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Abstract—In vivo wireless medical devices have the potential
to play a vital role in future healthcare technologies by im-
proving the quality of human life. In order to fully exploit the
capabilities of such devices, it is necessary to characterize and
model the in vivo wireless communication channel. This model
will have a significant role in improving the communications
performance of embedded medical devices in terms of power
and spectral efficiency. In this paper, the state of the art in this
field is presented to provide a comprehensive understanding of
current models, considering various communication methods,
operational frequencies, and antenna design. Finally, open
research areas are discussed for the future studies.

Index Terms—In vivo channel characterization, in/on-body
communication, wireless body area networks (WBAN), wireless
implantable medical devices.

I. INTRODUCTION

Technological advances in biomedical engineering have
significantly improved the quality of life and increased life
expectancy. One component of such advanced technology is
wireless in vivo sensors and actuators, e.g., glucose sensors,
pacemakers, drug delivery devices, nerve stimulators, wire-
less capsule endoscopes (WCEs), etc. In vivo-wireless body
area networks (WBANs) [1] and their associated technologies
are the next step in this evolution and offer a cost efficient
and scalable solution by providing a reliable, continuous
monitoring system of patients’ vital signs, such as heart rate,
body temperature, and blood pressure. These vital signs can
be collected over a large period of time and physicians are
able to perform more reliable analysis using this big data
[2] rather than relying on the data recorded in short hospital
visits. Furthermore, in vivo-WBAN devices provide patients
greater mobility as well as reducing their hospital visits [3]–
[5].

In order to continue to advance and fully exploit the poten-
tial of WBANs, it is necessary to enhance the knowledge of
electromagnetic (EM) wave propagation in an in vivo com-
munication environment and obtain accurate channel models
that are necessary for optimizing the system parameters and
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building a reliable, high-performance communication system.
In particular, such a model is necessary for achieving high
data rates, target link budgets, determining optimal operating
frequencies, and design of efficient antennas and transceivers
including digital baseband transmitter/receiver algorithms [6].
Therefore, investigation of in vivo wireless communication
channel is crucial to obtain a better performance for in vivo-
WBAN devices. Although, on-body wireless communication
channel characteristics have been well investigated [7], there
are relatively few studies for in vivo wireless communication
channels.

While there are other approaches to in vivo communica-
tions, such as molecular communications [10], in this paper
we will focus on EM communications. Since the EM wave
propagates through a very lossy environment inside the body
and main scatterers are in the near-field region of the antenna,
in vivo channel characteristics are different than the more
familiar wireless cellular and Wi-Fi environments. In this
paper, we present the state-of-the-art of in vivo channel
characterization as well as several research challenges are
presented considering various communication methods, op-

(a) (b)

Fig. 1: Heterogeneous numerical human body models: (a)
HFSS model [8] (b) physical phantom [9].
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erational frequencies, and antenna design to provide a more
complete picture of this fascinating communications media.

The rest of the paper is organized as follows. In section
II, EM modeling of the human body is reviewed, which
is essential for in vivo wireless communication channel
characterization. Section III discusses EM wave propagation
through human tissues. Section IV provides the operational
frequencies based on current standards and discusses their
effects on the communication system. In section V, challenges
of in vivo antenna design are briefly discussed as the antenna
is generally considered to be an integral part of the in vivo
channel. Section VI reviews the propagation models for in
vivo wireless communication channel and discusses the main
differences from the ex vivo channel. In section VII, open
research areas and future directions are addressed and the
last section summarizes our observations and conclusions.

II. EM MODELING OF THE HUMAN BODY

In order to investigate the in vivo wireless communication
channel, accurate body models and knowledge of the elec-
tromagnetic properties of the tissues are crucial [11]. Human
autopsy materials and animal tissues have been measured
over a frequency range 10 Hz to 20 GHz [12] and frequency
dependent dielectric properties of the tissues modeled based
on the summation of 4-Cole-Cole equation, given as:

ε(ω) = ε∞ +

4∑
m=1

∆εm
1 + (jωτm)(1−αm)

+
σj
jωε0

(1)

where ε∞ is the body material permittivity at terahertz
frequency, ε0 is the free-space permittivity, σj is the ionic
conductivity and εm, τm, αm are the body material pa-
rameters for each anatomical region. The parameters for
anatomical regions are provided in [13] and electromagnetic
properties such as, conductivity, relative permittivity, loss tan-
gent, penetration depth can be derived using these parameters
and Eq. 1.

Various physical and numerical phantoms have been de-
signed in order to simulate the dielectric properties of the
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Fig. 2: Multi-layer human tissue model at 403 MHz (εr:
Permittivity, σ: Conductivity, Pτ : Power transmission factor).

tissues for experimental and numerical investigation [9]. They
can be classified as homogeneous, multi-layered and hetero-
geneous phantom models. Although, heterogeneous models
provide more realistic approximation to the human body,
design of physical heterogeneous phantoms is quite difficult
and performing numerical experiments on these models is
very complex and resource intensive. On the other hand,
homogeneous or multi-layer models cannot differentiate EM
wave radiation characteristics for different anatomical re-
gions. Figure 1 shows examples of heterogeneous physical
and numerical phantoms.

Analytical methods are generally viewed as infeasible and
require extreme simplifications; hence numerical methods are
used for characterizing the in vivo wireless communication
channel. Numerical methods provide less complex and appro-
priate approximations to Maxwell’s equations with various
techniques, such as uniform theory of diffraction (UTD),
method of moments (MoM), finite element method (FEM),
finite-difference time-domain method (FDTD) [11].

One may claim that such numerical experiments should
be confirmed with real measurements. However, perform-
ing experiments on a living human is carefully regulated.
Therefore, anesthetized animals [14], [15] under anesthesia
or physical phantoms [9], [16] are often used for experimental
investigation.

III. EM WAVE PROPAGATION THROUGH THE HUMAN
TISSUES

Propagation in a lossy medium, such as human tissues,
results in a high absorption of EM energy [17]. The ab-
sorption effect varies with the frequency dependent electrical
characteristics of the tissues, which mostly consist of water
and ionic content [18]. The specific absorption rate (SAR)
provides a metric for absorbed power amount in the tissue
and expressed as [19]:

SAR =
σ|E|2

ρ
(2)

where σ, E and ρ are the conductivity of the material, the
RMS magnitude of the electric field and the mass density of
the material, respectively. Federal Communications Commis-
sion (FCC) recommends SAR to be less than 1.6 kg/W taken
over the volume having 1 gram of tissue [20].

When a plane EM wave propagates through the interface of
two media having different electrical properties, its energy is
partially reflected and the remaining portion is transmitted at
the boundary of these mediums. Superposition of the incident
and the reflected wave can cause a standing wave effect that
may increase the SAR values [18]. A multi-layer tissue model
at 403 MHz, where the dielectric values are calculated in
[21], is illustrated in Fig. 2. If there is a high contrast in the
dielectric values of mediums/tissues, wave reflection at the
boundary increases and transmitted power decreases.
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IV. FREQUENCY OF OPERATION

Since EM waves propagate through the frequency depen-
dent materials inside the body, the operating frequency has an
important effect on the communication channel. Accordingly,
we summarize the allocated and recommended frequencies
including their effects for in vivo wireless communications
in this section.

The IEEE 802.15.6 standard [1] was released in 2012 to
regulate short-range wireless communications inside or in
the vicinity of the human body that are classified as narrow
band (NB) communications, ultra-wide band communications
(UWB) and human-body communications (HBC) [22], [23].
The frequency bands and channel bandwidths (BW) allocated
for these communication methods are summarized in Table I.
An IEEE 802.15.6 compliant in vivo-WBAN device should
be able to operate in at least one of these frequency bands.

NB communications operates at lower frequencies com-
pared to UWB communications and hence suffer less from
absorption. This can be appreciated by considering Eq. 1
which describes the absorption as a function of relationship
with frequency. The medical implant communication service
(MICS, 402-405 MHz) and medical body area network
(MBAN, 2360-2400 MHz) are allocated by the FCC for
medical device usage. Therefore, co-user interference prob-
lems are less severe in these frequency bands. However, NB
communications can only provide small bandwidths (1 MHz
at most) in the standard as shown in Table I.

UWB communications is a promising technology to deploy
inside the body due its inherent features including high data
rate capability, low power and low probability of intercept.
The large bandwidths for UWB (499 MHz) enable high data
rate communications and applications. Also, UWB signals
are inherently robust against detection and smart jamming
attacks with their extremely low maximum effective isotropic
radiated power (EIRP) spectral density of -41.3 dBm/MHz

Propagation

Method

IEEE 802.15.6 Operating Freq. Bands

Frequency Band   BW

Selected 

References

Narrow Band

Communications

402 - 405 MHz 300 kHz
[6], [9] , [18], [27], 

[28], [30], [39]420 - 450 MHz 300 kHz

863 - 870 MHz 400 kHz

[6], [9], [27], [30], 

[39]
902 - 928 MHz 500 kHz

950 - 956 MHz 400 kHz

2360 - 2400 MHz 1 MHz
[6], [9], [30], [41]

2400 - 2438.5 MHz 1 MHz

UWB

Communications

3.2 - 4.7 GHz 499 MHz
[15], [24], [30], 

[41] 6.2 - 10.3 GHz 499 MHz

Human - Body

Communications

16 MHz 4 MHz
[22], [23]

27 MHz 4 MHz

Table I: Frequency bands and bandwidths for the three
different propagation methods in IEEE 802.15.6.

[24], [25]. Recently, the terahertz frequency band has also
been a subject of interest for the in vivo propagation and it
is regarded as one of the most promising band for the EM
paradigm of nano-communications [26].

V. In Vivo ANTENNA DESIGN CONSIDERATIONS

Unlike free-space communications, in vivo antennas are
often considered to be an integral part of the channel and
they generally require different specifications than ex vivo
antennas [11], [27]–[29]. In this section, we will describe
their salient differences as compared to ex vivo antennas.

In vivo antennas have strict size constraints and in addition
need to be bio-compatible. Although, copper antennas have
better performance, only specific type of materials such as
titanium or platinum should be used for in vivo communi-
cations due to their noncorrosive chemistry [5]. When the
antennas are placed inside the human body, their electrical
dimensions and gains decrease due to high dielectric per-
mittivity and high conductivity of the tissues, respectively
[30]. For instance, fat has a lower conductivity than skin
and muscle. Therefore, in vivo antennas are usually placed
in a fat layer for increasing the antenna gain. However, the
antenna size becomes larger in this case. In order to reduce
high losses inside the tissues, a coating layer can be used.
As the coating thickness increases, the antenna becomes less
sensitive to the surrounding material [30].

Lossy materials covering the in vivo antenna change the
electrical current distribution in the antenna and radiation
pattern [16]. It is reported in [27] that, directivity of in vivo
antennas increases due to curvature of body surface, losses
and dielectric loading from the human body. that, directivity
of in vivo antennas increases due to curvature of body surface,
losses and dielectric loading from the human body. Therefore,
this increased directivity should be taken into account as well
not to harm the tissues in the vicinity of the antenna [19].

In vivo antennas can be classified into two main groups
as electrical and magnetic antennas. Electrical antennas, e.g.,
dipole antennas, generate electric fields (E-field) normal to
the tissues; while magnetic antennas, e.g., loop antennas
produce E-fields tangential to the human tissues [35]. Normal
E-field components at the medium interfaces overheat the
tissues due to the boundary condition requirements [36] as
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Fig. 3: EM propagation through tissue interface.
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illustrated in Fig. 3. The muscle layer has a larger permittivity
value than the fat layer and hence, the E-field increases
in the fat layer. Therefore, magnetic antennas are more
preferable for in vivo WBAN devices. In practice, magnetic
loop antennas require large sizes, which is a challenge to
fit inside the body. Accordingly, smaller size spiral antennas
having a similar current distribution as loop antennas can
be used for in vivo devices [37]. Several selected sample
antennas designed for in vivo communications are shown in
Fig. 4.

VI. In Vivo EM WAVE PROPAGATION MODELS

Up to this point, important factors for in vivo wireless
communication channel characterization, such as EM model-
ing of the human body, propagation through the tissues, and
selection of the operational frequency have been reviewed.
Moreover, main differences of in vivo and ex vivo antenna
design are discussed since the antenna is considered as an
integral part of in vivo channel. In this section, we will focus
on EM wave propagation inside the human body considering
the anatomical features of organs and tissues. Then, analytical
and statistical path loss models will be presented. Since
the propagation environment is very lossy and the main
scatters are often in the near field of the antenna, the in vivo
wireless communication channel models are different than
those proposed for classical indoor and outdoor environments
[3].

EM wave propagation inside the body is subject-specific
and strongly related to the location of antenna as demon-
strated in [6], [16] and [27]. Therefore, channel charac-
terization is mostly investigated for a specific part of the
human body. Figure 5 shows several investigated anatomical
regions for various in vivo WBAN applications. For example,
the heart area has been studied for implantable cardioverter
defibrillator and pacemakers, while the gastrointestinal tract
(GI) including esophagus, stomach and intestine has been

(a) (b)

(c) (e)(d)

Fig. 4: In vivo selected antenna samples taken from [14],
[31]–[34].

Brain: [29], [38]

Right Neck & Shoulder: [28]

Clavicle: [16]

Esophagus: [6]

Left pectoral muscle: [28]

Heart: [27],

Stomach: [6], [27] ,[28], [30]

Arm: [16], [28]

Intestine: [6], [39]

Bladder: [27],

Hand: [16]

Leg: [28]
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Fig. 5: Investigated anatomical human body regions.

investigated for WCE applications. The bladder region is
studied for wirelessly controlled valves in the urinary tract
and the brain is investigated for neural implants [29], [38].
Also, clavicle, arm and hands are specifically studied as they
are affected less by the in vivo medium.

When the in vivo antenna is placed in an anatomically
complex region, path loss, a measure of average signal power
attenuation, increases [6]. For example, the intestine has a
complex structure with repetitive, curvy-shaped, dissimilar
tissue layers, while the stomach has a smoother structure. As
a result, the path loss is greater in the intestine than in the
stomach even at equal in vivo antenna depths [6]. Also, more
radiation occurs in the anterior region than in the posterior
region due to the human body structure [27], [39].

Free space path loss (FSPL), which can be expressed
by the Friis transmission equation [11], mainly depends on
distance and operating frequency. Its dependency on distance
is a result of spherical power radiation of EM waves in free
space from an isotropic antenna. The received power per unit
area on the sphere is inversely proportional to the distance,
i.e., radius of the sphere. Additionally, path loss is frequency
dependent due to the relationship between the effective area
of the receiver antenna and the wavelength.

Various path loss formulas have been proposed for the
in vivo channel in the literature as listed in Table II. These
formulas have been derived considering shadowing different
phenomena of in vivo medium. Furthermore, the channel
modeling subgroup for the IEEE 802.15.6 standard deter-
mined that the Friis equation can also be used for some of
the WBAN scenarios by adding a random variation term [25].

The initial three path loss equations are functions of the
Friis transmission equation, return loss and absorption in the
tissues. These formulas are valid, when either the far-field
conditions are fulfilled or few scattering objects exist between
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Table II: A review of selected studied path loss models for various scenarios.

Channel Type Model

FSPL [27] Pr = PtGtGr(
λ

4πR
)2

FSPL with RL [27], [30] Pr = PtGt(1− |S11|2)Gr(1− |S22|2)( λ
4πR

)2

FSPL with RL and Absorption [37] Pr = PtGt(1− |S11|2)Gr(1− |S22|2)( λ
4πR

)2(e−αR)2

PMBA for near field [40] Pr =
16δ(Pt−PNF )

πL2 Ae

PMBA for far field [40] Pr =
(Pt−PNF−PFF )λ2

4πR2 GtGr

Statistical Model-a [41], [42] PL(d) = PL0 + n(d/d0) + S (d0 ≤ d)

Statistical Model-b [9], [27], [28] PL(d) = PL(d0) + 10nlog10(d/d0) + S (d0 ≤ d)

Pr/Pt is the received/transmitted power; Gr/Gt is the gain of the receiver/transmitter antenna; λ is
the wavelength; R is the distance between transmitter and receiver antennas; |S11| and |S22| are the
reflection coefficients of receiver/transmitter antennas; α is the attenuation constant; PNF /PFF is the
loss in the near/far fields; δ is Ae/A where Ae is the effective aperture and A is the physical aperture
of the antenna; L is the largest dimension of the antenna; d is the depth distance from the body surface;
d0 is the reference depth distance; n is the path loss exponent; PL0 is the intersection term in dB; S,
the random scattering parameter. The Abbreviations: FSPL represents free space path loss in the far
field, RL is the return loss, PMBA is the propagation loss model.

the transmitter and receiver antennas. The next two equations
(PMBA) calculate the SAR over the entire human body for
the far and near fields, and give the received power using the
calculated absorption. The last two statistical equations define
path loss with lognormal distributed random shadowing, S
and path loss exponent, n. The path loss exponent heavily
depends on environment and obtained by performing exten-
sive simulations or measurements. In addition, S is caused
by different body materials (e.g. bone, muscle, fat, etc.) and
the antenna gain in different directions [28].

Figure 6 shows the scatter plot of path loss vs depth
on a human male torso in a simulation environment [42].
The in vivo antenna is placed at various depths and the ex
vivo antenna is placed 5 cm away from the body surface at

0 20 40 60 80 100
20

25

30

35

40

45

50

55

60

Depth (mm)

P
at

h 
Lo

ss
 (

dB
)

 

 
Path Loss Data
Linear regression

Fig. 6: Scatter plot of path loss versus in vivo depth at 915
MHz.

915 MHz. The path loss is modeled as a function of depth
by a linear equation in dB. The shadowing has a normal
distribution for a fixed distance and its variance becomes
larger due to the increase in number of scattering objects as
the in vivo antenna is placed deeper.

VII. OPEN RESEARCH

In vivo-WBAN sensors and actuators, also called wireless
implantable medical devices (WIMDs), provide substantial
flexibility in remote healthcare and their usage will likely
increase in the near future. Besides the existing devices
mentioned in the earlier sections, new WIMDs are expected
to be developed for managing more diseases and disabilities
in different parts of the body. Therefore, channel charac-
terization for a huge variety of body parts is an obvious
requirement for future WIMDs deployment scenarios. With
such models existing wireless communication techniques
can be implemented efficiently for these regions. However,
solutions to satisfy emerging requirements for WIMDs such
as high data rates, power efficiency and safety should also
be discussed and different aspects of the channel characteri-
zation should be investigated accordingly.

Some of the most important open research topics for effi-
cient in vivo wireless communications are given as follows:
• Subject-Specific Studies: It is shown in [43], that on-

body communication channel is subject-specific. Studies
need to performed on the subject-specific nature of in
vivo channels to better understand the communication
channel variations with respect to the change of sub-
ject. This will help in developing efficient and reliable
implantable systems in future.
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• Security: It is one of the most critical issues in usage
of WIMDs as various malicious attacks may result
in serious health risks, even death. Therefore, robust,
security (including authentication and privacy) ensuring
algorithms are essential for using these devices con-
fidently. Physical layer (PHY) security is a promising
concept for providing security in wireless communica-
tion [44]. Since most of the proposed techniques in this
field utilize the mutual channel information between the
legitimate transmitter and receiver, in vivo channel char-
acterization considering the requirements of PHY-based
security methods is very important for implementing
such techniques on WIMDs.

• MIMO and Diversity: To overcome ever increasing data
rate demand and fidelity issues, while keeping compact-
ness in consideration for in vivo communication, MIMO
and diversity based methods are very promising [45].
However, the knowledge of spatial correlation inside the
body medium should be investigated for facilitating the
implementation of these techniques and understanding
maximum achievable channel capacity.

• Adaptive Communications: Although, the in body
medium is not as random as an outdoor channel, natural
body motions and physiological variations may lead to
some changes in the channel state. Considering this fact,
more specific channel parameters, e.g., coherence time,
coherence bandwidth, Doppler spread in body medium
should also be investigated for facilitating adaptive
communication against physical medium variations to
maintain adequate performance under different circum-
stances.

• Nanoscale in vivo wireless communication: With the in-
crease in demand for compact and efficient implantable
devices, nano-communication technologies provide an
attractive solution for potential BANs. A thorough
studies are needed to better understand the in-body
propagation at terahertz frequencies, which is regarded
as the most promising future band for electromagnetic
paradigm of nano-communications. In addition, studies
are also needed to explore the connection between
micro-devices and nano-devices, which will be helpful
for the design of future system-level models.

VIII. CONCLUSIONS

In this paper, the state of the art of in vivo wireless
channel characterization is presented. Various studies have
been presented in the literature for in vivo channel models,
considering different parameters by using various anatomical
regions. However, considering the expected future growth
of implanted technologies and their potential use for the
detection and diagnosis of various health related issues in
the body, channel-modeling studies should be extended to
develop better and efficient communications systems for
future in vivo systems. Within this context, current and future
research thrusts, in this important and emerging research

domain were presented.
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