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Experimental characterisation of on-body radio channel for ultrawideband (UWB) wireless active tags is reported in this paper.
The aim of this study is to investigate the performance of the commercially available wireless tags on the UWB on-body radio
channel characterisation. Measurement campaigns are performed in the chamber and in an indoor environment. Statistical
path loss parameters of nine different on-body radio channels for static and dynamic cases are shown and analyzed. Results
demonstrated that lognormal distribution provides the best fits for on-body propagation channels path loss model. The path
loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. A
reduction of 11.46% path loss exponent is noticed in case of indoor environment as compared to anechoic chamber. In addition,
path loss exponent is also extracted for different body parts (trunk, arms, and legs). Second-order channel parameters as fade
probability (FP), level crossing rate (LCR), and average fade duration (AFD) are also investigated.

1. Introduction

Ultrawideband (UWB) communication is an exciting and
innovative technology that has attracted much attention and
experienced considerable growth in the past few years due to
its distinctive characteristics. It is a low-power, high data rate
technology that minimizes multipath interference due to late
time-of-arrival. Its low-power requirement due to control
over duty cycle allows longer battery life and also introduces
green radio system. One of the most potential areas of UWB
applications is the body-centric wireless networks where
various units/sensors are scattered on/around the human
body to measure specified physiological data that is, patient
monitoring for healthcare applications [1–3].

In the past few years researchers have been thoroughly
investigating narrowband and ultrawideband on-body radio
channels. In [4–7], on-body radio channel characterisation
was presented at the unlicensed frequency band of 2.45 GHz.
UWB on-body radio channel characterisation and system
level modelling for body-centric wireless networks have
been presented extensively in the open literature [2, 8–20].

In [8–20], UWB on-body propagation channels have been
characterized, and their behaviour has been investigated
in indoor and chamber for standstill, various postured
and dynamic human body based on different antennas.
Most UWB on-body channel measurements are performed
using two standalone antennas and cables connecting to
a vector network or spectrum analyzer which is more a
controlled environment and restrictive; however, in real
life scenarios potential UWB body-centric wireless network
needs to be integrated with compact sensors and provides
efficient and reliable communication channels. Critical issues
remain with regards to indoor propagations, radio channel
characterization, and human body effect which they need
to be addressed before the concept can be deployed for
commercial applications.

In this paper, measurement campaigns were performed
in the chamber and indoor environment using commercially
available UWB wearable active tags and reader. The main
aim of this study is to investigate the performance of the
commercially available wireless tags on the UWB on-body
radio channel characterization. Nine different on-body radio
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channels are investigated and the effects of the body move-
ments on the path loss are analysed. Second-order statistics
for three different on-body links are investigated. The results
reported here provide information on optimum sensor
locations on the body considering efficient and reliable
communication links for various applications, for example,
healthcare and performance monitoring.

The rest of the paper is organised as follows: Section 2
illustrates the measurement settings, and it briefly introduces
the UWB tags, Sections 3 and 4 present the measurement
results and on-body radio channel parameters and modelling
aspects, and finally Section 5 draws the main conclusion of
the presented study.

2. Measurement Settings

Measurement campaigns were performed using UWB wear-
able active tags and reader provided by time domain PLUS
[21]. For this measurement purpose, a real human subject
was used. The test subject was an adult male of mass
90 Kg, height 1.68 meter, and chest circumference 114 cm.
Nine different ultrawideband wireless active transmitter tags
were attached at different locations on the human body:
left/right chest, left/right thigh, left wrist, left/right ankle, left
elbow, and left ear, as shown in Figure 1, while the UWB
antenna connected with the reader was placed on the left
waist of the human subject for tag’s signal reception. Two
measurement scenarios are considered: static and dynamic
human body. For static case, subject was standing still for
a period of 60 seconds wearing nine tags on the body
and, for the movement case, the subject was walking 5
steps ahead and 5 steps back, starting with the left leg and
right arm as a normal walking speed. For the dynamic
case, the measurement duration was again 60 seconds while
the subject was doing the same walking movement for the
measurement duration. Location-based software was used to
save the tags transmission ID, received signal strength (RSSI),
and time of arrival data from the reader. The UWB tags are
battery powered, and the duration of the battery life is four
years since the tags only transmit UWB pulses every one
second. The tag’s transmit power is −13.01 dBm which is
around 40 dB less than mobile phone transmit power. The
operating frequency of the tags used for this measurement is
5.9∼7.25 GHz with a centre frequency of 6.6 GHz. The UWB
tag is small and durable, with a plastic housing that allows it
to be attached to assets or people. The dimension of the tag is
(13 mm × 36 mm × 33 mm) and the weight is 0.74 oz (22 g).
Figures 2(a), 2(b), and 2(c) show the UWB tag encased
inside the plastic housing, the bottom view of the tag without
plastic housing, and the top view of the tag showing the tag
antenna [21]. The free space and on-body radiation patterns
of the tag antenna at 6.6 GHz are measured in the anechoic
chamber. The on-body radiation patterns are measured by
placing the tag antenna on the same test subject as mentioned
earlier. Figures 3(a) and 3(b) show comparison of free space
and on-body radiation patterns (XY and YZ planes) at
6.6 GHz of the tag antenna. The tag antenna has monopole-
like radiation patterns. When the tag is mounted on the body,
the radiation pattern is omnidirectional over the surface (XZ

T1T2

Transmitter tag 

(Tx) position

T3T4

T6T7

T5

T8

T9

Left chestRight chest

Left elbow

Left wrist

Left thighRight thigh

Left ankleRight ankle

Left ear

Receiver (Rx)
antenna
position

20 cm

Figure 1: On-body measurement settings showing the receiver
antenna is on the left waist, and nine transmitter tags are on
different locations of the body (nine static and dynamic channels
cases analysed).

plane) of the body (test subject) and the elevation plane (YZ)
radiation pattern is directed towards off the body direction
with a null in the main beam.

The measurement was first performed in the anechoic
chamber to eliminate multipath reflections from surround-
ing environment and then repeated in the Body-Centric
Wireless Sensor Lab at Queen Mary University of London
to consider the effect of the indoor environment on the on-
body radio propagation channels. Figure 4 shows the dimen-
sions and geometry of the Body-Centric Wireless Sensor Lab.
The total area of the lab is 45 m2 which includes a meeting
area, treadmill machine, workstations, and a hospital bed
for healthcare applications. The measured Received Signal
Strength Indicator (RSSI) level for each transmitter tag is
recorded over the measurement duration of 60 seconds for
each different location.

3. UWB On-Body Radio Channel Parameters

3.1. On-Body Radio Channel Characterisation. In this work,
the path loss for nine different on-body channels was
calculated from the measured RSSI for each transmitter tag.
The cumulative distribution function (CDF) of the path loss
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Figure 2: (a) UWB active transmitter tag encased inside the plastic housing, (b) tag without plastic housing and bottom view, and (c) top
view of the tag showing the transmitter tag antenna.

variations both in the chamber and indoor environment
for static and dynamic scenarios of nine different on-body
radio channels is compared to well-known distributions as
Normal, Lognormal, Nakagami, Rayleigh, Weibull, Gamma,
and Rician adopting the Akaike criteria and on the basis
of the tested results, lognormal distribution provides the
best fits to these measured results (Figure 5). The Akaike
information criteria is a method widely used to evaluate the
goodness of a statistical fit [3, 22]. The second-order AIC
(AICc) is defined as

AICc = −2 ln(L) + 2k +
2k(k + 1)
n− K − 1

, (1)

where L is the maximised likelihood, K is the number of
parameters estimated for that distribution, and n is the num-
ber of samples of the experiment. The seven distributions
mentioned above are all two parameter distributions (K =
2) except the Rayleigh (K = 1). In this measurement, the
sample size is (n = 60).

The maximised log likelihood has been obtained from
the MATLAB estimates. The Akaike information criteria can
be used as a relative measure such that the model with the

lowest AIC means better statistical model and the criterion is
used to classify models from the best to worse; to facilitate
this process, the relative AIC is considered and results are
normalized to the lowest value obtained

Δi = AICc −min(AICc). (2)

A zero value indicates the best fitness. Comparison of
different distributions adopting AKAI information criteria is
shown in Table 1.

Figures 6 and 7 show a comparison of the measured
average path loss (μ) and standard deviation (σ) of the fitted
lognormal distribution that are applied to model the path
loss variations for the nine on-body radio channels, for the
static and walking scenarios, respectively.

In the chamber, for both standing and walking cases,
the highest path loss is noticed for the receiver to left-
ear link, while the lowest is the receiver to left-thigh link
(Figure 6). For the reader to left-ear link the communication
distance between the reader antenna and the transmitter
tag is larger; in addition, due to the different orientation
of the tag located on the left ear, non-line-of-sight (NLOS)
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Figure 3: Measured free space and on-body radiation patterns at 6.6 GHz of the tags (a) XZ plane and (b) YZ plane.

Table 1: Comparison of different distributions adopting AKAI information criteria for nine on-body links measured in the chamber and
indoor.

Tag position Scenario Normal Lognormal Gamma Nakagami Rayleigh Rician Weibull

L. chest
Chamber 0.286 0 0.080 0.176 324.69 0.276 11.12

Indoor 0.892 0 0.282 0.282 313.88 0.884 16.74

R. chest
Chamber 0.010 0.078 0.040 0.016 323.22 0 5.268

Indoor 0.398 0.390 0 0.190 296.31 0.390 12.68

L. thigh
Chamber 1.490 0 0.474 0.970 292.15 1.48 24.48

Indoor 0.474 0 0.140 0.2980 310.63 0.470 16.40

R. thigh
Chamber 0.994 1.102 1.312 1.142 249.58 0.984 0

Indoor 0.008 0.420 0.260 0.130 290.26 0 5.450

L. wrist
Chamber 0.530 0 0.120 0.290 203.40 0.520 8.530

Indoor 0.022 0.160 0.060 0 188.38 0.012 1.700

L. ankle
Chamber 0.830 0 0.240 0.520 264.01 0.820 15.25

Indoor 2.010 0 0.63 1.30 234.93 2.00 17.37

R. ankle
Chamber 0.490 0 0.110 0.260 220.40 0.480 9.160

Indoor 0.290 0 0.056 0.142 155.34 0.280 3.780

L. elbow
Chamber 0.820 0 0.250 0.514 241.55 0.812 9.270

Indoor 0.086 0.014 0 0.014 219.99 0.076 3.232

L. ear
Chamber 0.010 0 0.050 0.0220 288.55 0.096 7.952

Indoor 0.706 0 0.210 0.4420 250.102 0.696 13.576

communications exist, which cause the highest path loss
value for this channel. For this case (the receiver to left-ear
link) due to different orientation of the tag located on the
left ear, the polarization mismatch occurs between the tag
and the reader which also causes the higher path loss value

for this link. For the left-thigh link, there are a clear line-of-
sight (LOS) communication and the lowest communication
distance between the reader and the transmitter tag.

In the indoor environment due to reflecting area and
contributions of multipath reflection the right chest and
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Figure 4: Dimensions and geometry of the Body-Centric Wireless Sensor Lab (housed within the Department of Electronic engineering,
Queen Mary University of London, London, UK) where the indoor on-body radio propagation measurements for the presented work are
performed.

left-ear (for static case) and right thigh and chest channels
(for movement cases) experience the highest path loss value,
while the left thigh channel experiences the lowest. Most
of the on-body channels experience higher path loss value
when measurements are made in the chamber, due to the
nonreflecting environment. The average path loss of all nine
channels in the chamber, for static and walking cases, is
81.44 dB and 80.68 dB, whereas 79.22 dB and 80.00 dB are
found in the indoor environment, respectively.

The variation of the path loss for the nine different on-
body channels is also compared for standing and walking
cases, to study the trend of the changes of path loss for each
channel in these two different scenarios. For the two different
scenarios (i.e., standing and walking) a maximum of 8.23 dB
and 6.88 dB variation of average path loss of a channel is
noticed, which occurred for the left wrist channel both in
indoor environment and chamber, respectively (Figure 6).
During walking scenarios, the tag located on the wrist moves
between LOS and NLOS communications scenarios, and
the communication distance between the receiver and the

transmitter is also changed greatly, causing the path loss data
to vary the most with respect to the standing case for this
channel.

The highest standard deviation (σ) value for the dynamic
case is noticed for the left wrist and right ankle channels,
which are considered the least stable (data spread the most
from the average path loss) channels, whereas the lowest is
noticed for the left thigh and chest channels; these channels
are considered the most stable (see Figure 7). Movement of
the human body has the highest effect on the wrist and ankle
channels and the least on chest and left thigh channels. In
comparison to the chamber, the standard deviation value is
found to be higher in the indoor environment due to the
effects from the indoor reflecting multipath environment.

3.2. Path Loss versus Distance. Measurements were also
performed in order to investigate the propagation along the
front part of the whole body; see Figure 8. The same test
subject was used for this case as was used for the previous
case. The receiver antenna connected to the reader was placed
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Figure 5: Cumulative distribution function of the left wrist and left
ankle on-body radio channels when subject was walking measured
in the chamber and in indoor environment.
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Table 2: Path loss parameters for whole body and different body
parts.

Channels
Body parts Chamber Indoor

γ PLdB(d0) σ γ PLdB(d0) σ

All body 2.53 68 6.01 2.24 67 5.11

Trunk 3.48 66 2.07 2.85 65.8 2.12

Arms 3.46 64 4.35 2.84 65.7 2.19

Legs 2.89 58.3 5.46 2.66 59 6.47

on the left waist, while the transmitter tags were placed on
34 different locations on the front part of the body (trunk,
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Figure 7: Comparison of standard deviation (σ) of nine different
on-body radio channels for standing and walking scenarios mea-
sured in the chamber and indoor.

arms, legs, and head). In this case, during the measurement,
the subject was standing still for 60 seconds, and, the data
were saved for that period of time for each transmitter tag
location.

It is well known that the average received signal decreases
logarithmically with distance (for both indoor and outdoor
environments).

The path loss can be modeled as a linear function of
the logarithmic distance between transmitter and receiver as
explained in [23],

PLdB(d) = PLdB(d0) + 10γ log
(
d

d0

)
+ Xσ , (3)

where d is the distance between transmitter and receiver, d0

is a reference distance set in measurement (in this study it is
set to 10 cm), PLdB(d0) is the path loss value at the reference
distance, and Xσ is the shadowing fading. The parameter γ
is the path loss exponent that indicates the rate at which the
path loss increases with distance. This parameter γ depends
on the structure of environment (chamber or indoor) but
also on the type of trajectory (trunk or legs).

A least-square fit technique was performed on the
measured path loss for the 34 different transmitter locations,
(Figure 8) to extract the path loss exponent. Figure 9 shows
the measured value and modelled path loss for on-body
channels versus logarithmic Tx-Rx separation distance. The
path loss exponent was found to be 2.52 in the chamber and
2.24 in indoor (Table 2). In the indoor environment, the path
loss exponent was found to be lower. When measurements
are performed indoors, the reflections from surroundings
scatters increase the received power, causing reduction in the
path loss exponent. A reduction of 11.46% was noticed in
indoor compared to the chamber.

Xσ is a zero mean, normal distributed statistical variable,
and is introduced to consider the deviation of the measure-
ments from the calculated average path loss. Figure 10 shows
the deviation of measurements from the average path loss
fitted to a normal distribution for both measurement cases.
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In this case, the standard deviation of the normal distribution
is found to be lower in the indoor environment.

The path loss exponent for propagation along different
body parts, including trunk, arms, and legs, was extracted
for both measurement cases and is summarised in Table 2.
Different body parts show different path loss exponent
values. The lowest value is found for the legs (2.89), whereas
the highest was found for the trunk (3.48). For the trunk,
the propagation mechanism is mainly creeping waves, which
experience higher signal attenuation, resulting in higher
exponent value [19]. In addition, in the trunk, there are
higher diffraction and reflection from the human body
parts that also increase the path loss exponent. For the
arms case, the path loss exponent is higher, as some of the
tags located on the arms support NLOS communications.
For the legs, the propagation mechanism is mainly free
space waves, guided waves and line-of-sight (LOS), which
experience lower signal attenuation, resulting in lower path
loss exponent. The lowest mean path loss at the reference
distance is found for the leg parts in both measurement cases.

4. Second-Order Statistics for
Different On-Body Links

The level crossing rate (LCR), average fade duration (AFD),
and probability of fade (PF) are commonly applied in radio
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channel analysis to describe and investigate the severity of
fading [24]. In this study, the second-order statistics are
applied on the variation of RSSI due to the movement
caused by walking over the measurement period (as shown
in Figures 11(a) and 11(b)). Three different on-body radio
links have been considered, namely, left waist to left wrist,
left waist to left ankle, and left waist to left ear.

4.1. Fade Probability (FP). The probability of fade is the
probability that a fading signal remains below the fade
level or certain threshold level [24]. Figure 12 shows the
comparison of fading probability for left wrist, left ankle,
and left ear on-body channels for the walking case, measured
in the chamber and in indoor. The fade levels shown in
Figure 12 are the RSSI values for walking and normalized
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by the corresponding medians, and for the total fade level
the increment of 0.01 dB is considered. The maximum fade
level is noticed for the wrist and ankle channels, whereas the
lowest is at the ear link. Comparing the two environments,
the fade level is higher indoors for the left ear and ankle
channels but lower for the wrist channel, which can be the
effects of the multipath scattering environment in indoor.
The fading probability at −3 dB fade level is found to be
higher for all three different on-body links in indoor. At
−3 dB fade depth, the fade probability of these three channels
is between 7% and 27% in the chamber, while in indoor, it
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Figure 13: Comparison of level crossing rate (LCR) for three on-
body channels as left wrist, left ankle, and left ear when subject was
walking 5 steps ahead and back measured in the chamber and in
indoor environment.

is between 12% and 33%. Out of these three channels, the
fade probability at −3 dB is noticed higher for the left wrist
channel, with a value of 33% measured in indoor, while the
lowest is for the left ear channel, with a value of 7% measured
in the chamber. Changing measurement environment does
not change the fade probability for left ear link at −3 dB
fade depth but which has higher effects for ankle and wrist
channels.

4.2. Level Crossing Rate (LCR). The level crossing rate (LCR)
for a signal is the number of crossings of the signal with
respect to a given threshold or specified fade level in the
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positive going direction in a unit of time [24]. Figure 13
shows a comparison of the level crossing rate for the three
considered links when the subject was walking. At a specified
fade depth of −3 dB for the walking case, the LCR for
these three on-body channels is mostly found to be higher
in indoor. At −3 dB fade depth, the LCR in the chamber
for these three channels is in the range of 0.05 s−1–0.25
s−1 while it is 0.07 s−1–28 s−1 in the indoor environments.
Both in the chamber and indoor environments, the highest
LCR value at −3 dB fade depth is noticed for wrist channel
whereas the lowest is for ear channel. The LCR for the ankle
link varies greatly in between the chamber and the indoor
environments.

4.3. Average Fade Duration (AFD). The average fade dura-
tion is the average duration of time during which the fading
signal remains below the specified fade level [24]. Figure 14
shows comparison of average fade duration for three dif-
ferent on-body channels, that is, as wrist, ankle, and ear
measured in the chamber and in indoor for walking human
subject. The AFDs characteristically increase with decreasing
of fade depth.

For walking case, the left ankle channel has the highest
AFD with the value of 1.9 seconds at the fade depth of −3 dB
in the chamber. At−3 dB fade depth, the AFD is higher in the
indoor environment for wrist and ear channels, while lower
for the ankle. The AFD for all three channels is in the range
of 1.1–1.9 seconds.

5. Conclusion

UWB on-body radio propagation channel measurements
were performed using ultrawideband (UWB) wireless tags
and reader in the chamber and indoor environments. Nine
different UWB on-body radio channels were investigated for

static and movement scenarios. Results demonstrated that
lognormal distribution provides the best fits for on-body
propagation channels path loss model. In this study, left
thigh link shows the lowest path loss, whereas the left ear
and right chest show the highest. The study shows that due
to different scenarios (i.e., standing and walking) an on-
body link experiences up to 8.23 dB variations in path loss.
Path loss exponent for individual body parts is extracted,
where the lowest path loss exponent and the path loss at the
reference distance are noticed for the legs part. Second-order
channel parameters as (LCR), (FP), and (AFD) for three on-
body links are investigated. Results and analysis showed that
at a specified fade depth of −3 dB, the fade probability, level
crossing rate, and average fade duration are found mostly
higher in the indoor as compared to chamber.
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