

McGinnis, R. et al. (2017) Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. *Nature Genetics*, 49(8), pp. 1255-1260. (doi:10.1038/ng.3895)

This is the author's final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/141226/

Deposited on: 18 May 2017

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

1 Variants in the fetal genome near *FLT1* are associated with risk of preeclampsia

2 Ralph McGinnis^{1*†}, Valgerdur Steinthorsdottir^{2*†}, Nicholas O. Williams^{1*}, Gudmar Thorleifsson², Scott

3 Shooter¹, Sigrun Hjartardottir³, Suzannah Bumpstead¹, Lilja Stefansdottir², Lucy Hildyard¹, Jon K.

4 Sigurdsson², John P. Kemp^{4,5}, Gabriela B. Silva^{6,7}, Liv Cecilie V. Thomsen^{6,8}, Tiina Jääskeläinen⁹, Eero

5 Kajantie^{10,11,12}, Sally Chappell¹³, Noor Kalsheker¹³, Ashley Moffett¹⁴, Susan Hiby¹⁴, Wai Kwong Lee¹⁵,

6 Sandosh Padmanabhan¹⁵, Nigel A. B. Simpson¹⁶, Vivien A. Dolby¹⁶, Eleonora Staines-Urias^{17,18},

7 Stephanie M. Engel¹⁹, Anita Haugan²⁰, Lill Trogstad²⁰, Gulnara Svyatova²¹, Nodira Zakhidova²², Dilbar

8 Najmutdinova²³, The FINNPEC Consortium²⁴, The GOPEC Consortium²⁴, Anna F. Dominiczak¹⁵, Håkon

9 K. Gjessing^{20,25}, Juan P. Casas²⁶, Frank Dudbridge¹⁷, James J. Walker¹⁶, Fiona Broughton Pipkin²⁷,

10 Unnur Thorsteinsdottir^{2,28}, Reynir T. Geirsson³, Debbie A. Lawlor^{4,29}, Ann-Charlotte Iversen⁶, Per

11 Magnus²⁰, Hannele Laivuori^{9,30,31}, Kari Stefansson^{2,28}, Linda Morgan^{13,†}

¹Wellcome Trust Sanger Institute, Cambridge, UK. ²deCODE Genetics/Amgen, Reykjavik, Iceland. 12 13 ³Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland. ⁴MRC Integrative Epidemiology Unit at the University of Bristol, UK. ⁵University of Queensland Diamantina 14 15 Institute, Translational Research Institute, Brisbane, Australia. ⁶Centre of Molecular Inflammation 16 Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian 17 University of Science and Technology, Trondheim, Norway. ⁷St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. ⁸Department of Obstetrics and Gynecology, Haukeland University 18 Hospital, Bergen, Norway. ⁹Medical and Clinical Genetics, University of Helsinki and Helsinki 19 University Hospital, Finland. ¹⁰National Institute for Health and Welfare, Helsinki, Finland. 20 ¹¹Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland. ¹²PEDEGO 21 Research Unit, Oulu University Hospital and University of Oulu, Finland. ¹³School of Life Sciences, 22

23 University of Nottingham, UK. ¹⁴Department of Pathology, University of Cambridge, UK. ¹⁵BHF

24 Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences,

25 University of Glasgow, UK. ¹⁶Leeds Institute of Biomedical and Clinical Sciences, University of Leeds,

26 UK. ¹⁷Department of Non-communicable Disease Epidemiology, London School of Hygiene and

27 Tropical Medicine, UK. ¹⁸Nuffield Department of Obstetrics & Gynaecology, University of Oxford, UK.

¹⁹Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina,
 Chapel Hill, USA. ²⁰Norwegian Institute of Public Health, Oslo, Norway. ²¹Scientific Center of

Chapel Hill, USA. ²⁰Norwegian Institute of Public Health, Oslo, Norway. ²¹Scientific Center of
 Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan. ²²Institute of Immunology, Uzbek

31 Academy of Sciences, Tashkent, Uzbekistan. ²³Republic Specialized Scientific Practical Medical Centre

32 of Obstetrics and Gynecology, Tashkent, Uzbekistan.²⁴A full list of members and affiliations appears

33 at the end of the paper. ²⁵Department of Global Public Health and Primary Care, University of

34 Bergen, Norway ²⁶Farr Institute of Health Informatics, University College London, UK. ²⁷Medical

35 School, University of Nottingham, UK. ²⁸Faculty of Medicine, School of Health Sciences, University of

36 Iceland, Reykjavik, Iceland. ²⁹School of Social and Community Medicine, University of Bristol, UK.

³⁰Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland. ³¹Obstetrics and

38 Gynecology, University of Helsinki and Helsinki University Hospital, Finland.

39 *R.M, V.S. and N.O.W. contributed equally to this work

40 + Correspondence should be addressed to R.M. (rm2@sanger.ac.uk), V.S.

41 (Valgerdur.Steinthorsdottir@decode.is) or L.M. (linda.morgan@nottingham.ac.uk)

43 Preeclampsia, which affects approximately 5% of pregnancies, is a leading cause of maternal and 44 perinatal death¹. The causes of preeclampsia remain unclear, but there is evidence for inherited susceptibility². Genome-wide association studies (GWAS) have not identified maternal sequence 45 variants of genome-wide significance which replicate in independent datasets^{3,4}. We report the 46 47 first GWAS of offspring of preeclamptic pregnancies and discovery of the first genome-wide significant susceptibility locus (rs4769613; $P = 5.4 \times 10^{-11}$) in 4380 cases and 310,238 controls. The 48 locus is near the gene encoding Fms-like tyrosine kinase 1 (FLT1), providing biological support 49 50 since an isoform (sFlt-1) of placental origin is implicated in the pathology of preeclampsia⁵. The 51 strongest association is in pregnancies where preeclampsia developed in late gestation and offspring birthweights exceeded the 10th centile. An additional nearby variant, rs12050029, 52 53 associates with preeclampsia independent of rs4769613. The newly discovered locus may enhance 54 understanding of the pathophysiology of preeclampsia and its subtypes. 55

56 Our initial GWAS meta-analysis tested 7,476,169 sequence variants in 2,658 offspring of 57 preeclamptic pregnancies and 308,292 controls of European descent from Iceland (deCODE cohort) 58 and the UK (GOPEC and ALSPAC cohorts). We observed a single genome-wide significant association (P=3.2×10⁻⁸, rs4769613) located on chromosome 13 near the FLT1 gene (Fig. 1a). We genotyped 59 60 rs4769613 and a correlated surrogate in 1722 independent cases and 1946 controls from Norway 61 and Finland along with 26 variants marking GWAS meta-analysis signals elsewhere in the genome whose P values showed suggestive evidence of association (Supplementary Table 1). rs4769613 was 62 significantly associated with preeclampsia in the replication datasets ($P=3.6\times10^{-4}$) and joint analysis 63 64 of GWAS and replication data yielded robust genome-wide association (P=5.4×10⁻¹¹) with an allelic odds ratio (OR) of 1.21 for allele C (Table 1). Forest plots show the frequency of allele C is 65 66 consistently elevated in cases in all GWAS and replication datasets with no evidence of heterogeneity (P_{het}=0.678; Supplementary Fig. 1). None of the other genotyped loci achieved 67 genome-wide significance ($P < 5 \times 10^{-8}$) in joint analysis of GWAS and replication data. 68 69 70 We then examined genomic features of the FLT1 locus in detail (Fig. 1b) and found that some of the 71 association signal remained after conditioning out the effect of rs4769613 (Fig 1b, bottom panel).

72 This suggested that other variants near FLT1 might associate with preeclampsia independent of 73 rs4769613. We therefore genotyped the replication datasets for 21 additional variants at the FLT1 74 locus, representing 9 linkage disequilibrium (LD) blocks (Supplementary Table 2; Supplementary Fig. 75 2). rs12050029 and surrogates in the same LD block were significant in combined analysis of GWAS 76 and replication data after FLT1 region-wide correction for testing all common variants within 1 Mb of 77 rs4769613 ($P=3.9\times10^{-6}$, Table 1). Table 1 shows that rs149427560 also achieved *FLT1* region-wide 78 significance but with an association signal weaker than rs12050029. In summary, our results imply 79 that in addition to rs4769613, other independent variants near *FLT1* may modulate preeclampsia 80 susceptibility.

As expected if risk allele rs4769613[C] increases susceptibility by acting through the fetal genome, Supplementary Table 3 shows that allele C frequency in preeclampsia mothers is midway between control frequency and the significantly elevated frequency in preeclampsia offspring. Preeclampsia offspring also preferentially inherited rs4769613[C] from heterozygous parents in the only dataset with DNA available for both parents, again implying that rs4769613[C] increases susceptibility by acting on the fetal genome (Supplementary Table 4). To examine if rs4769613 exerts effects on *both*

- the fetal and maternal genomes, we applied the EMIM algorithm which simultaneously evaluates maternal cases, offspring and controls to calculate ORs for preeclampsia risk corresponding to one or two risk alleles carried in the fetus (R_1 , R_2) or in the mother (S_1 , S_2)⁶. Fig. 2a shows that fetal ORs are above 1.0 and that each fetal copy of rs4769613[C] increases these ORs. By contrast, maternal ORs
- 91 are near 1.0 and are not significant. We conclude that rs4769613 exerts influence primarily through
- 92 the fetal genome.
- 93

As there is evidence that genetic imprinting may operate in placental development⁷ we examined rs4769613 allele transmissions from heterozygous parents, but found no parental gender difference in allele transmission in preeclampsia and hence no evidence for imprinting (χ^2 =0.046, *P*=0.83; Supplementary Table 5). We also applied EMIM⁶ to meta-analyse cohorts with available DNA from one or both parents, but again found no evidence that maternal and paternal alleles at rs4769613 confer differential preeclampsia risk (*P*=0.90).

100

101 Sub-classifications of preeclampsia are based on clinical features, in particular gestation at diagnosis 102 and evidence of fetal growth restriction (FGR)⁸. Early-onset preeclampsia (EO-preeclampsia), 103 affecting 12-15% of all preeclamptic pregnancies and defined as onset before 34 weeks gestation, is 104 associated with higher maternal and perinatal mortality than later onset preeclampsia (LO-105 preeclampsia). It has been proposed that LO-preeclampsia results predominantly from maternal 106 maladaptation to the physiological stresses of pregnancy, whilst EO-preeclampsia is primarily the 107 result of sub-optimal placental implantation into the uterine wall, leading to inadequate placental 108 perfusion and the release of damaging placental factors into the maternal circulation⁸. In keeping 109 with this, EO-preeclampsia is frequently associated with FGR, resulting in babies who are small for 110 gestational age (SGA) at birth. SGA defined as birthweight <10th centile is widely used as a surrogate 111 for FGR.

112 To assess the impact of rs4769613 on gestation at onset and fetal growth subtypes we noted that 113 rs4769613 risk allele C had higher frequency in LO-preeclampsia than EO-preeclampsia cases (case-114 control OR 1.23 vs. 1.06) and found the difference was significant in case-case meta-analysis 115 (P=0.017, Fig. 2b). Similarly, allele C had higher frequency in nonSGA-preeclampsia than SGA-116 preeclampsia cases (case-control OR 1.25 vs 1.10) and the difference was significant in case-case 117 comparison (P=0.019, Fig. 2b). Further division of cases in Fig 2b into the four possible subcategories 118 found that rs4769613 [C] confers greatest risk to LO+nonSGA cases (case-control OR=1.26, P=1.2×10⁻ 119 ⁷) and least risk to EO+SGA cases (case-control OR=1.03, P=0.72) with case-case comparison of the 120 two subcategories being significant ($P=5.8\times10^3$). In summary, the results indicate that rs4769613 121 exerts its greatest influence in pregnancies where preeclampsia develops in late gestation and 122 birthweights exceed the 10th centile. rs12050029 was also associated with LO-preeclampsia, but the 123 strength of the association did not differ between SGA- and nonSGA-preeclampsia (Supplementary 124 Fig. 3). 125

FLT1 encodes a trans-membrane tyrosine kinase receptor Flt-1 that mediates angiogenesis
 promoted by binding vascular endothelial growth factor (VEGFA) and placental growth factor (PIGF)⁹.
 The alternatively spliced soluble isoform sFlt-1 antagonizes angiogenesis by also binding VEGFA and
 PIGF. During pregnancy, *FLT1* is mainly expressed in fetal trophoblasts which release sFlt-1 as the
 most abundant isoform into the maternal circulation. The excessive release of sFlt-1 in

preeclampsia appears to mediate widespread maternal endothelial dysfunction, manifesting as
 hypertension, proteinuria, and vascular compromise to major organs. High sFlt-1 and low PIGF
 concentrations are established markers of EO-preeclampsia⁸, but our evidence that *FLT1* polymorphisms are strongly associated with LO-preeclampsia suggests trophoblast function is also

- 135 important in this preeclampsia subgroup.
- 136

137 The signals around rs4769613 and rs12050029 are both located in placental enhancer regions (Fig. 138 1b) suggesting a mechanism by which variants could affect FLT1 expression. We explored possible 139 association between fetal FLT1 genotype and protein expression by placental immunohistochemistry 140 and intensity scanning in 37 preeclamptic and 44 control pregnancies. There was no detectable 141 association between fetal rs4769613 genotype and trophoblast Flt-1 and sFlt-1 expression in cases 142 (P=0.47) or controls (P=0.26). We also compared maternal serum sFlt-1 from the first or third 143 trimester with fetal rs4769613 genotype in mother-baby pairs from 242 control and 276 144 preeclamptic pregnancies. Control pregnancies exhibited a trend towards increasing maternal serum 145 sFlt-1 levels with each fetal copy of rs4769613[C] in the third trimester, which reached nominal 146 significance (P = 0.04), while in case pregnancies the levels were higher (P < 0.001) but with no 147 detectable difference between genotype groups (P=0.47) (Fig. 2c). We did not have suitable 148 placental tissue for mRNA studies, but the Genotype-Tissue expression (GTEx) database 149 (www.gtexportal.org) does not provide evidence for rs4769613 or rs12050029 allele-specific 150 differences in FLT1 expression in 42 tissues, although data for placental tissue are not recorded. The 151 evidence that fetal rs4769613 genotype affects maternal serum levels of sFlt-1 is therefore modest. 152 Subtle changes in sFlt-1 concentration driven by fetal FLT1 genotype, as suggested by the data from 153 control pregnancies, may be masked in preeclampsia, where the overall levels are already high. Also, 154 this effect is minimal compared to the increase in serum sFlt-1 seen in preeclamptic pregnancies so 155 it may not reflect the role of the preeclampsia associated variants in the pathophysiology of 156 preeclampsia.

157

158 We explored whether the preeclampsia associated variants affected other diseases or traits by using 159 the deCODE database of common diseases and traits routinely measured at hospitals and clinical 160 laboratories (see Methods). Given that rs4769613 and rs12050029 are not in LD (Supplementary Fig. 161 2), it is noteworthy that the only significant database association for both variants was red blood cell (RBC) count ($P=5.0 \times 10^{-4}$ and $P=1.5 \times 10^{-7}$ for rs4769613 and rs12050029 respectively), where the 162 163 preeclampsia risk allele consistently associated with reduced RBC count (Supplementary Table 6). 164 The RBC association with *FLT1* is intriguing since its VEGF ligand has previously been implicated in regulation of erythropoiesis, but the mode and sites of action are complex^{10,11}. Our preeclampsia 165 166 results suggest that in the fetus the two variants lead to an increase in sFlt-1, while the same alleles 167 are associated with reduced RBC count in the general (non-pregnant) population. The effect on both 168 preeclampsia and RBC is consistent with the variants acting through the neighbouring FLT1.

We note that SNP rs4769613 is located between *FLT1* and *POMP*, which encodes proteasome
 maturation protein, a ubiquitously expressed protein involved in proteasome assembly and MHC
 class I antigen presentation¹². We cannot exclude the possibility that sequence variants at this locus
 affect expression of *POMP* or more distant genes, but the GTEx database does not provide any

- 173 evidence to support this contention.
- 174

175 Evidence presented here implies that altered trophoblastic *FLT1* expression is not merely a 176 secondary consequence of placental pathology in preeclampsia, but is central to its aetiology. A role for fetal sequence variants in susceptibility to preeclampsia is consistent with patterns of inheritance 177 178 implicating both maternal and paternal factors². The fetal *FLT1* gene has been indirectly implicated 179 previously in pregnancies with fetal trisomy 13, which are associated with increased placental expression of sFlt-1, and an increased incidence of preeclampsia¹³. sFlt-1 is a marker of placental 180 181 malfunction, a hallmark of EO-preeclampsia⁸; our observation that FLT1 genotype is associated even 182 more strongly with LO-preeclampsia implies that placental pathology is also a feature of late-onset 183 disease. The variants we describe provide tools for experimental testing of whether, how, when and 184 where they affect FLT1 expression, and how this relates to the pathophysiology of preeclampsia and 185 its subtypes. The discovery of sequence variants in the genome of the fetus that increase the risk of 186 disease in the mother is an ultimate demonstration of the closeness of the remarkable symbiosis we 187 call pregnancy.

188

189 Acknowledgements

190 Research leading to these results was conducted as part of the InterPregGen study, which received 191 funding from the European Union Seventh Framework Programme under grant agreement no. 192 282540, and was supported by the Wellcome Trust grant 098051. The UK Medical Research Council, 193 the Wellcome Trust (102215/2/13/2) and the University of Bristol provide core support for ALSPAC, 194 with additional funds for this study from UK Medical Research Council (MC UU 1201/5) and 195 European Research Council (669545) (D.A.L; J.P.K.) The GOPEC collection was funded by the British 196 Heart Foundation Programme Grant RG/99006. The Norwegian Mother and Child Cohort Study 197 (MoBa) is supported by the Norwegian Ministry of Health and Care Services and the Ministry of 198 Education and Research, NIH/NIEHS (contract no N01-ES-75558), NIH/NINDS (grant no.1 UO1 NS 199 047537-01 and grant no.2 UO1 NS 047537-06A1) (P.M.) MoBa GWAS studies were supported in part 200 by NICHD Grant R01HD058008 (P.M; S.M.E.) The FINNPEC study was supported by Jane and Aatos 201 Erkko Foundation, Päivikki and Sakari Sohlberg Foundation, Academy of Finland, Research Funds of 202 the University of Helsinki, government special state subsidy for health sciences (Erityisvaltionosuus 203 funding) at the Hospital District of Helsinki and Uusimaa, Novo Nordisk Foundation, Finnish 204 Foundation for Pediatric Research, Emil Aaltonen Foundation, and Sigrid Jusélius Foundation. The 205 Preeclampsia Study is supported by the Research Council of Norway (205400/V50 and 223255/F50) 206 and the Liaison Committee between the Norwegian University of Science and Technology and the 207 Central Norway Regional Health Authority (A-C.I.)

208 This research makes use of data generated by the Wellcome Trust Case Control Consortium 209 (WTCCC). A full list of the investigators who contributed to the generation of the data is available 210 from www.wtccc.org.uk. Funding for WTCCC, WTCCC2 and WTCCC3 was provided by the Wellcome 211 Trust under awards 076113, 083948/Z/07/Z and 088841/Z/09/Z. This research also makes use of 212 GWAS data from the ALSPAC study generated by G. Hemani and G. McMahon. The ALSPAC study 213 website contains details of all the data that are available through a fully searchable data dictionary 214 at the following webpage: www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/ 215 216 We are grateful to all the families from Iceland, Norway, Finland and the UK who took part in this

217 study, and the work of teams of volunteers, managers, midwives, nurses, doctors, computer and

218 laboratory technicians, clerical workers, research scientists and receptionists who made this study

219 possible.

220

221 Author contributions

- 222 Manuscript preparation: R.M, V.S, N.O.W, L.C.V.T, A-C.I, L.M. All authors contributed to critical
- analysis and revision of the manuscript.
- 224 Study design: R.M, V.S, N.O.W, T. J, S.I, N.K, N.A.B.S, V.A.D, E.S-U, S.M.E, A.H, L.T, G.S, N.Z, D.N,
- 225 A.F.D, H.K.G, J.P.C, F.D, J.J.W, F.B.P, U.T, D.A.L, A-C.I, P.M, H.L, K.S, L.M.
- 226 Phenotyping: S.H, G.B.S, L.C.V.T, T.J, E.K, FINNPEC Consortium, GOPEC Consortium, J.J.W, F.B.P,
- 227 R.T.G, D.A.L, H.L, L.M.
- 228 Genotyping and quality control: S.S, S.B, L.H, W.K.L, S.P, U.T, H.L.
- 229 GWAS data analysis: R.M, V.S, N.O.W, G.T, S.S, L.S, J.K.S, J.P.K.
- 230 Immunohistochemistry: G.B.S, L.C.V.T, A-C.I.
- 231 Biomarker measurement: H.L.
- 232 Interpretation: R.M, V.S, N.O.W, G.T, J.P.K, L.C.V.T, T.J, E.K, S.C, N.K, N.S, V.D, E.S-U, L.T, H.K.G, F.D,
- 233 J.J.W, F.B.P, D.A.L, A-C.I, P.M, H.L, K.S, L.M.
- 234

235 Competing financial interests statement

- 236 Valgerdur Steinthorsdottir, Gudmar Thorleifsson, Lilja Stefansdottir, Jon K. Sigurdsson, Unnur
- 237 Thorsteinsdottir and Kari Stefansson are employees of the biotechnology firm deCODE Genetics, a
- 238 subsidiary of Amgen. Debbie A. Lawlor has received industry funding for biomarker research
- 239 unrelated to this paper from Medtronic, Roche Diagnostics, and Ferring Pharmaceuticals.
- 240

241 Consortia

- 242 **GOPEC Consortium**: Linda Morgan¹³, Fiona Broughton Pipkin²⁷, Noor Kalsheker¹³, James. J. Walker¹⁶,
- 243 Sheila Macphail³², Mark Kilby³³, Marwan Habiba³⁴, Catherine Williamson³⁵, Kevin O'Shaughnessy³⁶,
- 244 Shaughn O'Brien³⁷, Alan Cameron³⁸, Lucilla Poston³⁵, Zofia Miedzybrodzka³⁹, Christopher W. G.
- 245 Redman¹⁸, Martin Farrall⁴⁰, Mark Caulfield⁴¹, Anna F. Dominiczak¹⁵
- FINNPEC Consortium: Hannele Laivuori^{9,30,31}, Seppo Heinonen³¹, Eero Kajantie^{10,11,12}, Juha Kere^{42,43},
 Katja Kivinen⁴⁴, Anneli Pouta^{10,45}
- 248 ³²Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. ³³The Centre for
- 249 Women's & Newborn Health, College of Medical and Dental Sciences, University of Birmingham, UK.
- ³⁴University of Leicester, Leicester, UK. ³⁵Division of Women's Health, Kings College London, UK.
- ³⁶Department of Medicine, University of Cambridge, UK. ³⁷Keele University School of Medicine,
- 252 Stoke-on-Trent, UK. ³⁸ Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK.
- ³⁹College of Life Sciences and Medicine, University of Aberdeen, UK. ¹⁸Nuffield Department of
- 254 Obstetrics and Gynaecology, University of Oxford, UK. ⁴⁰Radcliffe Department of Medicine,
- 255 University of Oxford, UK. ⁴¹William Harvey Research Institute, Barts and the London School of
- 256 Medicine and Dentistry, London, UK. ⁴²Department of Biosciences and Nutrition, Karolinska
- 257 Institutet, Huddinge, Sweden. ⁴³Molecular Neurology Research Program, Research Programs Unit,
- 258 Helsinki, Finland. ⁴⁴Division of Cardiovascular Medicine, University of Cambridge, UK. ⁴⁵Department

of Obstetrics and Gynaecology and MRC Oulu, Oulu University Hospital and University of Oulu,Finland.

261

262 References

- 263 1. Souza, J. P. et al. Moving beyond essential interventions for reduction of maternal mortality (the 264 WHO Multicountry Survey on Maternal and Newborn Health): a cross-sectional study. Lancet 265 **381**, 1747-1755 (2013). 266 2. Cnattingius, S. Reilly, M. Pawitan, Y. & Lichtenstein, P. Maternal and fetal genetic factors account 267 for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am. 268 J. Med. Genet. A. 130A, 365-371 (2004). 269 3. Johnson, M. P. et al. Genome-wide association scan identifies a risk locus for preeclampsia on 270 2q14, near the inhibin, beta B gene. PLoS One 7, e33666. doi: 10.1371/journal.pone.0033666 271 (2012). 272 4. Zhao, I. et al. Genome-wide association study identifies a maternal copy-number deletion in 273 PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth 12, 61 (2012).
- 5. Maynard, S. E. *et al.* Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to
 endothelial dysfunction, hypertension, and proteinuria in preeclampsia. *J. Clin. Invest.* 111, 649658 (2003).
- Ainsworth, H. F. *et al.* Investigation of maternal effects, maternal-fetal interactions and parentof-origin effects (imprinting), using mothers and their offspring. *Genet. Epidemiol.* **35**, 19-45
 (2011).
- 280 7. Monk, D. Genomic imprinting in the human placenta. *Am. J. Obstet. Gynecol.* 213, S152-S162
 281 (2015).
- Staff A. C. *et al.* Redefining preeclampsia using placenta-derived biomarkers. *Hypertension* **61**, 932-942 (2013).
- 284 9. Cerdeira, A. S. & Karumanchi, S. A. Angiogenic factors in preeclampsia and related
 285 disorders. *Cold Spring Harb. Perspect. Med.* pii: a006585. doi: 10.1101/cshperspect.a006585
 286 (2012).
- 10. Tam, B. Y. *et al.* VEGF modulates erythropoiesis through regulation of adult hepatic
 erythropoietin synthesis. *Nat. Med.* 12, 793-800 (2006).
- 11. Rehn, M. *et al.* Hypoxic induction of vascular endothelial growth factor regulates murine
 hematopoietic stem cell function in the low-oxygenic niche. *Blood* **118**, 1534-1543 (2011).
- Heink, S. Ludwig, D. Kloetzel, P. M. Krüger, E. IFN-gamma-induced immune adaptation of the
 proteasome system is an accelerated and transient response. *Proc. Natl. Acad. Sci. USA.* 102,
 9241-9246 (2005).
- 13. Bdolah, Y. *et al.* Circulating angiogenic proteins in trisomy 13. *Am. J. Obstet. Gynecol.* 194, 239245 (2006).
- 296

297 Figure legends

298

Figure 1 | Manhattan Plots showing GWAS results across all autosomes and detailed view near *FLT1* on chromosome 13.

a) Genome-wide Manhattan plot showing strength of association with PE in GWAS meta-analysis

302 plotted as -log10(*P* value) on the y-axis and corresponding variant position on the x-axis. A single

peak whose apex is the sentinel SNP rs4769613 near *FLT1* on chromosome 13 crosses the blue line

denoting genome-wide significance ($P = 5 \times 10^{-8}$). Variants within 100 Kb of rs4769613 are coloured purple.

b) Detailed view near *FLT1* highlighting variants in Table 1. Panels from top to bottom show:

307 unconditional -log10(P value) from GWAS meta-analysis and recombination rate shown as a blue

308 line quantified by right hand y-axis; pattern of regional Linkage Disequilibrium (LD) shown by

309 pairwise values of the LD metric D'; gene names with approximate length and position; the

310 corresponding chromatin state annotations for selected Epigenome Roadmap tissues

311 (http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state); landscape of

312 inferred chromatin interactions for 31 tissue types using an integrated method for predicting

enhancer targets (IM-PET) (http://4dgenome.research.chop.edu/); conditional -log10(P value) for

314 GWAS meta-analysis using logistic regressions with rs4769613 as a covariate.

315

Figure 2 | Key observations about rs4769613 in relation to preeclampsia.

- a) Forest plot showing Odds Ratio (OR) and 95% confidence intervals (95% CI) calculated by the
- 318 EMIM algorithm⁶ for preeclampsia risk conferred by one or two copies of rs4769613 risk allele C
- 319 carried in the fetus (R_1, R_2) or carried in the mother (S_1, S_2) . Individual datasets (GOPEC, MoBa,
- 320 FINNPEC) and meta-analysis across the datasets ([Meta]) show the OR is increased by each fetal
- 321 copy of risk allele C where for $R_1 P=3.7 \times 10^{-4}$ and for $R_2 P=3.7 \times 10^{-9}$. By contrast, the OR for maternal
- 322 copies (S₁, S₂) are not significantly different from 1 implying that, after accounting for fetal copies,
- 323 maternal copies of allele C confer no additional increased risk of preeclampsia.
- b) Forest Plot for preeclampsia subtypes defined by early and late onset (EO-PE, LO-PE) and by
- 325 birthweight that is small-for-gestational age (SGA-PE) or not (nonSGA-PE). Case-case comparisons in
- 326 blue font show risk allele C is more significantly associated with LO-PE and nonSGA-PE than with EO-
- 327 PE and SGA-PE. Dividing cases into the four possible subcategories found that allele C confers
- 328 greatest risk to LO+nonSGA cases and least risk to EO+SGA cases.
- 329 c) Box-and-whisker plots of first and third trimester maternal serum sFlt-1 concentration in
- preeclampsia cases and controls, showing the effect of fetal rs4769613 genotype. Boxes span the
- first to the third quartile of sFlt-1 concentration, with horizontal bars within the box denoting the
- 332 median; whiskers extend to the 10th and 90th centiles. Maternal sFlt-1 is higher in cases than controls
- in the third trimester across all fetal genotypes (*t*-test ln(sFlt-1): t=7.79; 200 d.f.; 2-tailed P< 0.001).
- In third trimester controls, each copy of the rs4769613[C] allele carried by the fetus is associated
- with an increase in maternal sFlt-1 (linear regression of ln(sFlt) with SNP genotype (coded 0, 1 and 2)
- and gestational age as covariates: *P*=0.04).
- 337
- 338

339

340

341

342 Table 1 Meta-analysis results at three independent variants near FLT1 giving evidence for association with

343 preeclampsia

					N	GWAS N=2,658 / 308,292			Replication N=1,722 / 1,946			lication 10,238	
Variant	Chr13 Position	Risk/Alt Allele	RAF	Covariate	OR	95%CI	Р	OR	95%CI	Р	OR	95%CI	Р
rs4769613	29138609	C/T	0.53	None	1.22	1.14-1.31	3.2×10 ⁻⁸	1.18	1.08-1.30	3.6×10⁻⁴	1.21	1.14-1.28	5.4×10 ⁻¹¹
rs12050029	29227519	G/A	0.14	None	1.20	1.09-1.33	1.5×10 ⁻⁴	1.18	1.05-1.32	5.9×10 ⁻³	1.19	1.11-1.28	3.0×10 ⁻⁶
rs149427560	29105870	G/GGT	0.06	None	1.30	1.14-1.49	9.3×10⁻⁵	1.16	0.96-1.40	1.1×10 ⁻¹	1.23	1.09-1.38	4.1×10⁻⁵
rs12050029	29227519	G/A	0.14	rs4769613	1.19	1.09-1.32	2.9×10 ⁻⁴	1.18	1.05-1.33	4.2×10 ⁻³	1.19	1.11-1.28	3.9×10⁻⁵
rs149427560	29105870	G/GGT	0.06	rs4769613	1.31	1.15-1.50	6.7×10 ⁻⁵	1.17	0.97-1.41	9.1×10 ⁻²	1.23	1.10-1.38	2.4×10 ⁻⁵

344

345 Results are ordered by strength of association with preeclampsia in GWAS+Replication meta-analysis at three

346 variants near FLT1 not in linkage disequilibrium. Row for rs4769613 is bold because its GWAS+Replication P value is

347 genome-wide significant (p<5x10*). rs12050029 and rs149427560 are included in the table because their

348 GWAS+Replication *P* values are below *FLT1* region-wide significance threshold (6.01×10⁻⁵) calculated by the method

349 of Gao (see Main Text and Methods). "N", total cases / controls in meta-analysis; "Chr13 Position", NCBI Build 37

position on chromosome 13; "Risk/Alt Allele", allele with higher frequency in cases than controls and alternate allele;

351 "RAF", risk allele frequency in UK GWAS controls; "Covariate", covariate in conditional logistic regression; "OR" and

352 "95%CI", allelic odds ratio and 95% confidence interval; "P", P values of case-control association. Genotypes of

353 rs149427560 for the FINNPEC cohort were proxied from rs11619261 (pairwise r²=0.88 in Finland 1000Genomes

354 phase 3).

355

356

357 Methods

358 Cohorts

359 Three European cohorts of offspring from pregnancies affected by preeclampsia provided cases for 360 GWAS meta-analysis: the GOPEC and ALSPAC cohorts from the UK, and the Icelandic deCODE cohort. 361 Two independent cohorts were used for replication genotyping: the Finnish FINNPEC collection, and 362 the Norwegian Mother and Child Cohort Study (MoBa). Recruitment criteria were not identical in all 363 cohorts, so subsets were selected for this study based on an internationally recognised definition of preeclampsia¹⁴: new-onset hypertension after the 20th week of gestation, with systolic blood 364 pressure ≥140mmHg or diastolic blood pressure ≥90mmHg on at least two occasions; and new-onset 365 366 proteinuria of 0.3g/24 hours or more, or ≥1+ on dipstick analysis of urine. All were singleton 367 pregnancies in a white Western European woman; preeclamptic pregnancies in women with a 368 previous history of essential hypertension, type 1 or type 2 diabetes mellitus, ischaemic heart 369 disease, cerebrovascular accident or chronic renal disease were excluded. Phenotypic details are

- 370 summarised in Supplementary Tables 7 and 8.
- 371

Written informed consent was obtained from participants, or from parents on behalf of minors, andall studies were approved by local Research Ethics Committees.

374 GOPEC (Genetics of Pre-eclampsia)

The UK GOPEC collection includes 1157 DNA samples from mother-baby pairs with preeclampsia

recruited at diagnosis between 1992 and 2009 for genetic studies of preeclampsia¹⁵. Control data

were derived from the WTCCC2 genome-wide analysis of 2930 samples from the 1958 Birth

Cohort and 2737 samples from the National Blood Services, providing control data for 5297

- 379 individuals after QC¹⁶.
- 380

381 ALSPAC (Avon Longitudinal Study of Parents and Children)

382 The ALSPAC prospective birth cohort study recruited pregnant women living in the South West of England between 1991 and 1992, and has been described elsewhere¹⁷. They included 13,678 383 singleton pregnancies resulting in a live birth. After exclusion of women with existing hypertension, 384 385 diabetes and gestational diabetes, there were 7382 pregnancies for which blood pressure and 386 proteinuria measurements and fetal GWAS data were available. Of these, 146 met the definition of 387 preeclampsia and were included. The control group of 6130 subjects was derived from all other 388 included pregnancies with fetal GWAS data in women not affected by essential hypertension or 389 gestational hypertension.

390

391 *deCODE Pre-eclampsia cohort*

392 The deCODE preeclampsia cohort is part of an ongoing sample collection including a large part of the 393 Icelandic population. Preeclamptic pregnancies occurring between 1970 and 2009 were identified 394 through scrutiny of hospital records at the Landspitali University Hospital, which provides secondary 395 and tertiary services for the whole of Iceland. Initially, a group of women with hypertensive disease 396 in pregnancy (ICD-9:642.0–9 and ICD-10: O10–16) in the years 1984-1999 were selected for further 397 study based on familial relationships. All maternity records for these women were scrutinised and each affected pregnancy reclassified¹⁸. This identified 491 singleton preeclamptic pregnancies. 398 399 Preeclamptic pregnancies from 2000-2009 were identified based on ICD-10 codes (O14-15), yielding 400 1,311 additional singleton preeclamptic pregnancies. Overall information on 1,802 singleton

401 preeclamptic pregnancies of 1,662 mothers is available. GWAS data was available from 1507

402 offspring of these pregnancies, identified retrospectively based on the national register. The control

403 group comprises 296,865 individuals from the deCODE sample collection.

404

405 MoBa (Norwegian Mother and Child Cohort Study)

406 The Norwegian Mother and Child Cohort Study is a longitudinal study of over 110,000 pregnant

- 407 women, their children and partners, recruited between 1999 and 2008 from maternity units
- 408 throughout Norway¹⁹. 1200 pregnancies affected by preeclampsia were identified from Medical
- Birth Register of Norway records; the validity of the diagnosis has been assessed by retrieval and
- examination of antenatal records. 1200 non-hypertensive pregnancies provided the control group.
- 411 Pregnancies were excluded from case and control groups if a maternal history of essential
- 412 hypertension, chronic renal disease or diabetes mellitus was recorded in the Medical Birth Registry413 of Norway.
- 414

415 FINNPEC (Finnish Genetic of Pre-eclampsia Consortium)

The FINNPEC collection was assembled in Finland between 2008 and 2011 from two recruitment

417 arms²⁰. Samples were collected at the time of diagnosis of preeclampsia from 879 mothers, and

418 during pregnancy from 922 non-pre-eclamptic mothers from antenatal and labour wards. Their

children and partners were also enrolled. A further 525 pregnancies affected by preeclampsia were

420 identified by examination of hospital records, and women and offspring were invited to participate

421 by letter. After exclusion of pregnancies which did not meet the entry criteria for this study,

422 offspring of 605 preeclamptic pregnancies were included as cases, and offspring of 800 non-

423 hypertensive pregnancies provided the control group.

424

425 Genotyping, quality control, genotype imputation and association analysis in GWAS datasets

426 GOPEC

427 1157 offspring of preeclamptic pregnancies were assayed on the Illumina OmniExpress chip;

maternal samples where available were similarly genotyped. A total of 730,525 variants were called
with the GenCall algorithm. We carried out QC using PLINK

430 (http://pngu.mgh.harvard.edu/~purcell/anal.shtml) and SMARTPCA²¹. A subset of the samples (186)

431 were whole genome amplified (WGA). WGA genotype calls can be prone to calling artefacts. To

- 432 address this we removed variants with either low call rate (95%) or Mendelian errors in the WGA
- 433 samples and we then performed a pseudo-case control analysis of WGA vs. non-WGA and removed

434 variants with significant genotypic association (*P*<0.001). We then applied standard QC to the

- 435 combined WGA and non-WGA dataset on this reduced set of variants (670,435). Briefly, standard
- 436 QC comprises the following subject level exclusion criteria: individual call-rate < 95%; heterozygosity
- 437 >3 s.d. from the mean; any of the first 3 HapMap (based on CEU, YRI, CHB, JPT and GIH) principal
- 438 axes of variation >4 s.d. from the mean and gender mismatch. Related individuals (IBD>0.1) with
- 439 lowest call-rate were preferentially removed. The variant level exclusion criteria are: call-rate <95%,
- exact Hardy-Weinberg equilibrium $P < 1 \times 10^{-6}$, minor allele frequency (MAF) <1% and non-random
- 441 missingness of uncalled genotypes ("plink --test-mishap") with Bonferroni corrected *P*<0.05. These
- 442 filters left 1005 samples (89 WGA) and 574,919 variants.
- 443

- We used WTCCC2 population controls from the National Blood Donors Cohort and UK 1958 Birth
 Cohort¹⁶. These samples were genotyped on the Illumina 1.2M chip and called using GenCall.
 Strand ambiguous markers were removed and the standard QC described above was then applied to
- the two control datasets. The merged control datasets consisted of 5,297 samples and 438,912
- variants. This control dataset was merged with the case dataset resulting in 429,754 post QC variants
 that were genotyped in both cases and controls.
- 450

Cases and controls were imputed together with IMPUTE2 (impute_v2.3.0)²² and SHAPEIT²³ using the
 pre-phasing workflow against the 1000 Genomes Phase 1 reference panel (Dec. 2013) downloaded
 from the IMPUTE2 website. Imputation resulted in 10,404,388 bi-allelic variants with MAF > 0.25%

- 454 that were either directly genotyped or imputed with IMPUTE2 INFO score >0.6.
- 455

456 Post imputation association analysis was carried out using SNPTEST (v2.4.1)²² with the "expected" 457 method with no ancestry principal components. We calculated the genomic control on variants with 458 MAF>0.5% as λ_{GC} =1.005.

459

460 *deCODE*

Details of GWAS genotyping, QC and imputation of the Icelandic dataset including the preeclampsia 461 cases and controls used in this study have been described²⁴. Briefly, samples were assayed with the 462 Illumina HumanHap300, HumanCNV370, HumanHap610, HumanHap1M, HumanHap660, Omni-1, 463 464 Omni 2.5 or Omni Express bead chips at deCODE genetics. Following QC a final set of 676,913 465 autosomal SNPs were used for long range phasing of all chip-genotyped samples. Making use of the Icelandic genealogy untyped first and second degree relatives of chip-typed individuals were also 466 included in the analysis to increase power²⁴. In total 104,220 chip-typed individuals and 294,212 of 467 their untyped relatives were imputed based on a panel of sequence variants identified through 468 469 whole genome sequencing of 2,636 Icelanders to a mean depth of 20x.

470

471 GWAS analysis of Icelandic preeclampsia offspring included a total of 1,507 cases (380 chip typed) 472 and 296,865 controls (91,326 chip-typed). The controls used in this study were Icelandic individuals 473 from other ongoing GWAS studies at deCODE and their relatives. Logistic regression was used to test 474 for association between sequence variants and disease, treating disease status as the response and 475 genotype counts as covariates. Other characteristics also included in the model as nuisance variables 476 were: sex, county of birth, current age or age at death (first and second order terms included), 477 genotyping status and an indicator function for the overlap of the lifetime of the individual with the 478 timespan of phenotype collection²⁵. In order to account for relatedness and stratification within the case and control sample sets we applied the method of genomic control²⁵. Based on a set of about 479 480 300,000 common variants distributed across the genome the inflation in the chi-squared statistic for 481 preeclampsia offspring was estimated to be 1.115.

482

483 ALSPAC

A total of 9,912 ALSPAC children were genotyped using the Illumina HumanHap550 quad genomewide SNP genotyping platform (Illumina Inc., San Diego, CA, USA) by Logistics and Genotyping
Facilities at the Wellcome Trust Sanger Institute and Laboratory Corporation of America (LabCorp
Holdings., Burlington, NC, USA). PLINK software (v1.07) was used to carry out quality control
measures. Individuals were excluded from further analysis on the basis of having incorrect gender

489 assignments, minimal or excessive heterozygosity (< 0.320 and > 0.345 for the Sanger data and < 490 0.310 and > 0.330 for the LabCorp data), disproportionate levels of individual missingness (> 3%) and 491 being of non-European ancestry (as detected by a multidimensional scaling analysis seeded with 492 HapMap 2 individuals). EIGENSTRAT analysis revealed no additional obvious population stratification 493 and genome-wide analyses with other phenotypes in the same cohort indicate a low lambda. SNPs 494 with a minor allele frequency of < 1% and call rate of < 95% were removed. Furthermore, only SNPs 495 that passed an exact test of Hardy–Weinberg equilibrium ($P > 5 \times 10^{-7}$) were considered for analysis. 496 Related subjects (> 10% IBD) that passed all other quality control thresholds were retained during 497 subsequent phasing and imputation. 9,115 subjects and 500,527 SNPs passed these quality control 498 filters.

499 We combined 477,482 SNP genotypes in common between the sample of children and mothers.

500 Genotyping and QC of the ALSPAC mothers can be found elsewhere²⁶. SNPs with genotype

501 missingness > 1% and those that failed the exact test of HWE were removed. A further 321

502 participants were removed due to potential ID mismatches (IBD < 1). The resultant dataset

503 comprised 17,842 subjects of which 6,305 were mother-offspring pairs. An additional 112 SNPs were

removed after a liftover of the merged genotyped data from Hg 18 to Hg19. Haplotype phasing was

505 performed using SHAPEIT (v2.r644)²³ and known autosomal variants were imputed with IMPUTE

- V2.2.2²² using the 1000 genomes reference panel (Phase 1, Version 3) consisting of 2186 reference
 haplotypes (including non-Europeans).
- 508

Logistic regression, as implemented in SNPTEST v2.5-beta4²², was used to test for association

510 between imputed genotype probabilities and disease status. Based on a set of ~9 million SNPs

- 511 (MAF>0.5% and IMPUTE2 INFO>0.6), no evidence of genomic inflation was observed (λ_{GC} =1.008).
- 512

513 Follow-up genotyping

514 Follow-up variants in the FLT1 locus were chosen to test association with the rs4769613 peak and to 515 test possible association in the other 8 FLT1 LD blocks shown in Supplementary Fig. 2. Some 516 genotyped variants were highly correlated surrogates of rs4769613 or of other follow-up SNPs in 517 case the assay for the primary variant failed, and to ensure that assertion of a true-positive 518 association did not rely on genotyping of a single variant. Follow-up variants in non-FLT1 regions of 519 the genome were chosen based on GWAS meta-analysis P value and were selected to further test 520 suggestive evidence of association exhibited by the top GWAS discovery meta-analysis signals. 521 Replication genotyping was performed at the Wellcome Trust Sanger Institute using Sequenom iPLEX 522 assays, and at the British Heart Foundation Glasgow Cardiovascular Research Centre using TaqMan 523 Open Array genotyping. Variants were excluded from analysis if they had call rates < 95%; subjects 524 with call rates < 80%, and families in the MoBa cohort that exhibited more than 1 Mendelian error 525 were also excluded. For four variants (rs7305125, rs149427560, rs12050029 and rs4769628) follow-526 up data for the MoBa samples was in silico data based on 1046 cases and 961 controls assayed on 527 the Illumina HumanCoreExome-12 v1.1 chip and imputed based on the 1000 Genomes Phase 3 528 reference panel. Of those, 908 cases and 909 controls were also included in the directly genotyped 529 MoBa replication set.

530

531 Meta-analysis

- Prior to meta-analysis GWAS results were adjusted by a genomic control λ_{GC} factor where
- appropriate as described above for each GWAS cohort. Study level variants with a MAF<0.5% or an
- 534 imputation quality score <0.6 were excluded from the analysis. This left 7,476,169 autosomal
- variants for analysis. The GWAS and the GWAS+Replication meta-analyses were conducted using the
- 536 fixed effect inverse variance weighting method implemented in MetaSoft²⁷. No genomic control
- adjustment was applied to the GWAS meta-analysis results since the inflation factor was negligible
- 538 (λ_{GC} =1.0075).

539 Conditional and FLT1 region-wide analyses

- 540 The association between disease status on a variant conditional on rs4769613 was assessed by
- 541 inverse variance weighted meta-analysis of the per cohort conditional analyses. Individual cohorts
- 542 were analysed by logistic regression of the disease status against expected genotype dose with the
- 543 expected doses of conditioning variants included as covariates. This approach was implemented for
- each cohort as follows: MoBa and FINNPEC replication cohorts were analysed using "plink --
- condition"; GOPEC and MoBa GWAS were analysed using "snptest -condition_on"; the deCODE
- association analysis is described above; ALSPAC conditional associations were inferred from the
- summary association statistics with the use of the 1000 Genomes Phase 3 EUR samples to estimate
- the LD structure using the joint analysis method 28 . We assessed the region-wide effective number of
- tests using the method of Gao²⁹ on the imputed WTCCC2 UK control dataset for the 5405 common
- variants (MAF>5%) within 1Mb of rs4769613, yielding a total of 832 independent tests and hence a
- 551 *FLT1* region-wide significance threshold of $0.05/832=6.01\times10^{-5}$.

552 Maternal, fetal and parent-of-origin effect analysis

- 553 The family genotype data was jointly analysed using the EMIM method⁶. The subjects were first
- partitioned into maximal family groups within each cohort (Supplementary Table 9). We then fitted
- 555 EMIM models assuming Hardy-Weinberg equilibrium and Exchangeable Parental Genotypes. We
- considered two parameter sets: maternal and fetal effects (R₁, R₂, S₁ and S₂) and maternal, fetal and
- parent of origin effect $(R_1, R_2, S_1, S_2 \text{ and } I_m)$ where I_m is the odds-ratio associated with the maternal
- transmission of the risk allele. The per cohort results were combined using inverse variance
 weighted meta-analysis.

560 Preeclampsia subtype analysis

- 561 To analyse the relation between rs4769613 and preeclampsia subtypes we pooled genotype and
- clinical data of the GOPEC, FINNPEC and MoBa cohorts (Supplementary Table 8). The phenotype
- associations were calculated using logistic regression with cohort and FINNPEC recruitment region
- 564 included as indicator variables.

565 deCODE phenotype database

- 566 The deCODE Genetics phenotype database contains medical information on diseases and traits
- 567 obtained through collaboration with specialists in each field. This includes information on
- 568 cardiovascular diseases (myocardial infarction, coronary arterial disease, peripheral arterial disease,
- 569 atrial fibrillation, sick sinus syndrome and stroke), metabolic disorders (obesity, diabetes, and
- 570 metabolic syndrome), psychiatric disorders (schizophrenia, bipolar disorder, anxiety and depression),
- addictions (nicotine, alcohol), inflammatory diseases (rheumatoid arthritis, lupus, and asthma),
- 572 musculoskeletal disorders (osteoarthritis, osteoporosis), eye diseases (glaucoma), kidney diseases
- 573 (kidney stones, kidney failure) and 29 types of cancer. Anthropometric measures have also been

- 574 collected through several of these projects. Routinely measured traits from patient workups
- 575 (sodium, potassium, bicarbonate, calcium, phosphate, creatinine, blood cell counts, haemoglobin,
- 576 haematocrit, 15 immunoglobulins, iron, vitamins, lipids, liver function tests and more) were obtained
- 577 from the Landspitali University Hospital, Reykjavík, and the Icelandic Medical Center Laboratory in
- 578 Mjodd (Laeknasetrid), Reykjavik. The number of independent and uncorrelated secondary traits
- tested for association amounts to 400.
- 580

581 Placental expression of Flt1 and sFlt1

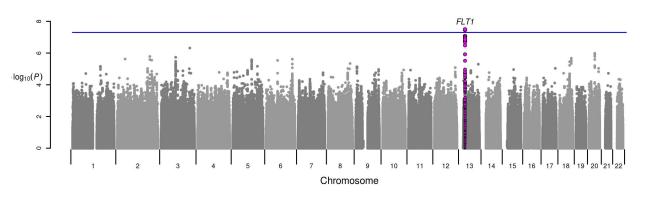
582 Women with singleton pregnancies delivering by caesarean section were recruited to the Pre-583 eclampsia Study between 2002 and 2012 at St. Olavs Hospital, Trondheim University Hospital and 584 Haukeland University Hospital, Bergen. Healthy and pre-eclamptic pregnancies were included as described previously³⁰. A tangential section (100 mg) from the maternal central side of the placenta 585 was collected directly after delivery, fixed in 10% neutral-buffered formalin and paraffin embedded. 586 587 Tissue sections of 3 µm were pre-treated in Target Retrieval Solution (#K8004, Dako) and stained by 588 Flt-1 antibody (1:175, # ab32152, Abcam) using EnVision (#K4011, Dako) according to the 589 manufacturer's protocol. This Flt-1 antibody recognises membrane-bound Flt-1 and splice isoforms 590 sFlt-1, sFlt1-14, and isoform 4 (61 kDa). Staining was performed using Autostainer Plus (#S3800, 591 Dako) and images taken at two sites per placenta with an Eclipse E400 microscope and DS-Fi1 592 camera. Staining intensity in syncytiotrophoblast was analysed by NIS-Elements BR 4.0 software 593 (Nikon), excluding immature villi, and blinded for pregnancy outcomes. Staining intensity data were

- analysed separately in a general linear model incorporating SNP genotype, gestational age andhospital of origin as cofactors.
- 596

597 Maternal serum sFlt1 and fetal genotype

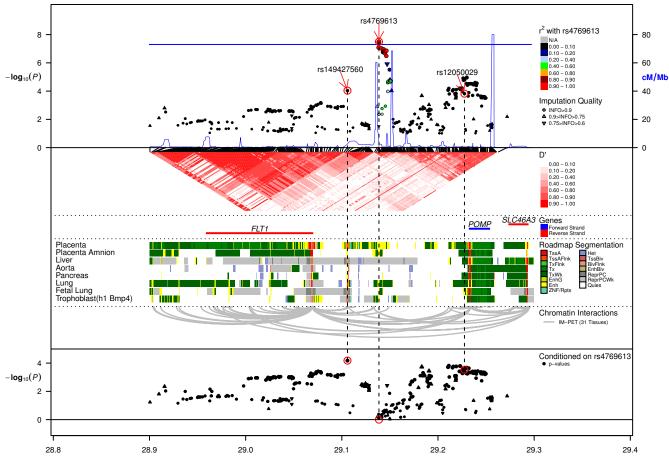
We identified mother-baby pairs from the FINNPEC collection for whom offspring DNA and maternal 598 599 serum samples from the first and/or third trimester of pregnancy were available for analysis. 600 Maternal serum sFlt-1 concentration was measured using electrochemiluminescence immunoassays 601 (ECLIA; Roche Diagnostics GmbH, Mannheim, Germany) on a Cobas e 601 analyzer (Hitachi High 602 Technology Co, Tokyo, Japan). Offspring genotype at rs4769613 was determined by Sequenom 603 MassArray iPLEX genotyping in the FiMM Technology Centre (University of Helsinki, Finland). 604 Investigators were blinded for pregnancy outcome during sample analysis. Serum sFlt-1 data were 605 normalized by logarithmic transformation. Case and control data were compared by unpaired t-606 testing; genotypic associations with serum sFlt-1 were examined separately in cases and controls in a 607 linear model, with SNP genotype and gestational age as covariates.

608

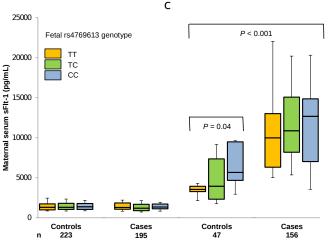

609 Data Availability

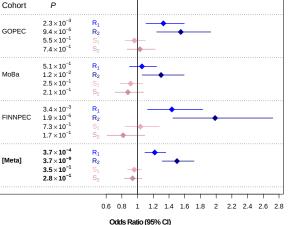
- 610 Meta-analysed GWAS data used in this study, and individual-level GWAS data from the
- 611 GOPEC cohort, are deposited in the European Genome-phenome Archive
- 612 (www.ebi.ac.uk/ega) with accession numbers EGAD00010001211 and EGAD00010001212.
- 613

614 Methods references


- 615 14. Brown, M. A., Lindheimer, M. D., de Swiet, M., Van Assche, A. & Moutquin, J. M. The
- 616 classification and diagnosis of the hypertensive disorders of pregnancy: statement from the

 20, IX-XIV (2001). The GOPEC Consortium. Disentangling fetal and maternal susceptibility for pre-eclampsia: a British multicenter candidate-gene study. <i>Am. J. Hum. Genet.</i> 77, 127-131 (2005). Evans, D. M. <i>et al.</i> Interaction between <i>ERAP1</i> and HLA-B27 in ankyolosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. <i>Nat. Genet.</i> 43, 761– 767 (2011). Boyd, A. <i>et al.</i> Cohort Profile: the 'children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219- 225 (2004). Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.gen.0020190 (2006). Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gubjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). So Levlin, B. & Roder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmitch, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZN	617	International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens. Pregnancy
 British multicenter candidate-gene study. <i>Am. J. Hum. Genet.</i> 77, 127-131 (2005). Evans, D. M. <i>et al.</i> Interaction between <i>ERAP1</i> and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. <i>Nat. Genet.</i> 43, 761–767 (2011). Boyd, A. <i>et al.</i> Cohort Profile: the 'children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219-225 (2004). Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev. Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> Loge-scale whole-genome sequencing of the Icelandic population. <i>Nat. Genet.</i> 43, 435-444 (2015). Cudbjartsson, D. F. <i>et al.</i> Large-scale mole-genome sequencing of the Icelandic population. <i>Nat. Genet.</i> 43, 435-444 (2015). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i>	618	20 , IX–XIV (2001).
 16. Evans, D. M. <i>et al.</i> Interaction between <i>ERAP1</i> and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. <i>Nat. Genet.</i> 43, 761– 767 (2011). 17. Boyd, A. <i>et al.</i> Cohort Profile: the 'children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). 18. Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219- 225 (2004). 19. Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmiopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory	619	15. The GOPEC Consortium. Disentangling fetal and maternal susceptibility for pre-eclampsia: a
 peptide handling in the mechanism for HLA-B27 in disease susceptibility. <i>Nat. Genet.</i> 43, 761–767 (2011). Boyd, A. <i>et al.</i> Cohort Profile: the 'children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219-225 (2004). Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev. Genet.</i> 11, 499-511 (2010). C'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat. Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Yang, J. <i>et al.</i> Correction for multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a	620	British multicenter candidate-gene study. Am. J. Hum. Genet. 77, 127-131 (2005).
 767 (2011). 17. Boyd, A. <i>et al.</i> Cohort Profile: the 'children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). 18. Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219- 225 (2004). 19. Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex trai	621	16. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates
 17. Boyd, A. <i>et al.</i> Cohort Profile: the 'children of the 90s'; the index offspring of The Avon Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). 18. Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219- 225 (2004). 19. Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional varian	622	peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–
 Longitudinal Study of Parents and Children. <i>Int. J. Epidemiol.</i> 42, 111-127 (2013). Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy.</i> 23, 219-225 (2004). Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). Diäškeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev. Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Genet. 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	623	767 (2011).
 Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy</i>. 23, 219- 225 (2004). Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BNJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 41	624	17. Boyd, A. et al. Cohort Profile: the 'children of the 90s'; the index offspring of The Avon
 recurrence risk in familial hypertensive disorder in pregnancy. <i>Hypertens. Pregnancy</i>. 23, 219-225 (2004). 19. Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	625	Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111-127 (2013).
 225 (2004). 19. Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	626	18. Hjartardottir, S., Leifsson, B. G., Geirsson, R. T. & Steinthorsdottir, V. Paternity change and the
 Magnus, P. <i>et al.</i> Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet.</i> Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	627	recurrence risk in familial hypertensive disorder in pregnancy. Hypertens. Pregnancy. 23, 219-
 <i>Int. J. Epidemiol.</i> 45, 382-388 (2016). 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open</i>. Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet</i>. Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet</i>. 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet</i>. Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet</i>. 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	628	225 (2004).
 20. Jääskeläinen, T. <i>et al.</i> Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). <i>BMJ Open</i>. Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet</i>. Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet</i>. Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	629	19. Magnus, P. et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa).
 (FINNPEC). <i>BMJ Open</i>. Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016). 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet</i>. Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev. Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet</i>. Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat. Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	630	Int. J. Epidemiol. 45 , 382-388 (2016).
 21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. <i>PLoS Genet</i>. Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). 23. O'Connell, J. et al. (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet</i>. Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 24. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. et al. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. et al. Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	631	20. Jääskeläinen, T. et al. Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium
 634 Dec;2(12):e190. doi:10.1371/journal.pgen.0020190 (2006). 635 22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> 636 Genet. 11, 499-511 (2010). 637 23. O'Connell, J. et al. (2014) A general approach for haplotype phasing across the full spectrum of 638 relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). 639 24. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> 640 <i>Genet.</i> 47, 435-444 (2015). 641 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 642 26. Hellmich, C. et al. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants 643 and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 644 (2015). 645 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. 646 <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 647 28. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 648 additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 649 29. Hendricks, A. E. et al. Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 651 30. Austdal, M. et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	632	(FINNPEC). <i>BMJ Open.</i> Nov 10;6(11):e013148. doi:10.1136/bmjopen-2016-013148 (2016).
 Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. <i>Nat. Rev.</i> <i>Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	633	21. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet.
 <i>Genet.</i> 11, 499-511 (2010). O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gubbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	634	
 O'Connell, J. <i>et al.</i> (2014) A general approach for haplotype phasing across the full spectrum of relatedness. <i>PLoS Genet.</i> Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	635	22. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev.
 relatedness. <i>PLoS Genet</i>. Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014). Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat.</i> <i>Genet.</i> 47, 435-444 (2015). Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	636	
 639 24. Gudbjartsson, D. F. <i>et al.</i> Large-scale whole-genome sequencing of the Icelandic population. <i>Nat. Genet.</i> 47, 435-444 (2015). 641 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 642 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 645 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 647 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 649 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 651 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	637	23. O'Connell, J. et al. (2014) A general approach for haplotype phasing across the full spectrum of
 <i>Genet.</i> 47, 435-444 (2015). 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 	638	relatedness. <i>PLoS Genet</i> . Apr 17:10(4):e1004234. doi: 10.1371/journal.pgen.1004234 (2014).
 25. Devlin, B. & Roeder, K. Genomic control for association studies. <i>Biometrics</i> 55, 997-1004 (1999). 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 26. Hellmich, C. <i>et al.</i> Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 and sleep neurophysiology. <i>BMC Med. Genet.</i> Oct 24; 16:96. doi: 10.1186/s12881-015-0244-4 (2015). 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 644 (2015). 645 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. 646 Am. J. Hum. Genet. 88, 586-598 (2011). 647 28. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 648 additional variants influencing complex traits. Nat. Genet. 44, 369-375 (2012). 649 29. Hendricks, A. E. et al. Correction for multiple testing in a gene region. Eur. J Hum. Genet. 22, 650 414-418 (2014). 651 30. Austdal, M. et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 645 27. Han, B. & Eskin, E. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants. 646 Am. J. Hum. Genet. 88, 586-598 (2011). 647 28. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 648 additional variants influencing complex traits. Nat. Genet. 44, 369-375 (2012). 649 29. Hendricks, A. E. et al. Correction for multiple testing in a gene region. Eur. J Hum. Genet. 22, 650 414-418 (2014). 651 30. Austdal, M. et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 <i>Am. J. Hum. Genet.</i> 88, 586-598 (2011). 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 28. Yang, J. <i>et al.</i> Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 additional variants influencing complex traits. <i>Nat. Genet.</i> 44, 369-375 (2012). 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 649 29. Hendricks, A. E. <i>et al.</i> Correction for multiple testing in a gene region. <i>Eur. J Hum. Genet.</i> 22, 650 414-418 (2014). 651 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
 414-418 (2014). 30. Austdal, M. <i>et al.</i> Metabolic profiles of placenta in preeclampsia using HR-MAS MRS 		
651 30. Austdal, M. <i>et al</i> . Metabolic profiles of placenta in preeclampsia using HR-MAS MRS		
652 metabolomics. <i>Placenta</i> 36 , 1455-1462 (2015).		
	652	metabolomics. <i>Placenta</i> 36 , 1455-1462 (2015).

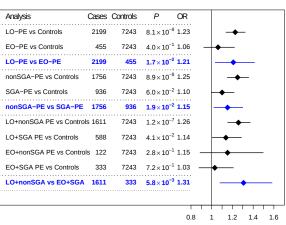

а



Chromosome 13 : Position (Mb)

First trimester

Third trimester



LO-PE vs EO-PE nonSGA-PE vs Controls SGA-PE vs Controls LO+SGA PE vs Controls EO+SGA PE vs Controls

rs4769613: Jointly Fitted Maternal (S1 & S2) and Fetal(R1 & R2) Effects

rs4769613 : Preeclampsia Subtype Meta-analysis Overview

Odds Ratio (95% CI)

а

MoBa

[Meta]

b

Supplementary Table 1 Meta-analysis of variants selected for post-GWAS follow-up

						N	GWAS =2,658 / 30			Replicatio N=1,722 / 1			WAS+Rep =4,380 / 3	
Variant	Nearest Gene	Chr	Position	Risk/Alt Allele	RAF	OR	95%CI	Р	OR	95%CI	Р	OR	95%CI	Р
rs16835173	PCGEM1	2	194213678	T/C	0.02	1.61	1.33-1.96	1.8×10⁻ ⁶	1.26	0.88-1.82	0.20	1.53	1.28-1.81	1.5×10⁻ ⁶
rs78689834	PARD3B	2	205388423	A/C	0.02	1.58	1.31-1.92	3.0×10⁻ ⁶	0.88	0.65-1.19	0.40	1.34	1.14-1.57	4.9×10 ⁻⁴
rs73843515	CADM2	3	85984083	T/C	0.01	2.01	1.48-2.74	8.8×10 ⁻⁶	0.78	0.40-1.49	0.45	1.69	1.28-2.23	2.2×10 ⁻⁴
rs9846396	ZBTB38	3	141140968	C/T	0.56	1.14	1.06-1.22	3.6×10 ⁻⁴	1.00	0.86-1.17	0.98	1.10	1.04-1.17	2.1×10 ⁻³
rs112342656	MCC	5	112656059	C/T	0.01	1.90	1.45-2.48	2.7×10 ⁻⁶	0.71	0.46-1.10	0.12	1.45	1.15-1.82	1.5×10 ⁻³
rs11740989	JAKMIP2	5	147160125	C/T	0.05	1.37	1.20-1.58	7.1×10 ⁻⁶	1.05	0.84-1.32	0.67	1.28	1.14-1.44	5.0×10 ⁻⁵
rs16898533	SLC25A51P1	6	67269926	G/T	0.04	1.46	1.25-1.71	3.0×10⁻ ⁶	0.87	0.64-1.17	0.35	1.30	1.13-1.50	2.3×10 ⁻⁴
rs9397792	TIAM2	6	155543913	G/T	0.14	1.26	1.14-1.38	2.5×10⁻ ⁶	1.06	0.90-1.25	0.47	1.20	1.11-1.31	9.2×10 ⁻⁶
rs12154986	FAM220A	7	6398651	A/G	0.72	1.15	1.06-1.25	5.4×10 ⁻⁴	1.11	1.01-1.23	0.04	1.14	1.07-1.21	5.8×10 ⁻⁵
rs6577900	FAM135B	8	139255733	C/T	0.32	1.15	1.07-1.24	2.1×10 ⁻⁴	1.02	0.90-1.16	0.70	1.12	1.05-1.19	7.4×10 ⁻⁴
rs2427981	SARDH	9	136581419	A/C	0.58	1.18	1.09-1.27	1.1×10⁻⁵	0.95	0.85-1.08	0.45	1.14	1.07-1.21	3.5×10 ⁻⁵
rs3750804	TCF7L2	10	114833850	C/T	0.62	1.19	1.10-1.29	2.9×10 ⁻⁵	1.08	0.95-1.24	0.22	1.16	1.08-1.24	2.6×10 ⁻⁵
rs11197042	ATRNL1	10	116825666	A/G	0.29	1.18	1.09-1.27	2.7×10⁻⁵	0.93	0.82-1.05	0.26	1.10	1.03-1.18	2.8×10 ⁻³
rs1586382	ZBED5-AS1	11	11074260	T/G	0.73	1.15	1.06-1.24	1.0×10 ⁻⁵	1.02	0.90-1.17	0.72	1.10	1.02-1.17	9.4×10 ⁻³
rs11227306	OVOL1	11	65578672	A/C	0.38	1.16	1.08-1.25	4.4×10 ⁻⁵	1.06	0.96-1.17	0.28	1.12	1.06-1.19	7.7×10⁻⁵
rs501630	EFEMP2	11	65637273	A/G	0.45	1.15	1.07-1.23	1.1×10 ⁻⁴	1.04	0.92-1.16	0.54	1.12	1.05-1.19	3.0×10 ⁻⁴
rs7305125	ITPR2	12	26960599	C/G	0.31	1.19	1.10-1.29	6.8×10 ⁻⁶	1.06	0.92-1.22	0.88	1.16	1.09-1.24	1.3×10⁻⁵
rs118009336	DNAH10	12	124410135	A/C	0.96	1.56	1.28-1.90	8.6×10 ⁻⁶	0.98	0.75-1.26	0.85	1.31	1.12-1.53	6.4×10 ⁻⁴
rs4769613	FLT1	13	29138609	C/T	0.53	1.22	1.14-1.31	3.2×10 ⁻⁸	1.18	1.08-1.30	3.6×10⁻⁴	1.21	1.14-1.28	5.4×10 ⁻¹¹
rs7328374	FLT1	13	29141327	T/C	0.52	1.21	1.13-1.30	9.6 10 ⁻⁸	1.19	1.09-1.31	2.1×10⁻⁴	1.20	1.14-1.27	8.6×10 ⁻¹¹
rs11623923	SLC35F4	14	58042753	G/A	0.84	1.18	1.07-1.31	1.1×10 ⁻³	1.04	0.88-1.22	0.65	1.14	1.05-1.24	2.7×10 ⁻³
rs72747221	GCOM1	15	58058582	C/T	0.96	1.74	1.36-2.24	1.1×10 ⁻⁵	0.89	0.65-1.21	0.45	1.33	1.10-1.62	3.4×10 ⁻³
rs12962662	TNFRSF11A	18	60104589	T/C	0.16	1.25	1.14-1.38	3.7×10 ⁻⁶	1.03	0.87-1.22	0.72	1.19	1.10-1.29	2.7×10⁻⁵
rs6566644	CBLN2	18	70310180	G/T	0.54	1.18	1.10-1.27	3.0×10 ⁻⁶	1.10	0.98-1.23	0.12	1.16	1.09-1.23	1.5×10⁻⁵
rs56090944	MMP24	20	33813993	A/G	0.04	1.44	1.24-1.66	1.4×10 ⁻⁶	1.06	0.82-1.38	0.64	1.34	1.18-1.52	9.2×10 ⁻⁶
rs2071969	L3MBTL1	20	42160962	G/A	0.90	1.25	1.11-1.41	2.4×10 ⁻⁴	0.88	0.73-1.05	0.16	1.12	1.02-1.24	2.1×10 ⁻²
rs1412977	C20orf85	20	56709290	G/T	0.51	1.18	1.09-1.26	9.5×10⁻ ⁶	1.08	0.99-1.19	0.09	1.14	1.08-1.21	5.6×10 ⁻⁶
rs73306896	ZNF831	20	57750533	T/C	0.12	1.21	1.09-1.34	2.3×10 ⁻⁴	1.11	0.94-1.31	0.21	1.18	1.08-1.29	1.5×10 ⁻⁴

Variants in the table are ordered by chromosome number ("Chr") and NCBI Build 37 position ("Position"). "N", total cases / controls in metaanalysis; "Risk/Alt Allele", allele with higher frequency in GWAS cases than controls and alternate allele; "RAF", risk allele frequency in UK GWAS controls; "OR" and "95% CI", allelic odds ratio and 95% confidence interval. "*P*", *P* values of case-control association. Rows for rs4769613 and its near-perfect surrogate rs7328374 are bold because their GWAS+Replication *P* values are below genome-wide significance of 5×10⁻⁸ No other follow-up variants achieved genome-wide significance.

				N	GWAS =2,658 / 30			Replicati N=1,722 / 1			WAS+Repl l=4,380 / 31	
Variant	Chr13 Position	Risk/Alt Allele	RAF	OR	95%CI	Р	OR	95%CI	Р	OR	95%CI	Р
rs3794401	28915659	A/G	0.87	1.20	1.07-1.35	1.6×10 ⁻³	1.09	0.95-1.26	0.22	1.16	1.06-1.26	1.3×10 ⁻³
rs2296284	28963676	A/G	0.29	1.01	0.94-1.09	7.9×10 ⁻¹	0.99	0.87-1.12	0.83	1.00	0.94-1.07	9.1×10 ⁻¹
rs9319429	28973703	T/C	0.30	1.01	0.94-1.09	8.0×10 ⁻¹	1.00	0.88-1.13	0.97	1.01	0.94-1.07	8.4×10 ⁻¹
rs11619261	29078077	A/G	0.07	1.25	1.10-1.42	6.4×10 ⁻⁴	1.18	0.99-1.39	0.06	1.22	1.10-1.35	1.1×10⁻⁴
rs149427560	29105870	G/GGT	0.06	1.30	1.14-1.49	9.3×10⁻⁵	1.16	0.96-1.40	0.11	1.23	1.09-1.38	4.1×10⁻⁵
rs4769613	29138609	C/T	0.53	1.22	1.14-1.31	3.2×10⁻ ⁸	1.18	1.08-1.30	3.6×10⁻⁴	1.21	1.14-1.28	5.4×10 ⁻¹¹
rs7328374	29141327	T/C	0.52	1.21	1.13-1.30	9.6×10 ⁻⁸	1.19	1.09-1.31	2.1×10⁻⁴	1.20	1.14-1.27	8.6×10 ⁻¹¹
rs17555115	29143824	G/A	0.52	1.21	1.13-1.30	1.6×10 ⁻⁷	1.12	0.99-1.27	0.07	1.19	1.12-1.26	5.1×10⁻ ⁸
rs3829387	29149693	C/A	0.21	1.22	1.12-1.32	3.1×10 ⁻⁶	1.09	0.95-1.26	0.22	1.19	1.10-1.27	3.3×10 ⁻⁶
rs9508065	29151651	A/C	0.22	1.19	1.09-1.30	9.4×10 ⁻⁵	1.08	0.97-1.21	0.16	1.15	1.07-1.23	8.1×10⁻⁵
rs9508079	29169711	G/A	0.54	1.06	0.99-1.14	1.1×10 ⁻¹	1.05	0.92-1.20	0.45	1.06	0.99-1.12	8.0×10 ⁻²
rs117488563	29183168	A/G	0.06	1.32	1.14-1.53	2.1×10 ⁻⁴	1.20	0.86-1.67	0.28	1.30	1.14-1.48	1.3×10 ⁻⁴
rs2096035	29184460	A/G	0.81	1.17	1.06-1.28	1.3×10 ⁻³	1.05	0.90-1.22	0.56	1.13	1.04-1.23	2.4×10 ⁻³
rs4769620	29184950	C/T	0.81	1.16	1.06-1.28	1.5×10 ⁻³	1.03	0.91-1.17	0.64	1.11	1.03-1.20	4.7×10⁻³
rs9508092	29186162	T/C	0.80	1.16	1.06-1.27	1.7×10 ⁻³	1.07	0.94-1.21	0.34	1.13	1.05-1.22	1.8×10⁻³
rs35242283	29211289	A/AGAT	0.14	1.22	1.11-1.34	6.4×10 ⁻⁵	1.25	1.07-1.47	6.4×10 ⁻³	1.23	1.13-1.33	1.4×10⁻ ⁶
rs71433277	29218967	T/C	0.14	1.22	1.10-1.34	7.9×10⁻⁵	1.14	1.02-1.29	0.03	1.19	1.10-1.28	7.6×10⁻⁵
rs1185049	29226634	G/A	0.34	1.17	1.09-1.26	1.7×10⁻⁵	1.09	0.99-1.20	0.06	1.14	1.08-1.21	5.6×10 ⁻⁶
rs12050029	29227519	G/A	0.14	1.20	1.09-1.33	1.5×10 ⁻⁴	1.18	1.05-1.32	5.9×10 ⁻³	1.19	1.11-1.28	3.0×10⁻⁵
rs9551517	29230045	A/G	0.34	1.18	1.09-1.26	1.1×10⁻⁵	1.09	1.00-1.20	0.06	1.15	1.08-1.21	3.5×10⁻⁵
rs4769628	29232064	G/A	0.15	1.21	1.10-1.33	1.3×10 ⁻⁴	1.17	1.04-1.32	7.1×10 ⁻³	1.19	1.11-1.28	3.0×10⁻⁵

Supplementary Table 2 Meta-analysis results at all variants near FLT1 followed up in the replication datasets

All results are from unconditional logistic regression and are listed by NCBI Build 37 variant position on chromosome 13 ("Chr13 Position"). "N", total cases / controls in meta-analysis; "Risk/Alt Allele", allele with higher frequency in GWAS cases than controls and alternate allele; "RAF", risk allele frequency in UK GWAS controls; "OR" and "95% Cl", allelic odds ratio and 95% confidence interval. Rows for rs4769613 and its near-perfect surrogate rs7328374 are in bold to highlight genome-wide significance (P<5×10⁻⁸) of their GWAS+Replication *P* values. Genotypes of rs149427560 for the FINNPEC replication cohort were proxied from rs11619261 (pairwise r²=0.88 in Finland 1000Genomes phase 3); results for several variants do not include FINNPEC data (rs17555115, rs3829387, rs2096035, rs2296284 and rs9319429) because they were not genotyped in FINNPEC. Most of these variants were not genotyped since they are in strong LD and redundant with other variants genotyped in FINNPEC.

Supplementary Table 3 | Frequency of rs4769613 risk allele C in preeclampsia offspring cases, maternal cases, and controls

		Offspri	ng Cases			Materr	Contr	ols		
Cohort	Freq	se	OR	Р	Freq	se	OR	Р	Freq	se
GOPEC	0.576	0.011	1.231	2.74×10 ⁻⁵	0.555	0.008	1.131	0.0014	0.524	0.005
deCODE	0.567	0.017	1.229	5.49×10 ⁻⁴	0.557	0.010	1.095	0.0242	0.531	0.001
МоВа	0.544	0.011	1.100	7.71×10 ⁻²	0.519	0.010	0.996	0.9610	0.520	0.008
FINNPEC	0.538	0.015	1.334	2.69×10 ⁻⁴	0.489	0.013	1.096	0.2080	0.466	0.012

Cohort sample numbers (Offspring cases/Maternal cases/Controls) are: GOPEC(1004/1875/5083), deCODE(411/1205/135190), MoBa(1125/1169/1927), FINNPEC(527/729/870); "Freq" and "se" are mean allele frequency and standard error for risk allele C; "OR" and "P" are allelic odds ratio and case-control P value calculated by Pearson χ^2 .

Supplementary Table 4 | Transmission Disequilibrium Test of rs4769613 alleles transmitted from heterozygous (C/T) parents to offspring in preeclampsia and control trios of the MoBa cohort

	Allel	e Transm	issions		oreferential e of allele C
Phenotype	С	т	%C	TDT χ^2	Р
Preeclampsia case trios	417	361	53.6%	4.031	0.045
Control trios	351	341	50.7%	0.145	0.704

All MoBa trios with genotyped DNA from both parents and child are included.

"C" and "T" show total counts of risk allele C and alternate allele T transmitted from each heterozygous (C/T) parent to an offspring. "%C" is percentage of risk allele C among total transmitted alleles and shows preferential inheritance of allele C (53.6%) by preeclampsia offspring but nearly equal inheritance (50.7%) by offspring in control families; TDT χ^2 =(C-T)²/(C+T) derived in Spielman *et al* (American Journal of Human Genetics 52:506-516, 1993) shows statistical significance (p<0.045) of preferential allele C inheritance by preeclampsia cases but non-significance (p=0.704) in control trios.

Supplementary Table 5 | Test for sex difference between heterozygous (C/T) mothers and fathers in transmission of rs4769613 alleles to preeclampsia offspring of MoBa cohort

	Allel	e Transm	issions	Test Sex	Difference
Parental Sex	С	т	%C	X ²	Р
Mother	164	134	55.0%	0.0462	0.02
Father	169	143	54.2%	0.0462	0.83

"C" and "T" show total counts of risk allele C and alternate allele T transmitted from each heterozygous (C/T) parent to an offspring. "%C" is percentage of allele C among total transmitted alleles. Preeclampsia trios are included only if maternal and paternal allele transmissions are unambiguous (i.e. preeclampsia trios were excluded if both parents and offspring were heterozygous). " χ^{2n} is 2x2 Pearson χ^2 Test on counts of allele C and T transmitted from heterozygous mothers versus fathers in

unambiguous preeclampsia trios.

Supplementary Table 6 | Association results for Red Blood Cell (RBC) count, haemoglobin and haematocrit for preeclampsia associated variants

SNP	Risk allele*	Other allele	Risk allele frequency	Trait [†]	N samples [‡]	<i>P</i> value	Effect§	95%CI
rs4769613	С	т	0.53	RBC count	270,314	5.0 x 10 ⁻⁴	-0.011	-0.005 to -0.017
				Haemoglobin	272,616	7.1 x 10 ⁻⁴	-0.010	-0.004 to -0.016
				Haematocrit	268,150	2.5 x 10 ⁻³	-0.009	-0.003 to -0.015
rs12050029	G	А	0.14	RBC count	270,314	1.5 x 10 ⁻⁷	-0.024	-0.033 to -0.015
				Haemoglobin	272,616	1.1 x 10 ⁻⁴	-0.016	-0.024 to -0.008
				Haematocrit	268,150	4.0 x 10 ⁻⁶	-0.019	-0.027 to -0.011

* Allele associated with increased risk of preeclampsia

[†]Results are shown for three correlated traits

[‡] Number of individuals included in the analysis

[§] Effect estimate in units of standard deviation is reported for the designated Risk allele. Association was tested using generalized linear regression. Measurements were adjusted for age, sex and measurement site, and average was taken over the available measurements after adjustment and inverse normal transformation.

Supplementary Table 7 | Characteristics of pregnancies from GWAS and Replication cohorts

Cohort and country of origin	Group	Materna	al age	Primi- parous	Highest S (mm H		Highest D mm He		Gestation (wee			pring ht (grams)
		Mean	SD		Mean	SD	Mean	SD	Median	IQR	Median	IQR
GOPEC [≬] UK	Cases n=1157	29.6	5.6	78%	167	18	111	9	37	34-38	2580	1848-3193
ALSPAC UK	Cases n=146	28.7	5.3	68%	159	13	108	9	39	37-40	3240	2710-3680
ALSPAC UK	Controls n=6130	28.6	4.8	41%	127	10	78	7	40	39-41	3460	3160-3780
deCODE [□] Iceland	Cases n=1507	27.8	6.0	66%	155 [‡]	16	107 [‡]	9	39	37-40	3310 [§]	2752-3744
MoBa Norway	Cases n=1200	29.1	4.8	66%	Not available		Not available		39	38-41	3325	2812-3740
MoBa Norway	Controls n=1200	30.1	4.4	42%	Not available		Not available		40	39-41	3690	3341-4010
FINNPEC Finland	Cases n=605	29.9	5.6	75%	166	17	109	9	38	36-39	2913	2390-3380
FINNPEC Finland	Controls n=800	29.7	5.1	56%	128	14	85	10	40	39-41	3590	3260-3930

Phenotypic data were available for >99% of pregnancies unless otherwise indicated.

SBP, systolic blood pressure; DBP, diastolic blood pressure; IQR, interquartile range

[‡] 491 pregnancies

§ 1294 pregnancies

^o Control data for GOPEC GWAS were derived from 5297 unselected subjects from the UK population included in the 1958 Birth Cohort and donors to the National Blood Service

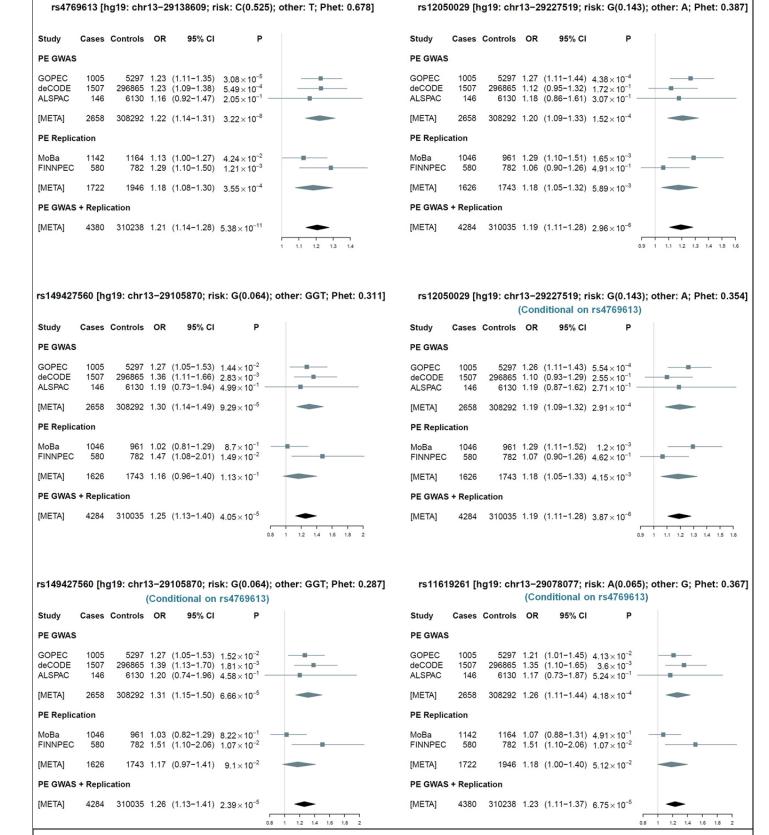
^a Control data for deCODE GWAS were derived from 296,865 unselected subjects from the Icelandic population

Supplementary Table 8 | Early and late onset cases of pre-eclampsia

Cohort	EO-preeclampsia	LO-preeclampsia
GOPEC	274	625
deCODE	176	360
FINNPEC	123	479
МоВа	58	1095

Number of cases of early onset and late onset preeclampsia used in data analysis. Only cases where gestational age at diagnosis of pre-eclampsia was unequivocally recorded were included in sub-group analysis.

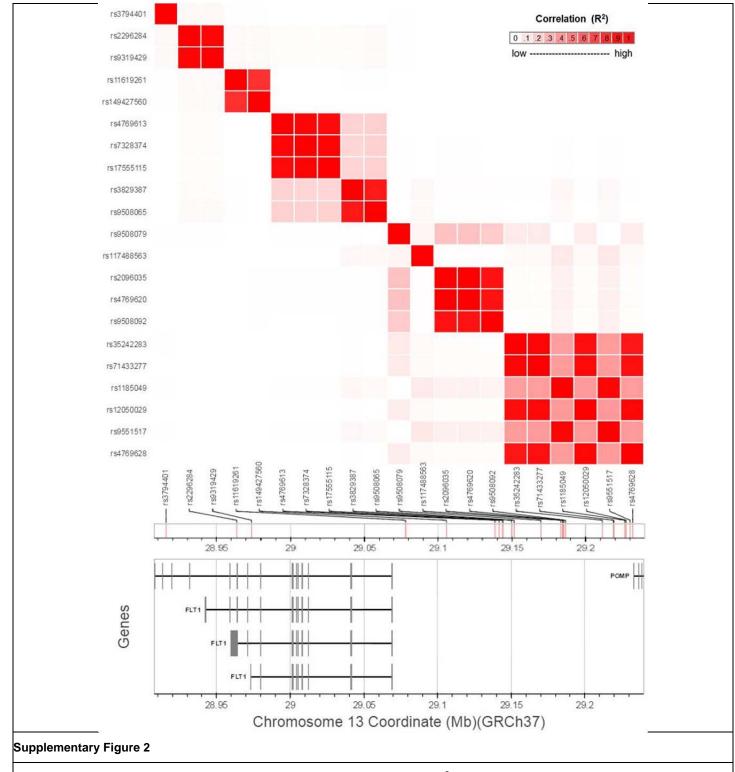
"EO-preeclampsia" is early onset pre-eclampsia, diagnosed at <34 weeks gestation. "LO-preeclampsia" is late onset pre-eclampsia, diagnosed at ≥34 weeks gestation.


Supplementary Table 9 | Per cohort pedigree counts used for EMIM analysis

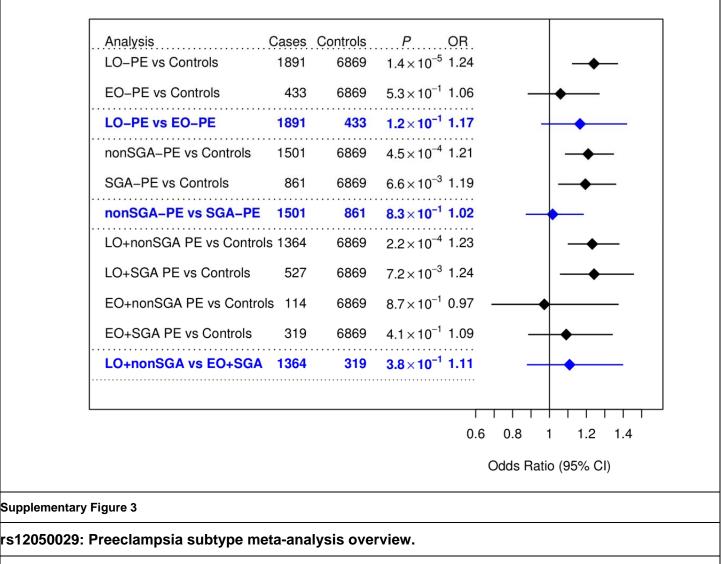
Croup	МоВа	GOPEC	FINNPEC	Total
Group	мова	GOPEC	FINNPEC	TOTAL
Case Trios	798	0	0	798
Case Mother-Offspring Duos	315	953	403	1671
Case Father-Offspring Duos	9	0	0	9
Case Mothers*	50	922	326	1298
Case Fathers*	33	0	0	33
Case Offspring*	6	51	126	183
Case Parents [†]	9	0	0	9
Control Mother-Offspring Duos	429	0	487	916
Control Father-Offspring Duos	5	0	0	5
Controls [‡]	1494	5083	383	6960

*Subjects without other family members

 $^{\dagger}\mbox{Two}$ parents without their case offspring


[‡]Includes parents in control trios

Supplementary Figure 1


Forest plots for GWAS and replication cohorts at independent variants near *FLT1* giving evidence for association with preeclampsia.

Forests plots are presented in order of strength of association with preeclampsia (PE) (see Table 1). The top line of each plot gives variant rs number, position on chromosome 13 (human genome build 19), risk allele (i.e. allele with higher frequency in cases than controls in the GWAS meta-analysis)and its population frequency in parenthesis, other allele, and Phet giving the *P* value for heterogeneity of odd ratios (OR) in the five cohorts. Subsequent lines provide a breakdown of results for each GWAS and replication cohort including number of cases and controls, the allelic case-control OR and its 95% confidence interval (95% CI) and case-control association *P* value. [META] indicates corresponding meta-analysis results for GWAS cohorts, replication cohorts, or GWAS and replication cohorts combined; each meta-analysis allelic OR is represented by a "diamond" whose width corresponds to the 95% CI. The first three Forest plots give unconditional logistic regression results and the last three plots give logistic regression results that condition out the effect of rs4769613. The SNP rs11619261 is included here because it is used as a proxy for rs149427560 in the FINNPEC cohort (see Table 1).

Linkage disequilibrium (LD) matrix showing pairwise LD r² values among all variants near *FLT1* selected for follow-up in Replication cohorts.

LD r² values were generated by LDlink software (<u>http://analysistools.nci.nih.gov/LDlink</u>) from 1000Genomes Phase 3 genotypes for all European populations. Variants are ordered by chromosomal position and shown in relation to *FLT1* and *POMP*. Intensity of red shading (see colour legend) shows approximate r² value for each variant pair and implies that the 21 follow-up variants define 9 LD "blocks" with high pairwise r² within each block but low pairwise r² for members of different blocks.

rs12050029 : PE Subtype Meta-analysis Overview

Forest plot for preeclampsia (PE) subtypes defined by early and late onset (EO-PE, LO-PE) and by birthweight that is small-for-gestational age (SGA-PE) or not (nonSGA-PE). Case-control comparison shows risk allele G is significantly associated with LO-PE ($P=1.4 \times 10^{-5}$), nonSGA-PE ($P=4.5 \times 10^{-4}$) and SGA-PE ($P=6.6 \times 10^{-3}$). The strength of association does not differ between SGA-PE and nonSGA-PE.