intriguingly, analysis of priming of Th2 responses by skin DCs reflected 

induction of quite distinct transcriptional profiles in response to N. brasiliensis versus 

the contact sensitiser, dibutyl phthalate (DBP) as exemplified by a rather surprising 

type-I IFN signature induced by the helminth [70]. 

 

Given that epigenetic (i.e. reversible) modification of gene expression can be 

transgenerational [71], the effect of helminth infection during pregnancy is an area of 

interest.  Of note in the context of education of (neonate) immune responses and its 

dysfunction in inflammatory disease, chronic S. mansoni infection during pregnancy 

was reflected by reduced airway hyper-responsiveness in the children. This was 

associated with decreased polarisation towards Th2 responses in infants that 

corresponded with reduced levels of histone acetylation in the IL-4 promoter regions 

in naive T cells [72] suggesting that maternal infection may impact on induction of 

immunoregulatory networks and their pathogenic dysfunction during childhood by 

transgenerational changes to the epigenetic landscape of immune system cells.  

 

Targeting integrated inflammatory and metabolic pathways to increase health 

and life span 

Increasing evidence suggests that chronic low-grade inflammation (driven by IL-6, 

IL-1β, IL-18, TNFα) generated by the rapid eradication of “old friends” like helminths, 

allied to widespread adoption of a HFD and sedentary lifestyle, promotes the 

dsyregulation of (mTOR-regulated) metabolic pathways underpinning the ageing 

process as well as its comorbidities, T2D, obesity and cardiovascular disease 
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(metabolic syndrome). Thus, interest is beginning to focus on whether exploiting the 

anti-inflammatory and tissue repair properties of helminths can improve life-span or 

at least improve the well-being and health of our ageing populations. Evidence from 

diet-induced obesity and atherosclerosis models, as well as epidemiological studies 

of filarial infection and schistosomiasis, support the hypothesis that helminths can 

protect against metabolic syndrome [14, 26]. Such protection has been related to 

reduced type-1 inflammation and/or resetting of metabolism (e.g. improved glucose 

tolerance and insulin sensitivity, browning of adipose tissue), reflecting the roles of 

ILC2s, eosinophils and AAMs in supporting metabolic homeostasis in adipose tissue 

[37, 39, 40, 73, 74] and the upregulation of genes controlling glucose and lipid 

metabolism by STAT6 [75]. Moreover, as helminths can utilise blood lipids and 

glucose and alter lipid metabolism, in conjunction with the homeostatic effects of Th-

2 polarisation on metabolism, infection can lower blood cholesterol and increase 

insulin sensitivity to protect against obesity and associated cardiovascular disease 

[76]. 

 

Treatment with helminth-derived molecules can likewise protect against metabolic 

syndrome [26]. For example, schistosome soluble egg antigen (SEA) and LNFP111 

improved insulin sensitivity and reduced type-1 inflammation [77]. SEA also restored 

the type 2 response in adipose tissue through eosinophil recruitment [78] and 

consequent macrophage polarisation towards an M2 phenotype, and increased the 

numbers of IL-4+, IL-5+ and IL-13+ CD4+ T cells [79].  Likewise, schistosome egg-

derived ω1 improves metabolic status by stimulating the IL-33-mediated recruitment 

of ILC2s, eosinophils, and AAMs in the adipose tissue [80], whilst protection by 
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Litomosoides sigmodontis antigen (LsAg) also involves the recruitment of 

eosinophils [81].  

 

Some of these effects likely reflect the ability of helminths to directly target the key 

regulatory nodes, MyD88 and mTOR, that interact to integrate inflammatory and 

metabolic pathways. For example, recent studies suggest mTORC2 signalling 

appears essential and specific to AAM-M2 differentiation and its deficiency in 

macrophages renders mice incapable of clearing pulmonary infection with N. 

brasiliensis and prevents their ability to regulate metabolic control of thermogenesis 

[82]. Moreover, as mTOR and autophagy are counter-regulatory [60], this provides 

another point of potential intervention by helminths: consistent with its induction of 

autophagy to limit TLR-mediated inflammation, ES-62 suppresses activation of 

PI3K/AKT, upstream regulators of mTOR [59, 83], whilst Brugia malayi microfilariae 

inhibit the mTOR pathway and induce autophagy in human DCs [84]. However, the 

ability of helminths to induce autophagy is not always good news, as the chronic 

oxidative stress underpinning transformation in hepatocellular carcinoma by the fluke 

Dicrocoelium dendriticum is associated with induction of autophagic vesicles by its 

somatic antigens [85].  

 

Perhaps more directly pertinent to their ability to modulate host metabolism and 

immune responses, parasite-glycolytic enzymes can be secreted, either free-form or 

in exosomes. In addition, as with their mammalian counterparts, there is increasing 

recognition that they exhibit multifunctional properties, allowing them, when attached 

to the parasite surface to play roles in mediating adherence and invasion, as well as 

in modulating immune responses (reviewed in [86]). Thus, GAPDH from 
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Haemonchus contortus appears to have C3-binding activity, enolase from 

Steinernema glaseri suppresses immune responses in insects and glucose-6-

phosphate isomerase from Echinoccus multicularis is thought to promote 

angiogenesis around the metacestode and promote its development and acquisition 

of nutrients [86].  

 

Collectively, therefore, these findings suggest potential in exploiting helminth 

products to modulate host metabolism in the context of inflammation to improve 

health- and lifespan. 

 

The microbiome and therapy - it takes two to tango!    

Neonates and animals raised under germ-free (GF) conditions have an “incomplete” 

immune system that is somewhat Th2-polarised and exhibits reduced levels of B and 

T cells and also, gut-associated immune responses [87, 88]. “Education” of the full 

immune response requires instruction by particular components of the macrobiome 

with, broadly speaking, type 1 responses elicited by pathogenic bacteria, systemic 

commensal bacteria and viruses, type 2/regulatory phenotypes by helminths, 

Clostridiales and Bacteroides fragilis, and type 17 by segmented filamentous 

bacteria (SFB) and fungi [6, 87, 88]. This interdependence places increasing 

importance in analysing helminth-induced immunomodulation in the context of the 

larger macrobiome and co-infection status to determine how the resulting crosstalk 

balances induction of appropriate responses without pathology [18, 89]. For 

example, it has recently been reported that microbiota-induced Tregs express the 

nuclear hormone receptor RORγT and can therefore also differentiate into Th17 cells 

[90]. In the absence of such induced Tregs, Th2-immunity to helminths is improved 
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but pathology associated with type-2 inflammation is exacerbated. Thus, the 

plasticity of this lineage allows the microbiota to balance appropriate immune 

responses at mucosal surfaces [90]. Reciprocally, Th2 responses elicited by enteric 

N. brasiliensis infection  were found to reduce abundance of SFB, which have been 

implicated in the induction of pathological Th17 responses in inflammatory disorders 

[91].  

 

The fundamental interdependence of this co-evolution is illustrated by the ability of 

intestinal helminths to detect commensal bacterial cues that inform them that they 

have reached an appropriate microenvironment for their development where in turn, 

they can promote expansion of bacteria that induce regulatory responses to foster 

their survival [6, 92].  Much of the interest in helminth-endemic regions to date has 

focused on the interactions between GI-tract located worms and the bacterial 

microbiome, concentrating on T. trichiura but with inconsistent results, either 

indicating no effect or enrichment of bacterial diversity in infected children [18]. 

However, in experimental animal models, worm infections appear generally to be 

associated with a decrease in bacterial diversity [93]. Nevertheless, cross-sectional 

analysis of persistent infection with the related T. muris was associated with 

enrichment of Lactobacillus that was accompanied by a shift from regulatory to 

inflammatory immune responses [94]. By contrast, a more longitudinal analysis 

showed that T. muris infection mainly modulated Bacteroidetes, in particular by 

reducing diversity and abundance of Prevotella and Parabacteroides species and 

that such perturbation of the microbiota was transitory, essentially returning to 

normal upon clearance of the parasite [93, 95]. However, not all key immune system 

cell populations associated with chronic T. muris infection recovered [95], suggesting 
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that whilst perturbation of the microbiota due to helminth infection is reversible, some 

immunoregulatory networks appeared more stably modulated with implications for 

future pathophysiology.   

 

Reflecting this, as with other immunomodulatory interventions, helminth therapy has 

the potential for compromising immune responses to infections as evidenced, for 

example, by the impaired anti-viral immunity to murine norovirus resulting from 

experimental enteric coinfection with Trichinella spiralis.  Although this co-infection 

impacted on the wider macrobiome, helminth-induced impairment of antiviral 

immunity was evident in GF mice, seemingly as a result of the induction of AAMs 

[96]. Moreover, acute helminth infection with H. polygyrus or S. mansoni resulted in 

Th2-driven, IL-4/STAT6-mediated reactivation of murine gamma-herpes virus 

infection in vivo [97].  By contrast, enteric infection with H. polygyrus was found to 

reduce viral load and lung inflammation following respiratory syncytial virus (RSV) 

infection in a mouse model by induction of a microbiota-dependent type I IFN 

response in both the duodenum and the lungs [98].  

 

Dysbiosis of the microbiome has been implicated in the pathogenesis of a wide 

range of allergic and autoimmune inflammatory diseases as well as in metabolic 

syndrome and ageing [6, 99, 100]. Thus, investigation is underway to determine 

whether the protective actions of worms are direct and/or involve perturbation of 

microbiome-driven immunregulatory networks. Early studies focusing on GI helminth 

modulation of IBD [9, 101] showed that infection with H. polygyrus induced a type 2 

response and drove changes in the composition of the microbiota (reduced 

Bacteroides vulgatus burden and expansion of Clostridiales) that protected mice 
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from disease [6, 102].  Validating the relevance of these findings, individuals from 

endemic areas exhibited a similar protective microbiota that was reversed on 

deworming [103]. Interestingly from a therapeutic standpoint, analysis of patients 

with stable coeliac disease exposed to escalating doses of gluten showed that 

protection exhibited by those experimentally infected with hookworm was associated 

with an increasing enrichment of bacterial diversity over the course of the trial [104], 

specifically with respect to an increased abundance of Bacteroides species at the 

site of helminth infection in the duodenum [17]. 

 

With respect to interactions at other sites, which can harbour their own microbiota, a 

recent report showed that helminth infection and commensal bacteria interact to 

induce non-canonical regulatory T cells that act to maintain skin barrier function in 

the context of repeated challenge by pathogens [105], findings with potentially 

important implications for skin pathologies [106].  Most strikingly, however, the ability 

of H. polygyrus to ameliorate allergic asthma was abolished in mice treated with 

antibiotics. Chronic infection with the helminth resulted in increased abundance of 

gut Clostridiales species and consequently enhanced short-chain fatty acid 

production, both locally and systemically, that was responsible for the helminth-

induced regulatory T cell activity that conferred protection. Indeed, transfer of the 

worm-modified microbiota was sufficient to mimic the protection against allergic 

asthma. Similar effects were observed in pigs infected with Ascaris suum and 

humans with N. americanus, indicating a conserved immunoregulatory network 

[107].  
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Finally, and reminiscent of studies showing that microbial and metabolic alterations 

in early infancy affect risk of childhood asthma [108], an emerging area of interest is 

how helminth infection might modulate the gut-brain axis and consequently brain 

development during pregnancy, a dynamic period for the macrobiome [2, 109 ]. 

Impact on the macrobiota could potentially underpin the beneficial effects associated 

with helminth infection in neuroinflammatory and cognitive disorders, like autism 

[110].  

 

Concluding Remarks and Future Perspectives 

To date, trials of helminth therapies have generally proved disappointing [9, 111]: the 

reasons for this are not clear but presumably reflect a complicated mix of factors 

(e.g. age, gender, diet, health and infection history, exercise, environment, 

inappropriate helminth species and site of parasitism) that impact on the interplay 

between the immune system and the macrobiome. Nevertheless, the potential of the 

approach has generated enormous interest in the immunomodulatory agents 

secreted by the parasites [20] that may allow more targeted therapies tailored for 

particular actions and (treatment of) disorders, rather than the use of helminths per 

se.  Similarly, interest has also begun to focus on the potential of helminth and/or 

helminth product-conditioned effector cell transfer [112], the use of recombinant 

antigens as a new class of biologics [20, 111] or faecal macrobiota transplantation 

(FMT) from helminth-treated animals as evidenced by the ability of such FMT to 

mimic the protection against asthma afforded by live infection [107]. Finally, there is 

scope for more conventional drug discovery directed at targets identified by helminth 

action or mimicking the active moieties of helminth ES products. For example, small 

molecule analogues (SMAs) of the active phosphorylcholine-moiety of ES-62 exhibit 
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(differential) efficacy in a range of models of allergic and autoimmune inflammatory 

disorders [54, 113-115] that might lead to the generation of combination drug 

therapies aimed at targeting particular defects in immunoregulation underpinning the 

lifestyle and age-associated comorbidities currently plaguing our societies.  
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Figure 1. Helminths and their excreted/secreted (ES) products reset MyD88-

dependent inflammatory and mTOR-regulated metabolic pathways. 

Dysregulation of these pathways may generate triggers for the development of 

allergic and autoimmune disorders and metabolic syndrome, important comorbidities 

of ageing.  Helminth-based therapies can potentially normalise aberrant signaling 

(represented in red) and/or induce counter-regulatory pathways (represented in blue) 

to restore homeostatic regulation of this network. This can be achieved by resetting 

the balance of effector:regulatory B and T cells, M1:M2 macrophages and their 

cytokines and immunoregulatory products to resolve inflammation and promote 

tissue repair.  
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Figure 2. Helminths exhibit therapeutic potential in inflammatory disease by 

targeting integrated inflammatory and stromal cell networks. Helminths can 

interact with a range of innate and adaptive immune system cells to disrupt 

pathogenic regulatory networks promoted by stromal cells in particular 

microenvironmental niches: protective responses (blue arrows) promoted and 

pathogenic mediators (red arrows) suppressed (blue crosses) by helminths to effect 

immunoregulation are shown.  
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Trends Box  

The rapid eradication of parasitic worms in the last 50 years has been shadowed by 

the rise in allergy, autoimmunity and more recently, by their reciprocal risk factor, 

obesity in the industrialised and developing worlds 

• Consideration of the Hygiene Hypothesis has identified that eradication of worms 

may have left an unbalanced, hyperactive immune system and suggested the 

therapeutic potential of parasitic worms in inflammatory disease 

• Clinical trials employing live worms to date have generally proved somewhat 

disappointing and so the focus has shifted to exploitation of individual worm-

derived immunomodulators as therapeutics or consideration of developing drugs 

based on their structure and/or targets of action 

• Exciting recent advances in our understanding of how worms subvert immune 

responses have highlighted potential new therapeutic targets for exploration  

• The range of diseases for which helminths have therapeutic potential now 

extends from allergy and autoimmunity to cardiovascular disease, metabolic 

syndrome and autism  
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Box 1. Useful helminth ES products 

The disappointing outcome of worm therapy trials allied to reservations about 

interventions using live pathogens has generated intense focus on identifying and 

characterising the ES molecules produced by helminths (secretome) as a first step to 

producing a new class of “biologics” with evolutionarily selected safety profiles 

(reviewed in [22-24, 116, 117]). As an example, ES-62, a phosphorylcholine (PC)-

containing glycoprotein secreted by Acanthocheilonema viteae is amongst the best 

characterised of helminth ES products and has demonstrated therapeutic promise in 

certain allergic and autoimmune conditions (reviewed in [22, 24-26]). However, the 

advent of more sensitive technologies allowing characterization of expressed 

sequence tags and of late, proteomic analysis has identified large numbers of ES 

from an ever-increasing range of parasitic helminth species [23, 118] and, in the 

case of Brugia malayi, the secretome has been evaluated at different parasite stages 

[23, 119-121]. 

 

Currently, there is much interest in exploiting ES to treat autoimmune and allergic 

disease by the therapeutic transfer of “conditioned” myeloid cells (reviewed [112]): 

the potential of this approach is evidenced in animal models by the ability of DCs 

exposed to F. hepatica total extract to suppress CIA [122] or in the case of 

Trichinella spiralis- or Hymenolepis diminuta antigen, experimental allergic 

encephalomyelitis (EAE) [123] and colitis, respectively [124]. Likewise, the 

generation of AAM-like macrophages by A. viteae cystatin also indicates their 

potential in treatment of allergic airway inflammation and experimental colitis [112, 

125]. 
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Notably, not all ES-products are proteins. Rather they comprise a wide range of 

biologically active molecules including glycans [20] and microRNAs [20, 21, 126, 

127] as well as small molecule metabolites, exemplified by the immunoregulatory 

actions of fluke peptides, eicosanoids (Schistosoma mansoni), ascaroside lipids and 

short chain fatty acids (SCFA) generated by Toxocara canis, Ostertagia circumcincta 

and Haemonchus contortus [20]. Although many of these agents are released in 

free-form, the discovery of helminth-derived exosomes/extracellular vesicles 

containing varied cargo mixes [21, 126-128] has generated much interest in their 

function. Those containing immunoregulatory microRNAs have been identified from 

Fasciola hepatica, Heligomosomides polygyrus, Litomosoides sigmodontis, 

Dicrocoelieum dendriticum and Dirofilaria immitis, which following dissection of their 

roles could be exploited therapeutically [21].   
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Outstanding Questions Box  

How can we exploit the emerging new concepts in helminth immunomodulation to 

inform on development of the immune response and pathogenesis in 

inflammatory-based disease and consequently, to design novel, safe 

immunotherapies? In particular:  

• how do parasitic worms and their ES products harness host homeostatic 

mechanisms to reset the effector:regulatory balance (Tregs:Teffs; 

Bregs:Beffs; M1:M2 macrophages) and limit/resolve inflammation and 

promote tissue repair e.g. by stimulating autophagy? 

• what are the helminth-induced changes in the epigenetic landscape of 

progenitor and/or effector cells that result in “training” of host immune 

responses?  

• can we mimic helminth-mediated modulation of  host metabolomics to reset 

immunophenotypes (e.g. Th subsets and memory responses) and 

inflammation (glycolytic and oxidative phosphorylation metabolism)? 

• how can we therapeutically reproduce the effects of helminths on 

macrobiome/host metabolome to subvert inflammation and protect against 

disease? 

• does chronic infection, particularly during pregnancy, have beneficial 

transgenerational (epigenetic/macrobiome) effects? 

 

Why is lack of protection against inflammatory disease the most frequent 

outcome of clinical trials with live infections? In particular: 
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• what is the impact of the macrobiome, co-infections and differential 

inflammatory microenvironments on both parasite infection and target 

pathological disorder? 

• what are the best helminth-based therapies -  worm-derived biologics, 

conditioned cell transfer or drugs designed to mimic their active moieties or 

mode of action or alternatively, (probiotic) dietary supplements?  

 

Do we need to reconsider our programs of mass eradication/vaccination against 

parasitic helminths in the developing world? 
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