

Ireland, M. L., Flessa, T., Thomson, D. and McGookin, E. (2017)

Comparison of nonlinear dynamic inversion and inverse simulation.

Journal of Guidance, Control, and Dynamics, 40(12), pp. 3307-3312.

(doi:10.2514/1.G002875)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/141225/

Deposited on: 22 May 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.2514/1.G002875
http://eprints.gla.ac.uk/141225/
http://eprints.gla.ac.uk/141225/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

A Comparison of Non-Linear Dynamic Inversion and Inverse
Simulation

Murray L. Ireland*, Thaleia Flessa† Douglas Thomson‡ and Euan McGookin.§
School of Engineering, University of Glasgow, Glasgow, UK, G20 8NZ

I. Introduction

The need to invert a system can arise in a number of areas of engineer-
ing. System inversion can be useful in control applications, permitting
a linear mapping between output and controller and simplifying con-
troller design [1, 2]. An inverted system can allow input trajectories to
be determined for a desired output trajectory [3, 4]. This is useful when
evaluating the feasibility of vehicle trajectories in the context of realistic
input commands from both human and automatic controllers [5, 6, 7].
The ability to determine a system’s input from its output also has use in
fault detection and isolation methods [8] and model validation [9]. In the
former case an inverted system model permits generation of input resid-
uals in the same way that a conventional model can enable the generation
of output residuals [10].

These applications may be categorised in two distinct structures. In
the first, the inverted system is supplied with a desired trajectory yd and
subsequently determines the input u which will drive the system along
this trajectory. This is illustrated in Figure 1a. This approach is most ben-
eficial in the design of trajectories for autonomous and piloted vehicles.
In the second structural form, the system receives its input u through
conventional means, such as a feedback control system. The output y is
then supplied to the inverted system with the goal of producing an esti-
mate of the input uest. This is illustrated in Figure 1b. This approach is
most beneficial in areas of fault detection and isolation, and validation.

Inverted System
yd u y

(a) Inverted system as a method for calculating corresponding inputs for desired
trajectories.

Controller System Inverted
yd u y uest

(b) Inverted system as a method for reconstructing input signals.

Figure 1. Structural variants for inverted system in relation to original sys-
tem.

A system model may be inverted through different means. Systems
which may be described in control affine form can be analytically in-
verted to provide an expression for input in terms of state and output.
This approach is known as non-linear dynamic inversion (NDI) or feed-
back linearisation [1]. Alternatively, a system may be numerically in-
verted by employing the Newton-Raphson algorithm at discrete time in-
crements. This method is known as Inverse Simulation (InvSim) [11].
Each method has advantages over the other in terms of accuracy, ease of
use and feasibility. This paper compares the two approaches in applica-
tion to an example non-linear system. Simulation results are presented
which consider both of the structural forms presented in Figure 1.

*Research Associate, School of Engineering, James Watt (South) Building,
Murray.Ireland@glasgow.ac.uk

†PhD Student, School of Engineering, James Watt (South) Building.
‡Senior Lecturer, School of Engineering, James Watt (South) Building.
§Senior Lecturer, School of Engineering, James Watt (South) Building.

II. Theoretical Background
Consider a generic, non-linear system, described in control affine form
by

ẋ = f (x) + g(x)u, y = h(x) (1)

and represented in block diagram form in Figure 2. As stated previously,
a capability for specifying the output y and obtaining the correspond-
ing input u is useful in several applications. This relationship may be
achieved by inverting the system, either analytically or numerically. It
is possible to analytically invert any system which is considered control
affine by first obtaining an explicit mapping between output and input.
For complex systems, even those that are control affine, attainment of
this mapping may be non-trivial. In contrast, numerical inversion is not
constrained to control affine-only systems. It is, however, subject to con-
siderations of numerical stability from which the analytical method may
not suffer [12]. Additionally, as it uses an iterative Newton-Raphson al-
gorithm, its processing time is typically greater than that of an analytical
approach.

g(x)
∫

f (x)

h(x)
u

+

ẋ x+ y

Figure 2. Structure of non-linear control affine system.

This section presents the theoretical background behind both NDI
and InvSim, in the context of inverting a system of the form given in
Equation (1).

A. Non-Linear Dynamic Inversion

Consider the system described by Equation (1). In order to invert this
system and obtain an expression for the input, it is first necessary to ob-
tain an expression for the output which explicitly includes the input. This
is achieved by successively differentiating the output until this mapping
is obtained. At the first derivative, the expression

ẏ = L f h(x) + Lgh(x)u (2)

is obtained [1]. The terms L f and Lg are the Lie-derivatives in the direc-
tions of f and g, respectively, and are given by

L f = f1
∂

∂x1
+ . . . + fn

∂

∂xn
, Lg = g1

∂

∂x1
+ . . . + gn

∂

∂xn

for a state of length n. For the relationship given in Equation (2), the
desired mapping is obtained only if Lgh(x) 6= 0. If this condition does not
hold, it is necessary to further differentiate Equation (2). The mapping
ultimately occurs at the relative degree ν of the system, where the νth
derivative of the output may be explicitly related to the input, as in the
expression

y(ν) = Lνf h(x) + LgLν−1
f h(x)u (3)

where the condition LgLν−1
f h(x) 6= 0 must hold. The solution for input is

then
u =

(
LgLν−1

f h(x)
)−1 (

y(ν) − Lνf h(x)
)

(4)

1

2

Substitution of Equation (4) into Equation (3) simply yields
y(ν) = y(ν). Similarly, substituting Equation (3) into Equation (4) yields
u = u. In theory, the inverted system cancels out the non-linearities and
dynamics of the system perfectly. In empirical testing, however, replica-
tion of the input is dependent on the smoothness of the supplied output
signal. Additionally, systems with high relative degree can experience
drift due to minute numerical errors. Figure 3 shows the structure of
an analytically-inverted control affine system as used in simulation or
experimental application.

dν
dtν

(
LgLν−1

f h(x)
)−1

Lνf h(x)

∫
g(x)

f (x)

y + u

+ẋx
+

−

Figure 3. Structure of inverted non-linear, control affine system.

In practical implementation, the NDI algorithm receives an out-
put y(tk) at a discrete step k, with sample interval hsamp = tk+1 − tk.
The process model is then integrated between tk and tk+1 at a step size
hint = hsamp/N,N ∈ N. The accuracy and computational load of the NDI
algorithm is thus dependent on these two step sizes, hsamp and hint.

B. Inverse Simulation

Inverse Simulation provides a solution to Equation (1) for u using an iter-
ative Newton-Raphson algorithm, which runs at discrete intervals during
operation. It is similar to the NDI algorithm illustrated in Figure 3 in
that it may act as an open-loop controller for the system. InvSim is ini-
tialised with approximate values for state and input, and then supplied
with an output to track. As stated previously, this output may be either
a desired trajectory or the true system output. At each time step tk, the
Newton-Raphson algorithm attempts to converge on a solution for input
u(tk), based on the supplied output y(a)(tk) and state and input from the
previous interval. Unlike NDI, where the relative degree of the output
is fixed by the equations of motion, the differential order a of the output
supplied to InvSim may be chosen as desired. The value of a impacts
the stability of the InvSim algorithm and must be chosen with care, as
discussed in [4]. Upon the Newton-Raphson algorithm converging on a
solution, the state and input are recorded and used to initialise the algo-
rithm at the next interval. The most prominent InvSim solution is the
Genisa algorithm [13], the behaviour of which is illustrated in Figure 4.

Like NDI, InvSim requires a model of the system in order to operate.
It does not, however, require an analytical solution for u and is therefore
not constrained to control affine systems. In practice, however, systems
with a non-linear dependency can result in multiple solutions for input,
for a given output.

Practical implementation of InvSim is similar to NDI in the discrete
sampling of the output at each step k and the use of an integration loop
to update the state. The sample interval is again denoted hsamp and the
integration step size is defined hint = hsamp/N,N ∈ N. The accuracy
and computational load of InvSim is partially dependent on these two
parameters. Other parameters which affect the performance of the algo-
rithm include the differential order a and the termination conditions of
the Newton-Raphson algorithm.

III. A Candidate Non-Linear Model
The effectiveness of NDI and InvSim in inverting a control affine system
is investigated. In this study, the following candidate model is used:

ẋ =


x2 x3 − x2

1
x3 x4 − x2

2
(x1 + 1)u1 −

1
10 x1 x3

(x2 + 1)u2 −
1
10 x2 x4

 , y =
[
x1 x2
x2

]
(5)

Read trim conditions x(0) and u(0)
T = number of time points

k = current time point
n = Newton-Raphson iteration

Define time history of manoeuvre
yd(tk), k = 0 to T

k = 0

n = 1

ẋ(tk)n = f (x(tk)) + g (x(tk)) u(tk)n

x(tk+1)n =

∫ tk+1

tk
ẋ(tk)n dt

y(tk+1)n = h (x(tk+1)n)

ey(tk+1)n = y(a)(tk+1)n − y(a)
d (tk+1)

Is ey < tol?

J =
dy(a)(tk+1)n

du(tk)n

Solve
J eu(tk)n = ey(tk+1)n for eu

u(tk)n+1 = u(tk)n − eu(tk)n

n = n + 1

Is k = T?

k = k + 1

Exit

No

Yes

No

Yes

Figure 4. Genisa Inverse Simulation algorithm.

This model is chosen such that it satisfies a number of criteria. First,
it is control affine and conforms to Equation (1), where f (x), g(x) and
h(x) are non-linear. Second, a relative degree of ν = 2 is specified.
This value is sufficiently high that the complexity of the differentiated
system and Lie derivatives are clear, but low enough that the concept
may be followed easily. Additionally, the application of NDI and InvSim
has predominantly been in control applications for mechanical systems,
where the relative degree is low [4]. In terms of complexity, the system is
chosen such that it has both linear and non-linear components in both the
process and measurement models. The number of inputs and outputs are
equal, a common constraint in applications of each method [7, 11, 14].

NDI requires an explicit mapping between output and input, which
occurs at relative degree ν, corresponding to the νth derivative of the
output. The first derivative of the output is found to be

ẏ =
[
ẋ1 x2 + x1 ẋ2

ẋ2

]
=

[(
x2 x3 − x2

1

)
x2 +

(
x3 x4 − x2

2

)
x1

x3 x4 − x2
2

]
(6)

where the required dependency on input has not been obtained. As
the relative degree of the candidate system is ν = 2, the corresponding
mapping is given by

ÿ = L2
f h(x) + LgL f h(x)u (7)

3

where the Lie derivatives are given by

L2
f h(x) =


2x1 x2

(
x2

1 + x1 x2 + x2
2

)
+ 3x2 x3

(
x3 x4 − x2

2

)
. . .

. . . − 21
10 x1 x3

(
x1 x4 + x2

2 + x2 x4

)
2x3

2 −
21
10 x2 x3 x4 −

1
10 x1 x3 x4


LgL f h(x) =

[
(x1 + 1)

(
x1 x4 + x2

2

)
(x2 + 1) x1 x3

(x1 + 1) x4 (x1 + 1) x3

] (8)

Construction of the inverted model is then simply achieved by sub-
stituting these Lie derivatives into the expression

u =
(
LgL f h(x)

)−1 (
ÿ − L2

f h(x)
)

(9)

where ÿ may be a desired trajectory or the actual trajectory of the system.

IV. Simulation Testing and Results
The accuracy and computational cost of NDI and InvSim may be com-
pared in simulation. Two test cases are considered, corresponding to the
different structures illustrated in Figure 1. These may be more explicitly
defined in Figure 5.

InvSim Model

NDI Model

uInvSim yInvSim

yd

uNDI yNDI

(a) Test case 1, using inverted model as open-loop controller.

Controller Model
NDI

InvSim

yd u y
uNDI

uInvSim

(b) Test case 2, using inverted model to estimate input.

Figure 5. Complete system structures for each test case.

In the first case, the system, here represented by the model given
in Equation (5), is controlled in open-loop by either the NDI-derived in-
verse system or the InvSim numerically-inverted system. The goal in this
instance is to ensure the model tracks the desired trajectory as closely as
possible. The desired and actual trajectories are thus compared. In the
second case, the model is controlled in closed-loop by a proportional-
integral-derivative (PID) controller. The actual system output then pro-
vides the excitation for the inverted models. The true inputs are thus
compared with the estimated inputs of each inversion method.

A. Setup

Inverse Simulation and NDI both require that the trajectory supplied to
the inverted system is smooth [11], such that it represents a trajectory that
the system could feasibly follow. For the case where the system structure
resembles Figure 1b, the dynamics of the system itself help to ensure
that the trajectory is smooth. For the case where the system is supplied
with a desired trajectory, such as in Figure 1a, this trajectory must be
carefully defined. A fifth-order polynomial function of time specifies the
trajectory in this instance. This has the advantage of providing smooth
derivatives up to the fifth order. The polynomials are distinct for each
output and are defined as

yd =

[
5.94 × 10−5

6.60 × 10−5

]
t5 −

[
1.485 × 10−3

1.650 × 10−3

]
t4 +

[
9.9 × 10−3

1.1 × 10−2

]
t3 +

[
0.01
0.1

]
(10)

A feedback controller is also required for case 2. A PID law is used,
defined by

u = Kp (yd − y) + Ki

∫
(yd − y) dt + Kd

d
dt

(yd − y) (11)

where Kp = 2, Ki = 0.2 and Kd = 2 are the proportional, integral and
derivative gains, respectively. The desired trajectory yd is simply the
vector of polynomials given in Equation (10).

The system model, NDI model and InvSim algorithm are initialised
with the following conditions

x =


0.1
0.1
0.1
0.1

 , u =
[
0
0

]
, y =

[
0.01
0.1

]
(12)

In order to provide a consistent comparison between the two meth-
ods, the sample step hsamp and integration step hint are the same for each
algorithm. These, and other key parameters are defined in Table 1. A
fourth-order Runge-Kutta algorithm is used as the integration method
for both algorithms and the system model.

Table 1. NDI and InvSim settings.

Parameter Value

Sample interval, hsamp 0.01
Integration step, hint 0.001
InvSim differential order, a 1
Newton-Raphson termination tolerance, tol 1 × 10−6

B. Case 1: Open-loop control with inverted system

In the first case, the inverted system acts as an open-loop controller for
the system, receiving a desired trajectory yd and providing the inputs
necessary to drive the system along this trajectory. Figure 6a shows the
system outputs for each method, yNDI and yInvSim, in comparison to the
desired output. In the case of the InvSim algorithm, the output is supplied
at differential order a = 1. The deviation of each output from the desired
result may be seen more clearly in Figure 6b, where ey = y − yd. The
InvSim-derived input results in an output which deviates from the desired
output during the transient phase before converging upon it again during
the steady-state phase. Conversely, the NDI-derived input results in an
error of linearly increasing magnitude during the steady-state phase.

The superior performance of the InvSim algorithm in tracking the
desired trajectory may be attributed primarily to its exciting signal. The
InvSim algorithm receives the desired trajectory in the form of its first
derivative ẏd, while the NDI solution must receive the output at the νth
derivative, such that LgLν−1

f h(x) 6= 0. Here, as ν = 2, the increase in
differential order of the NDI exciting signal results in the demonstrated
drift. When the differential order of the InvSim exciting signal is chosen
to be a = 2, this linear drift is also evident in the output of the InvSim-
driven output. The errors for this case are shown in Figure 6c. Such drift
errors may be minimised by employing as low a derivative of the output
as possible.

While InvSim is shown to provide superior tracking accuracy for the
presented case, this comes at a cost. Where NDI obtains the input from
symbolic inversion of the system model, InvSim achieves the same result
through an iterative approach. NDI requires only a single state update
between each sample step, in addition to solving the expression given
in Equation (4). InvSim, however requires several calls of the system
process and measurement models. With reference to the flowchart in
Figure 4: for each iteration n, the process and measurement models are
updated once to provide data for the error ey and 2p times to populate the
Jacobian J using central differencing, where p is the number of inputs.
That is, twice per input: once for a positive perturbation and once for a
negative perturbation. On the last iteration n = nmax, the error tolerance
is satisfied and the loop exits after calling both models a single time.
Thus, the system model is called (2p + 1)(nmax − 1) + 1 times per time
step in InvSim, in comparison to once for NDI. This result is generally
applicable to any use of the Genisa algorithm as used here. The number
of iterations per step has means nmax = 1.405 for a = 1 and nmax = 2.015
for a = 2. Empirical testing finds NDI to be approximately 3.1 times as
fast as InvSim when a = 1 and 5.9 times as fast when a = 2.

4

0 10 20 30

0

0.25

0.5

0.75

1

Time [s]

y 1

Desired NDI
InvSim

0 10 20 30
0

0.25

0.5

0.75

1

1.25

Time [s]

y 2

(a) Outputs of model as driven by NDI- and InvSim-
derived inputs, compared with desired trajectory. The
InvSim exciting signal is supplied at differential order
a = 1.

0 10 20 30

−0.1

−0.05

0

Time [s]

e y
1

NDI InvSim

0 10 20 30
−0.15

−0.1

−0.05

0

Time [s]

e y
2

(b) Difference between model outputs for each
method and desired trajectory. The InvSim exciting
signal is supplied at differential order a = 1.

0 10 20 30

−0.1

0

0.1

Time [s]

e y
1

NDI InvSim

0 10 20 30

−0.1

0

0.1

Time [s]

e y
2

(c) Difference between model outputs for each
method and desired trajectory. The InvSim exciting
signal is supplied at differential order a = 2.

Figure 6. Results for Case 1.

C. Case 2: Input estimation from true output

In the second case, the inverted system is intended to estimate the true
inputs of the system, receiving the actual system outputs y. The system
itself is driven in closed-loop by a PID controller. The resulting system
output is shown in comparison to the reference trajectory in Figure 7.

Figure 8a shows the estimated inputs of each method in comparison
to the true system inputs, supplied by the PID controller. Figure 8b shows
the deviation of the estimated inputs from the true input, where eu =
uest − u. Note that a = 1 for these results. Again, a linear drift is evident
in the NDI result during the system’s steady-state phase. In contrast, the
InvSim-estimated input demonstrates an error an order of magnitude less
during this phase.

Once again, the superior accuracy of InvSim may be attributed due
to NDI’s reliance on higher-order derivatives of the output as a driving
signal. This is exemplified in Figure 8c, which shows the same errors
when a = 2. The InvSim-estimated input now exhibits a drift error of
similar gradient to that of the NDI-estimated input.

Analysis of the respective runtimes of each algorithm for this case
yields results similar to those of the first case. The mean iterations for the
settings a = 1 and a = 2 are found to be nmax = 1.540 and nmax = 1.999,
respectively. The NDI algorithm is found to be comparatively faster than
the InvSim algorithm at equivalent sample and integration step sizes.
Here, it is found that NDI is approximately 3.9 and 6.2 times as fast as
InvSim for the cases a = 1 and a = 2, respectively.

D. Analysis of results

In both cases, it is clear that NDI is the faster algorithm, lacking the
iterative behaviour of InvSim. However, its reliance on a higher-order
derivative as a forcing term results in the drifting error shown in Figures
6 and 8. Use of an equivalent-order forcing term for InvSim yields a

0 10 20 30

0

0.25

0.5

0.75

1

Time [s]

y 1

Desired Actual

0 10 20 30
0

0.25

0.5

0.75

1

1.25

Time [s]

y 2

Figure 7. System output in comparison to desired trajectory, using closed-
loop PID control.

5

0 10 20 30

0

0.1

0.2

0.3

0.4

Time [s]

u 1

Actual NDI
InvSim

0 10 20 30

0

0.08

0.16

0.24

Time [s]

u 2

(a) Estimated inputs from NDI and InvSim, com-
pared to true system inputs. The InvSim exciting sig-
nal is supplied at differential order a = 1.

0 10 20 30
−4

−2

0

2

4

·10−3

Time [s]

e u
1

NDI InvSim

0 10 20 30

−2

−1

0

·10−2

Time [s]

e u
2

(b) Difference between estimated inputs for each
method and actual system inputs. The InvSim excit-
ing signal is supplied at differential order a = 1.

0 10 20 30

−5

0

5

·10−3

Time [s]

e u
1

NDI InvSim

0 10 20 30

−2

0

2

·10−2

Time [s]

e u
2

(c) Output of model, in comparison to desired trajec-
tory supplied to PID controller. The InvSim exciting
signal is supplied at differential order a = 2.

Figure 8. Case 2 results.

comparable drift in the error. Additionally, the InvSim algorithm is found
to run slower for the higher value of a, due to the greater number of
iterations required to converge on an acceptable solution.

V. Conclusions
Some conclusions may be drawn on the performance of the NDI and
InvSim algorithms on the presented system. First considering the sim-
ulation results, it is clear that InvSim demonstrates greater accuracy in
both cases, at the cost of greater computational expense. The drift er-
ror in the NDI results may be reduced by decreasing its integration step.
This has the effect of increasing the runtime and reducing its advantage
over InvSim. The ultimate advantage of one method over the other in
offline use is strongly dependent on the system, its relative degree and its
complexity.

For real-time applications, the opposing requirements of accuracy
and runtime must be balanced. With NDI, the runtime is consistent each
time the algorithm is executed. This makes implementation straightfor-
ward, as the sample and integration steps may be chosen such that the
algorithm is guaranteed to run in real-time. As stated previously, how-
ever, these properties determine the accuracy of the NDI approach. NDI
is thus ultimately limited in its accuracy by the computational capability
of the available hardware. In contrast, the runtime of the InvSim algo-
rithm varies with the number of iterations required for convergence and
therefore may vary with each execution. This makes implementation of
InvSim in real-time more problematic, as the maximum possible run-
time must be considered when selecting sample and integration steps.
Additionally, these properties ultimately impact the convergence of the
algorithm, thus changing them may result in an increase in iterations and
therefore runtime. A potential solution is to specify a small iteration
limit, however this can reduce the accuracy of the algorithm. It is worth
noting that number of iterations for the presented results rarely exceeded
2 and was never greater than 3 for any case.

This greater complexity in implementing InvSim over NDI is offset

by InvSim’s more flexible nature. A change in model is automatically
handled by InvSim, with potential alterations in the algorithm settings.
Conversely, any model change requires that NDI’s inverse model be re-
defined and redeployed. This can ultimately be just as time consuming
as the temporal adjustments required by InvSim. Furthermore, practical
implementation is almost guaranteed to require such model changes.

The flexibility of InvSim may be extended to other systems. As a
system grows in complexity, its inversion through analytical means be-
comes less trivial. InvSim differs from this in that, when using the Genisa
algorithm, it is essentially decoupled from the system itself. The system
model may simply be swapped for another. The only consequent changes
required by InvSim are then those to settings such as time step and dif-
ferential order. Additionally, while the differential order of the driving
signal does impact the stability and accuracy of the algorithm, it is not
tied to the relative degree of the system as it is when using NDI. Thus,
the differential order in InvSim may be selected to achieve a balance be-
tween demands on minimising drift error and ensuring the stability of
the algorithm. Conversely, the drift error in NDI may be minimised only
be reducing the integration step. Finally, InvSim is also able to facili-
tate systems that are not control affine, while NDI cannot without some
linearisation of the system. As the majority of systems are not control
affine in reality, this ability is a major advantage of InvSim in practical
implementation.

Acknowledgments

The work in this note was supported by a UK Space Agency CREST 3
award.

Data

The data presented in this note is available online [15].

6

References
[1] T. Glad and L. Ljung, Control Theory: Multivariable and Nonlinear Meth-

ods. London: CRC Press, 2000.

[2] M. Ireland, A. Vargas, and D. Anderson, “A Comparison of Closed-Loop
Performance of Multirotor Configurations Using Non-Linear Dynamic
Inversion Control,” Aerospace, vol. 2, no. 2, pp. 325–352, 2015. [Online].
Available: http://www.mdpi.com/2226-4310/2/2/325/

[3] R. Hess, C. Gao, and S. Wang, “A generalized technique for inverse sim-
ulation applied to aircraft manoeuvres,” Journal of Guidance, Control and
Dynamics, vol. 14, no. 5, pp. 920–926, 1991.

[4] D. Thomson and R. Bradley, “Inverse simulation as a tool for flight dynam-
ics research – Principles and applications,” Progress in Aerospace Sciences,
vol. 42, no. 3, pp. 174–210, May 2006.

[5] K. Worrall, D. Thomson, E. McGookin, and T. Flessa, “Autonomous Plane-
tary Rover Control using Inverse Simulation,” in 13th Symposium on Ad-
vanced Space Technologies in Robotics and Automation (ASTRA 2015).
Noordwijk: ESA/ESTEC, May 2015.

[6] D. Murray-Smith and E. McGookin, “A case study involving continuous
system methods of inverse simulation for an unmanned aerial vehicle
application,” Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, vol. 229, no. 14, pp.
2700–2717, 2015. [Online]. Available: http://pig.sagepub.com/lookup/doi/
10.1177/0954410015586842

[7] D. G. Thomson and R. Bradley, “The principles and practical application
of helicopter inverse simulation,” Simulation Practice and Theory, vol. 6,
no. 97, pp. 47–70, 1998.

[8] M. L. Ireland, K. J. Worrall, R. Mackenzie, T. Flessa, E. McGookin, and
D. Thomson, “A Comparison of Inverse Simulation-Based Fault Detection
in a Simple Robotic Rover with a Traditional Model-Based Method,” in
19th International Conference on Autonomous Robots and Agents (ICARA
2017). Madrid: ICARA, March 2017.

[9] R. Bradley, G. D. Padfield, D. J. Murray-Smith, and D. G. Thomson, “Val-
idation of helicopter mathematical models,” Transactions of the Institute of
Measurement and Control, vol. 12, no. 4, pp. 186–196, 1990.

[10] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance. Berlin: Springer-Verlag, 2006. [Online].
Available: http://link.springer.com/10.1007/3-540-30368-5

[11] D. J. Murray-Smith, “The inverse simulation approach: a focused review
of methods and applications,” Mathematics and Computers in Simulation,
vol. 53, no. 4-6, pp. 239–247, October 2000.

[12] T. Flessa, E. W. McGookin, and D. G. Thomson, “Numerical stability of
inverse simulation algorithms applied to planetary rover navigation,” in 24th
Mediterranean Conference on Control and Automation, MED 2016, Athens,
2016.

[13] S. Rutherford and D. Thomson, “Improved methodology for inverse simu-
lation,” Aeronautical Journal, vol. 100, no. 993, pp. 79–85, 1996.

[14] A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-dynamics
stabilisation for quadrotor control,” Control Theory & Applications, IET,
vol. 3, no. 3, pp. 303–314, 2009.

[15] M. L. Ireland, T. Flessa, D. Thomson, and E. McGookin, “A comparison
of non-linear dynamic inversion and inverse simulation,” 2017. [Online].
Available: http://dx.doi.org/10.5525/gla.researchdata.413

http://www.mdpi.com/2226-4310/2/2/325/
http://pig.sagepub.com/lookup/doi/10.1177/0954410015586842
http://pig.sagepub.com/lookup/doi/10.1177/0954410015586842
http://link.springer.com/10.1007/3-540-30368-5
http://dx.doi.org/10.5525/gla.researchdata.413

	Introduction
	Theoretical Background
	Non-Linear Dynamic Inversion
	Inverse Simulation

	A blackCandidate Non-Linear Model
	Simulation Testing and Results
	Setup
	Case 1: Open-loop control with inverted system
	Case 2: Input estimation from true output
	Analysis of results

	Conclusions
	References

