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ABSTRACT 11 

Question: How do immune phenotypes differ between infected and uninfected wild 12 

individuals, and is the effect the same in different populations? 13 

Organisms: Three-spined stickleback (Gasterosteus aculeatus) from two lake populations 14 

on the island of North Uist, Scotland, sampled in May 2015. 15 

Methods: For each fish, we recorded length, sex, reproductive status, condition and 16 

parasitic infection. We measured the expression levels of eight genes which act as key 17 

markers of immune system function using qPCR, and then examined the relationship 18 

between measured factors and immune gene expression profiles within each population. 19 

Conclusions: Populations differed significantly in their immune gene expression profiles. 20 

Within each population, multiple factors, including condition, reproductive status and 21 

Schistocephalus solidus infection levels, were found to correlate with expression levels of 22 

different arms of the immune system. 23 

INTRODUCTION 24 

Studies of the immune system to date have focussed primarily on humans and a few select 25 

model species (Maizels & Nussey, 2013; Pedersen & Babayan, 2011). Such studies are 26 

typically lab-based and performed in highly controlled settings where variation is minimised, 27 

so that cellular and molecular mechanisms can be identified. This approach, however, is 28 

disconnected from the natural world where ‘real’ immune systems have to operate 29 

(Pedersen & Babayan, 2011), where there is genetic diversity of both hosts and parasites, 30 

and variation in the abiotic environment. Such diversity may play an important role in 31 

shaping the function of the immune system in the wild (Lazzaro & Little, 2009; Martin et al., 32 

2011), and placing current knowledge of immunological mechanisms into this real-world 33 

context is a fundamentally important challenge in advancing our understanding of the 34 

immune system from an evolutionary perspective (Maizels & Nussey, 2013). 35 
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The expansion of the study of the immune system in the wild is constrained by a lack of 36 

appropriate assays and study species (Fassbinder-Orth, 2014), and studies applying modern 37 

immunological measurements to natural populations by simultaneously measuring multiple 38 

markers of the immune system are rare and primarily limited to rodents (Jackson et al., 39 

2014; Oko et al., 2006; Schountz et al., 2007). Expression assays represent an obvious 40 

starting point for the study of the immune response in organisms that lack reagents 41 

(particularly for protein-level analysis), although results can be difficult to interpret and data 42 

from wild populations inherently noisy. One way to address the possible limitations of such 43 

an approach is to compare expression profiles between different populations in relation to 44 

candidate causal factors, for example parasitic infection levels, sex or size. If signals are 45 

consistent across locations, we can have more confidence that the patterns identified are 46 

‘real’. Due to the restricted set of previous studies, there is a limited understanding of the 47 

role of an individual’s environment in shaping immune function in a natural setting; the three-48 

spined stickleback Gasterosteus aculeatus L. (hereafter ‘stickleback’) is ideally suited to 49 

address this issue. 50 

Sticklebacks are a commonly studied model species in evolution and ecology (eg, see 51 

Hendry et al., 2013). Populations of stickleback show stable differences in parasite 52 

community composition (De Roij & MacColl, 2012; Scharsack et al., 2007a), and interactions 53 

with a range of parasites have been well documented (Barber, 2013; Kalbe & Kurtz, 2006; 54 

Konijnendijk et al., 2013; MacColl, 2009). There is growing evidence for within and between 55 

population variation in parasite resistance (De Roij et al., 2011), which probably has a 56 

genetic basis (El Nagar, 2014; Rauch et al., 2006). This long history of study, combined with 57 

the ability to sample replicate populations in the wild and perform controlled infection 58 

experiments in the lab, has made the stickleback an excellent model in the study of 59 

evolutionary and ecological parasitology (Barber, 2013), and an ideal system in which to 60 

conduct immunological studies.  61 
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The sticklebacks found on the island of North Uist, Scotland, represent one well-studied 62 

system (De Roij & MacColl, 2012; Giles, 1983; MacColl et al., 2013). A number of parasite 63 

species infect stickleback on North Uist, including Gyrodactylus arcuatus, an ectoparasitic 64 

trematode, and Schistocephalus solidus, a pseudophyllidean cestode. Infections with S. 65 

solidus can have a negative impact on host fitness (Barber & Scharsack, 2010; Barber et al., 66 

2008), and parasites have been shown to modulate the immune response of the host 67 

(Barber & Scharsack, 2010). Whilst the impact of infection on host fitness of a number of 68 

parasites has been well studied, the link between infection and a host’s defence is less clear. 69 

Past research has begun to examine the immune response of stickleback, particularly the 70 

role of immune-related cell populations (Scharsack et al., 2004) and the major 71 

histocompatibility complex (MHC) (Kurtz et al., 2004; Wegner et al., 2006) . The genetic 72 

background of an individual appears to play a role in determining parasite load (Eizaguirre et 73 

al., 2011; Rauch et al., 2006), suggesting adaptation to local parasite populations, which 74 

could be modulated through the immune response. 75 

Recent advances allow the expression levels of immune-related genes to be measured 76 

directly. Next-generation sequencing of the transcriptome of stickleback has shown 77 

adaptation of expression levels of immune genes to local, co-evoloved, parasite strains 78 

(Lenz et al., 2013), and changes in gene expression which are dependent upon the 79 

genotype of the infecting parasite (Haase et al., 2014) in controlled, laboratory-based, 80 

infection experiments. This whole-transcriptome sequencing approach has provided new 81 

insights into the response of individuals to controlled infections, but there is a relatively high 82 

cost associated with sequencing the large numbers of biological replicates required for such 83 

studies of wild populations. An alternative approach to whole transcriptome sequencing is to 84 

use quantitative real-time PCR (qPCR) to measure the expression of pre-selected genes 85 

(Fassbinder-Orth, 2014), chosen based on a priori knowledge of the function of the immune 86 

system. Such studies have proved fruitful in the study of rodents (Jackson et al., 2011; 87 
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Jackson et al., 2009), and qPCR has successfully been applied to stickleback (Dittmar et al., 88 

2014; Hibbeler et al., 2008; Robertson et al., 2015). 89 

In order to give a cohesive overview of the function of the immune system, we developed a 90 

set of qPCR assays which measure the innate response, the Th1-type and Th2-type 91 

adaptive responses, and the regulatory response (Robertson et al., 2015). In this study, we 92 

employ these assays to measure the immune response of wild stickleback from two lake 93 

populations on the island of North Uist, Scotland. We selected populations that typically have 94 

similar high rates of infection with S. solidus (MacColl, unpublished data), but are 95 

geographically isolated from each other. In this way, we could investigate whether we could 96 

detect changes in immune gene expression levels that were associated with S. solidus 97 

infection, above the natural variation expected in data from wild individuals. Furthermore, we 98 

examine which factors relate to immune gene expression levels within each population and 99 

look at whether there are common factors which may be involved in shaping the immune 100 

response in the wild. This research adds to the growing use of stickleback as an alternative 101 

species in the study of the immune system, and begins to examine which factors play a role 102 

in shaping immune gene expression in a natural setting. 103 

MATERIALS AND METHODS 104 

Sample Collection 105 

All work involving animals was approved by the University of Nottingham ethics committee, 106 

under UK Home Office licence (PPL-40/3486), and sampling on North Uist was conducted 107 

with the permission of North Uist Estates. Fish were sampled from Loch a’Bharpa (‘Bhar’, 108 

57⁰34'20"N; 7⁰18'11"W) and Loch Hosta (‘Host’, 57⁰37'30"N; 7⁰29'8"W) on the island of North 109 

Uist, Scotland, in May 2015. Forty six fish were sampled from each population, split between 110 

two sampling days per population. Fish were caught in Gee’s Minnow Traps, set overnight 111 

for approximately 16 hours. All individuals caught in a trapping session were pooled, and a 112 

subset was selected for inclusion in this study. Fish were transported directly to the 113 
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laboratory in darkened conditions and processed in a haphazard order within four hours of 114 

collection. All fish were collected and processed before midday. No correlations were found 115 

between sampling order or sampling day and gene expression levels, indicating that our 116 

sampling procedure had no effect on expression levels. 117 

Fish were euthanized using the appropriate schedule 1 technique according to UK Home 118 

Office regulations, then measured and weighed. Whole spleens, an immunologically 119 

important tissue in fish (Zapata et al., 2006), were removed, weighed, and placed into 120 

RNAlater (Life Technologies). Sex was recorded along with reproductive status, determined 121 

by visual examination of the gonads. Male (M) and female (F) reproductive status was split 122 

into two categories: individuals with no apparent investment in reproduction (small gonads 123 

and kidneys in M, small ovules only in F), versus individuals investing in reproduction or 124 

ready to breed (gonads and/or kidneys showing enlargement in M, some or all ovules 125 

enlarged in F). The liver was removed and weighed, as was any adipose tissue in the body 126 

cavity.  127 

Parasites were identified and counted under a dissection microscope. Where individuals 128 

were infected with S. solidus, the total weight of all plerocercoids (the life stage infecting 129 

stickleback) was recorded, and the parasite index calculated as the total proportion of a 130 

fish’s body weight accounted for by the parasite (Arme & Owen, 1967). The relative weights 131 

of the spleen (spleen somatic index, SSI), liver (hepato-somatic index, HSI), and adipose 132 

tissue (adipose index, AI) were calculated. Individual condition scores were calculated using 133 

Fulton’s condition factor, K=(105xweight(g))/Length(mm)3 (cited in Nash et al., 2006), 134 

adjusted for individuals infected with S. solidus by using individual weight minus the total 135 

weight of all plerocercoids. 136 

Sample Preparation 137 

All qPCR work was performed in accordance with the MIQE guidelines (Bustin et al., 2009; 138 

Taylor et al., 2010). Spleens were stored in RNAlater (Life Technologies) at -20oC for no 139 



7 
 

longer than 3 months. RNA was extracted using the GeneJET RNA purification kit (Thermo 140 

Scientific) according to the manufacturers’ standard protocol. Purity of RNA samples was 141 

assessed on a NanoDrop 1000 Spectrophotometer (Thermo Scientific), with a desired 142 

260/280 absorbance ratio > 1.80. Integrity of RNA was assessed by incubating 5μl of sample 143 

at 65oC for 10 minutes, followed by visualisation on a 2% Agarose gel stained with Ethidium 144 

Bromide. 145 

All samples were DNase treated using Precision DNase (Primer Design), following the 146 

manufacturers’ protocol. Reverse transcription reactions were performed on approximately 147 

1.5μg of total RNA using the nanoScript2 RT kit (Primer Design), with a combination  of 148 

random nanomer and oligo-dT priming, following the manufacturers’ standard protocol. 149 

Periodic no-enzyme controls indicated that genomic DNA contamination was negligible. 150 

cDNA samples were diluted 1:10 with nuclease free water before further use. 151 

Gene Expression Quantification 152 

All qPCR reactions were performed in 10μl total volumes, containing 5μl of PrecisionFAST 153 

mastermix with SYBR green (Primer Design), 0.25μl of each primer, 2μl of template cDNA 154 

and 2.5μl of H2O in 96-well optical PCR plates with optical seals (StarLab). Reactions were 155 

performed in an ABI 7500 FAST real-time thermocycler (Applied Biosystems) at 95oC for 20 156 

seconds, followed by 45 cycles of 95oC for 3 seconds and 60oC for 30 seconds. All runs 157 

included a post-PCR melt curve analysis. 158 

Accurate normalization of gene expression is essential for the production of reliable data in 159 

qPCR experiments, with the optimal reference genes being specific to a particular set of 160 

experimental conditions (Dheda et al., 2005). To select the most appropriate normalization 161 

strategy, a geNorm analysis was performed with six candidate reference genes (B2M, 162 

GAPDH, RPL13A, HPRT1, TBP and TOP1) on 12 cDNA samples, randomly selected from 163 

all experimental samples, using a custom stickleback geNorm kit for SYBR green (Primer 164 

Design), following the manufacturers’ standard protocol. Analysis of the stability of 165 
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expression was performed in qbase+ (Biogazelle) with B2M and RPL13A identified as the 166 

most stable combination of reference genes for this study. 167 

Expression levels of eight genes of interest were measured, along with two reference genes. 168 

Genes of interest were IL-1β, TNFα, Stat4, Tbet, Stat6, CMIP, FoxP3, and TGFβ (For full 169 

details, see Robertson et al., 2015). A reference sample was made by pooling cDNA from all 170 

experimental samples, to control for between plate variation. A total of 92 cDNA samples 171 

were split randomly between two plates, with reactions performed in duplicate for each 172 

sample, and each plate also contained the reference sample and negative controls.  173 

Relative expression values were calculated using the ΔΔCq method (Pfaffl, 2001), adjusted 174 

for the amplification efficiencies of each primer pair and standardised against the geometric 175 

mean Cq of the two reference genes for each sample (Vandesompele et al., 2002).  176 

Data Analysis 177 

All expression values were log10(x+1) transformed prior to analysis, due to the inherently 178 

skewed distribution of relative expression data. Analysis was performed in R v.3.2.2 (R Core 179 

Team, 2014). We first examined whether any factors relate to variation in individual 180 

condition. Next we investigated whether any factors related to immune gene expression 181 

variation in each population, by using principal components analysis (PCA) to summarise 182 

immune gene expression levels, then fitted general linear models (glm’s) containing 183 

recorded factors which we expected to influence expression. 184 

Variation in Individual Condition. Individual condition was summarised by using PCA on K, 185 

HSI, SSI and AI, based on the correlation matrix. PCA was performed on both populations 186 

combined to ensure that each condition principal component (PC) was summarising the 187 

same variation in both populations, to allow direct comparisons of the relationships between 188 

condition measures and immune gene expression levels in the models fitted to Host and 189 

Bhar. PCs were retained for use in further analysis if they had a standard deviation ≥1 and 190 

explained ≥10% of variance in the data. In order to examine what factors relate to the 191 
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condition measures, glm’s were fitted separately to each population, with condition PC1 or 192 

PC2 as the response variable. Sex (2 levels), reproductive status (2 levels) G. arcuatus 193 

presence (2 levels) and S. solidus presence (2 levels) were included as factors, and length 194 

as a continuous variable, along with a sex by reproductive status interaction term. Non-195 

significant terms were sequentially dropped from the full model to give a minimum adequate 196 

model, with significance of the remaining components determined by Wald F-tests. 197 

Summarising Immune Expression. Profiles of the eight immune response genes were 198 

compared between the two lakes (Host and Bhar) using multivariate analysis of variance 199 

(MANOVA). Overall differences were assessed using the Pillai method, followed by 200 

examination of each immune type separately.  201 

The expression of groups of functionally related components of the immune system was 202 

summarised using PCA, a widely used dimension reduction technique which converts a 203 

number of variables into principal components which summarises the variation present in the 204 

original measures. In this way, we can summarise the expression of the genes from each 205 

arm of the immune response in a single measure encompassing the majority of variation 206 

present in the original data. Genes were split into four functional groups based on their role: 207 

IL-1β and TNFα (Innate response); Stat4 and Tbet (Th1-type adaptive response); Stat6 and 208 

CMIP (Th2-type adaptive response); and FoxP3 and TGFβ (regulatory response). PCA was 209 

performed separately on each immune group in each population using the ‘prcomp’ function, 210 

based on the variance-covariance matrix. In most cases, except Th2-type expression in 211 

Bhar, the dominant first principal component (PC1) explained a high proportion of variation in 212 

the data (>69%), with both genes having positive loadings. Individual PC1 scores were used 213 

for subsequent analysis, except for the Th2-type response where Stat6 and CMIP relative 214 

expression values were fitted instead. 215 

Factors Relating to Immune Expression. Glm’s were fitted to both populations separately 216 

using each immune grouping PC1 score, or Stat6 and CMIP relative expression, as the 217 
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response variable, to examine which factors related to expression levels. Maximal models 218 

were fitted with sex (2 levels), reproductive status (2 levels), G. arcuatus presence (2 levels) 219 

and S. solidus parasite index (2 levels) as factors, and condition PC1 and PC2 scores and 220 

length as continuous variables. Biologically relevant interaction terms were also fitted. Non-221 

significant terms were sequentially dropped from the full model to give a minimum adequate 222 

model. The significance of remaining components was determined by Wald F-tests. 223 

RESULTS 224 

S. solidus was found to be the dominant parasite species in both populations, with a 225 

prevalence of 54.3% (95% binomial confidence interval 39.0%-69.0%) and an average 226 

intensity in infected individuals of 8.6 (SE±1.7) in Bhar and a prevalence of 43.5% (95% 227 

binomial confidence interval 28.9%-58.9%) and intensity of 4.5 (SE±1.0) in Host. G. arcuatus 228 

was also found, with a prevalence of 6.5% (95% binomial confidence interval 1.4%-10.8%) 229 

and an intensity on infected individuals of 2 (SE±0.6) in Bhar and a prevalence of 19.6% 230 

(95% binomial confidence interval 9.4%-33.9%) and an average intensity of 2.3 (SE±0.3) in 231 

Host. No other parasite species were identified in the sampled fish at sufficient rates to 232 

include in the analysis. 233 

Variation in Individual Condition 234 

PCA was used to summarise the four different measures that reflect individual condition. 235 

Condition PC1 accounted for 41% of variation, with loadings of K = 0.134, HSI = 0.641, SSI 236 

= -0.489, and AI = -0.577, whilst PC2 accounted for 24.9% of variance, with loadings of K = 237 

0.973, HSI = -0.119, SSI = 0.186, and AI = -0.062 (Figure 1). Factors relating to condition 238 

PC1 and PC2 scores are summarised in Table 1. In both Bhar and Host, individuals 239 

investing in attaining reproductive condition had higher PC1 scores (Bhar F(2,39)=4.69, 240 

p=0.036, Host F(2,39)=12.08, p<0.001), and this also varied with sex (Bhar F(2,39)=4.89, 241 

p=0.033, Host F(2,39)=10.53, p<0.001) such that females had higher condition PC1 scores 242 

than males for a given reproductive condition score. Infection with S. solidus was associated 243 
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with a decrease in condition PC1 score (Figure 1) in both Bhar (F(1,39)=37.57, p<0.001) and 244 

Host (F(1,39)=10.594, p=0.002). In both Bhar and Host, larger fish had lower condition PC2 245 

scores (Bhar F(1,44)=6.86, p=0.012, Host F(1,40)=13.51, p<0.001). In Host, males had lower 246 

condition PC2 scores than females (F(1,40)=6.49, p=0.015), scores were higher in fish in 247 

reproductive condition (F(2,40)=6.09, p=0.005) and infection with S. solidus was associated 248 

with an increase in condition PC2 score (F(1,40)=5.01, p=0.031).  249 

Summarising Immune Expression 250 

Fish from Bhar and Host differed significantly in their overall immune profiles (Figure 2; 251 

MANOVA F(1,90)=10.169, p<0.001). The populations differed in expression of TNFα 252 

(F(1,90)=13.58, p<0.001), Stat6 (F(1,90)=10.29, p=0.002), CMIP (F(1,90)=14.30, p<0.001), FoxP3 253 

(F(1,90)=1.38, p=0.039) and TGFβ (F(1,90)=27.13, p<0.001), but not IL-1β (F(1,90)=1.23, 254 

p=0.270), Stat4 (F(1,90)=0.55, p=0.461) and Tbet (F(1,90)=0.69, p=0.409). 255 

Grouped immune gene expression measures were summarised in each population using 256 

PCA, with high PC1 values in all groups indicating high expression levels of included genes. 257 

In Bhar, PC1 of innate immune measures explained 69.6% of variation in the data, with 258 

loadings of IL-1β=0.856 and TNFα=0.516. For the Th1-type measures, PC1 explained 259 

79.7% of variation, with loadings of Stat4=0.267 and Tbet=0.964. The Th2-type measures 260 

were found to give PC1 loadings in opposite directions, so were kept separate for 261 

subsequent analysis. The regulatory measures gave a PC1 explaining 81.7% of variation, 262 

with loadings of FoxP3=0.965 and TGFβ=0.263.  263 

In Host, PC1 of innate measures explained 78.5% of variation, with loadings of IL-1β=0.961 264 

and TNFα=0.277. For the Th1-type measures, PC1 explained 84.8% of variation, with 265 

loadings of Stat4=0.439 and Tbet=0.898. PC1 of the Th2-type measures explained 81.4% of 266 

variation, with loadings of Stat6=0.222 and CMIP=0.975. The regulatory measures PC1 267 

accounted for 82.2% of variation, with loadings of FoxP3=0.969 and TGFβ=0.245. 268 

Factors Relating to Immune Expression 269 
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A range of factors were found to relate to expression levels of different arms of the immune 270 

system, as summarised in Table 2. Some factors relating to innate and Th1-type expression 271 

levels had the same effects in both populations, whilst others either had opposing effects or 272 

were only related to expression levels within a single population. 273 

Innate Expression. In Bhar, larger fish had lower innate expression levels (Figure 3, 274 

F(1,40)=14.11, p<0.001). An increase in condition PC2 was associated with an increase in 275 

innate expression levels (F(1,40)=5.48, p=0.024), with the effect being less pronounced as fish 276 

get bigger (F(1,40)=5.30, p=0.027). Individuals infected with S. solidus had lower innate 277 

expression levels at a given condition PC2 score (F(1,40)=6.85, p=0.012). Larger fish in Host 278 

also had lower innate expression levels (Figure 3, F(1,38)=8.20, p=0.007), but this also varied 279 

by sex (F(1,38)=5.84, p=0.021), with males showing a larger decrease in expression with 280 

increasing size. An increase in condition PC1 score was associated with an increase in 281 

innate expression (F(1,38)=12.94, p<0.001), whilst an increase in condition PC2 was 282 

associated with a decrease (F(1,38)=11.32, p=0.002). In contrast to Bhar, infection with both 283 

G. arcuatus (F(1,38)=5.19, p=0.028) and S. solidus (F(1,38)=6.59, p=0.014) were associated 284 

with an increase in innate expression levels. 285 

Th1-type Expression. In Host, fish infected with S. solidus had lower Th1-type expression 286 

levels (Figure 4, F(1,39)=11.07, p=0.002), with the difference increasing as fish got larger 287 

(F(1,39)=5.70, p=0.022). Individuals in reproductive condition had higher Th1-type expression 288 

levels for a given condition PC1 score (F(1,39)=5.15, p=0.029). In Bhar, fish infected with S. 289 

solidus also had lower Th1-type expression than uninfected fish (Figure 4, F(1,37)=13.51, 290 

p<0.001). Males had lower expression levels than females (F(1,37)=10.59, p=0.002), and this 291 

effect varied with reproductive status (F(1,37)=5.90, p=0.020), with the difference between 292 

sexes much greater in non-reproductive individuals. Sex also altered the relationship 293 

between condition PC2 score and Th1-type expression (F(1,37)=7.71, p=0.009), with the 294 

difference between sexes decreasing as condition PC2 score increases. As in Host, the 295 

effect of condition PC1 score also varied with reproductive status in Bhar (F(1,37)=8.87, 296 
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p=0.005), with reproductive individuals having lower Th1-type expression at a given 297 

condition PC1 score. 298 

Th2-type Expression. No significant factors were found in the models for CMIP expression in 299 

Bhar or Host. In Bhar, males showed lower Stat6 expression levels than females 300 

(F(1,36)=4.77, p=0.036). Sex influenced the relationship between condition PC1 and Stat6 301 

expression (F(1,36)=8.35, p=0.007) and condition PC2 and Stat6 expression (F(1,36)=4.91, 302 

p=0.033), with males having lower expression than females for a given condition PC score. 303 

The effect of condition PC1 score on Stat6 expression also varied with length (F(1,36)=4.43, 304 

p=0.042), with larger fish having lower Stat6 expression levels at a given condition PC1 305 

score. The effect of condition PC1 score on Stat6 expression also varied with S. solidus 306 

infection (F(1,36)=6.31, p=0.017), with infected fish having higher Stat6 expression levels than 307 

uninfected fish at a given condition PC1 score. In Host, larger individuals had higher Stat6 308 

expression levels (F(1,40)=7.61, p=0.009), as did individuals in reproductive condition 309 

(F(1,40)=11.87, p=0.001). The effect of length also varied with reproduction (F(1,40)=14.28, 310 

p<0.001), with the difference between reproductive and non-reproductive individuals 311 

decreasing with increasing length. Individuals in reproductive condition had higher Stat6 312 

expression levels than non-reproductive individuals at a given condition PC1 score 313 

(F(1,40)=5.95, p=0.019). 314 

Regulatory Expression. In Host, larger fish had lower regulatory gene expression levels 315 

(F(1,43)=6.20, p=0.017), whilst an increase in condition PC2 score was associated with a 316 

decrease in expression levels (F(1,43)=6.06, p=0.018). In Bhar, individuals infected with S. 317 

solidus had higher regulatory gene expression levels than uninfected individuals 318 

(F(1,33)=6.33, p=0.016), but this difference decreased with increasing fish length (F(1,33)=5.91, 319 

p=0.020). The difference in regulatory gene expression levels between S. solidus infected 320 

and uninfected individuals decreased with increasing condition PC1 score (F(1,33)=6.33, 321 

p=0.016), and with increasing condition PC2 score (F(1,33)=7.11, p=0.011).  322 
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DISCUSSION 323 

In the present study we see differences in immune gene expression levels between 324 

populations, and identify a range of factors which contribute to shaping this expression. Data 325 

collected from wild populations is inherently noisy, yet we are able to detect variation in 326 

immune gene expression levels that are associated with infection with two common parasite 327 

species, S. solidus and G. arcuatus, as well as associations with a range of other factors. 328 

Overall gene expression profiles differed between fish from Host and Bhar, primarily driven 329 

by higher expression levels of Th2-type and regulatory genes in Bhar. Previous work has 330 

shown that underlying gene expression levels differ between populations (Robertson et al., 331 

2015), and an individual’s ability to respond has some genetic basis (Rauch et al., 2006; 332 

Robertson et al., 2015), thus the measured variation in expression here could represent 333 

underlying differences in responsiveness between populations, or differences in the 334 

challenges being faced in each population.  335 

A range of factors were found to contribute to shaping expression of each response type, 336 

with factors relating to different arms of the immune system in different ways. Some 337 

explanatory factors were found to have common affects in both populations, including size, 338 

sex and condition, whilst others had opposing affects or only related to expression levels in a 339 

single population. Interactions between the factors also varied. Recent thinking in 340 

immunology suggests that controlled lab-based studies of the immune system lack 341 

complexity when compared to a natural setting (Bradley, 2015; Pedersen & Babayan, 2011). 342 

The broad set of factors found here which relate to gene expression levels, and the 343 

interactions between them, confirm that immune function in the wild is complex, and shows 344 

that studies in immunology should consider multiple factors simultaneously. 345 

Both sex and reproductive status correlated with an individual’s immune expression profile. 346 

Previous studies in vertebrates have found that there are general differences in immune 347 

function between the sexes (Hawley & Altizer, 2011; Restif & Amos, 2010), and we expected 348 
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males to have lower expression levels in general than females. Sex correlated with innate 349 

expression levels in Host, and with Th1-type, Th2-type and Stat6 expression levels in Bhar; 350 

in all these cases, males had lower expression levels than females. Investing in reproduction 351 

can also influence immune response ability (Downs et al., 2014). Individuals investing in 352 

reproduction had lower Th1-type gene expression levels in both Bhar and Host, and had 353 

higher Stat6 expression levels in Host. During the breeding season, the immune response 354 

can be affected by circulating hormone levels (Cuesta et al., 2007; Maule et al., 1996), and 355 

other factors, such as sex specific behavioural changes, may also play a role. Further 356 

studies at different times of year could indicate whether such sex differences are transient, 357 

and longitudinal studies could show whether different investment strategies affect breeding 358 

success, and ultimately fitness. 359 

Infection with Schistocephalus solidus was associated with variation in expression of all 360 

immune response types, but some of these effects differed between the studied populations. 361 

The immune response of individuals has been shown to change with S. solidus infection in 362 

experimental studies (Scharsack et al., 2004; Scharsack et al., 2007b), with growing 363 

evidence of parasite driven manipulation of the host immune system (For review, see Barber 364 

& Scharsack, 2010). The role of Th1 / Th2 differentiation during S. solidus infection is not 365 

well understood due to a previous lack of appropriate assays. Here we see a decrease in 366 

Th1-type expression with infection in both populations, as previously observed in wild 367 

populations on North Uist (Robertson et al., 2015), and an increase in Th2-type and 368 

regulatory expression in Bhar only. Work in mice on Schistosomes, a digenean trematode 369 

residing in the blood stream, has shown a shift towards an increased Th1-type response in 370 

order to avoid the potentially harmful Th2 or humoral type responses (Herve et al., 2003), an 371 

approach that may be employed by S. solidus (Barber & Scharsack, 2010). Our data, 372 

however, shows the opposite change in Th1-type response. Our results support the 373 

involvement of the adaptive response during infection, but a better understanding of the 374 
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Th1/Th2 mechanism in teleost fish is required to shed light on the role of S. solidus in 375 

manipulating the host’s immune system. 376 

Condition measures were found to relate to expression levels of all response types in both 377 

populations, although the effect and interactions of the condition factors varied between 378 

populations. The condition PC1 axis represents opposing changes in liver size against 379 

spleen size and adipose fat tissue, and was associated with differences between sexes, in 380 

reproductive condition, and S. solidus infection levels. Changes in liver, spleen and adipose 381 

tissue were expected to correspond with S. solidus infection (Arme & Owen, 1967). The 382 

condition PC2 axis represents general body condition, measured as Fulton’s condition 383 

factor, and generally decreases with increasing length. In turn the condition PC1 and PC2 384 

scores interact with a number of factors in the models for both Bhar and Host, again 385 

including sex, reproduction and S. solidus infection. There appears to be a complex interplay 386 

between factors, where the direction of causality in the relationship between factors 387 

determining condition, condition itself, and immune gene expression levels is an area open 388 

to further research. Condition may affect an individual’s ability to respond, or response may 389 

determine condition. Furthermore, factors such as reproductive investment and S. solidus 390 

infection may have direct effects on immune gene expression levels whilst also acting 391 

indirectly through condition. 392 

CONCLUSIONS 393 

Studying the immune expression profiles of individuals from two wild populations of 394 

stickleback has provided new insights into the function of the immune system in a natural 395 

setting. We demonstrate that two populations differ in their immune gene expression profiles, 396 

and that a complex interplay of multiple factors correlates to individual immune expression 397 

levels within each population. There appear to be important roles of sex, reproductive status, 398 

and individual condition. Infection with a parasite with fitness consequences to the host, 399 

Schistocephalus solidus, relates to the innate and adaptive responses, and may represent 400 
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parasite manipulation of the host. Whilst some factors have the same pattern in both 401 

populations, others only relate to gene expression levels in a single population. The present 402 

study adds to our understanding of the immune response in a natural setting, and shows that 403 

studying the effect of single factors in isolation may overlook important and complex 404 

interactions in the wild. Whilst the patterns observed are correlative, they identify a range of 405 

areas for further research. 406 
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Table 1: Summaries of minimum adequate models fitted to condition data from wild fish from 

two lakes (‘Bhar’ and ‘Host’) on North Uist, Scotland. Condition PC1 represents variation in 

hepato-somatic index (HSI), spleen somatic index (SSI) and adipose index (AI), whilst 

condition PC2 represents variation in Fulton’s condition factor (K). Terms that were not 

included in the final minimum model for a population, but which were retained in the 

minimum model for the other population, are marked ‘n/a’. 

    Bhar Host 

  Factor F df p F df p 

Condition PC1 Sex 4.50 1,39 0.040 0.05 1,39 0.826 

 
Reproduction 4.69 1,39 0.036 12.08 1,39 <0.001 

 
S. solidus presence 37.57 1,39 <0.001 10.59 1,39 <0.001 

 
Sex : Reproduction 4.89 1,39 0.033 10.53 1,39 <0.001 

Condition PC2 Length 6.86 1,44 0.012 13.51 1,40 <0.001 

 
Sex 

 
n/a 

 
6.49 1,40 0.005 

 
Reproduction 

 
n/a 

 
6.09 1,40 0.015 

  S. solidus presence   n/a   5.01 1,40 0.031 
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Table 2: Summaries of minimum adequate models fitted to expression data from wild fish 

from two lakes (‘Bhar’ and ‘Host’) on North Uist, Scotland. ‘Innate’, ‘Th1’, and ‘Regulatory’ 

response variables are first principal components of the following pairs of genes 

respectively: IL-1β and TNFα; Stat4 and Tbet; FoxP3 and TGFβ. Significant p values 

(P<0.05) are marked in bold. The direction of the effect (+ or -) of each factor or interaction 

term is shown (M relative to F for ‘Sex’, reproductive relative to non-reproductive for 

‘Reproduction’). Terms that were not included in the final minimum model for a population, 

but which were retained in the minimum model for the other population, are marked ‘n/a’. 
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    Bhar Host 

 
Factor F df p Effect F df p Effect 

Innate Length 14.11 1,40 <0.001 - 8.20 1,38 0.007 - 

 
Sex n/a 4.84 1,38 0.034 - 

 
Condition PC1 n/a 12.94 1,38 <0.001 + 

 
Condition PC2 5.48 1,40 0.024 + 11.32 1,38 0.002 - 

 
G. arcuatus presence n/a 5.19 1,38 0.028 + 

 
S. solidus presence 0.39 1,40 0.534 - 6.59 1,38 0.014 + 

 
Length : Sex n/a 5.84 1,38 0.021 + 

 
Length : Condition PC2 5.30 1,40 0.027 - n/a 

 
Condition PC2 : S. solidus presence 6.85 1,40 0.012 - n/a 

Th1 Length n/a 3.89 1,39 0.056 - 

 
Sex 10.59 1,37 0.002 - n/a 

 
Reproduction 0.14 1,37 0.714 - 0.46 1,39 0.540 - 

 
Condition PC1 9.03 1,37 0.005 - 3.69 1,39 0.062 - 

 
Condition PC2 0.15 1,37 0.697 + n/a 

 
S. solidus presence 13.51 1,37 <0.001 - 11.07 1,39 0.002 - 

 
Length : S. solidus presence n/a 5.70 1,39 0.022 + 

 
Sex : Reproduction 5.90 1,37 0.020 + n/a 

 
Sex : Condition PC2 7.71 1,37 0.009 - n/a 

 
Reproduction : Condition PC1 8.87 1,37 0.005 + 5.15 1,39 0.029 + 

Stat6 Length 0.52 1,36 0.476 + 7.61 1,40 0.009 + 

 
Sex 4.77 1,36 0.036 - n/a 

 
Reproduction n/a 11.87 1,40 0.001 + 

 
Condition PC1 3.42 1,36 0.072 + 2.60 1,40 0.115 - 

 
Condition PC2 0.07 1,36 0.793 + n/a 

 
S. solidus presence 0.87 1,36 0.358 + n/a 

 
Length : Reproduction n/a 14.28 1,40 <0.001 - 

 
Length : Condition PC1 4.43 1,36 0.042 - n/a 

 
Sex : Condition PC1 8.35 1,36 0.007 - n/a 

 
Sex : Condition PC2 4.91 1,36 0.033 - n/a 

 
Reproduction : Condition PC1 n/a 5.95 1,40 0.019 + 

 
Condition PC1 : S. solidus presence 6.31 1,36 0.017 + n/a 

Regulatory Length 2.29 1,38 0.139 + 6.20 1,43 0.017 - 

 
Condition PC1 2.53 1,38 0.120 - n/a 

 
Condition PC2 3.79 1,38 0.060 + 6.06 1,43 0.018 - 

 
S. solidus presence 6.33 1,38 0.016 + n/a 

 
Length : S. solidus presence 5.91 1,38 0.020 - n/a 

 
Condition PC1 : S. solidus presence 6.33 1,38 0.016 + n/a 

  Condition PC2 : S. solidus presence 7.11 1,38 0.011 - n/a 
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Figure 1: a) Individual scores of the first and second principal components of condition measures 

(with % variation explained) on fish from two lake populations (Bhar and Host) on North Uist, 

Scotland. PC1 and PC2 summarise variation in Fulton’s condition factor (K), adipose index (AI), 

spleen-somatic index (SSI) and hepato-somatic index (HSI). b) Fish infected with S. solidus (‘Infected’) 

had lower condition PC1 scores than uninfected fish (‘Uninf.’) in both study populations (Bhar = ●, 

Host = ▲). A high PC1 indicates a high hepato-somatic index, with a low spleen-somatic index and 

adipose index. 
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Figure 2:  Relative gene expression levels (Mean ± SE) of two lake populations (Bhar = ●, Host = ▲) 

on North Uist, Scotland. Genes with significant expression differences are indicated (*), with 

expression being lower in Host in all cases. IL-1β and TNFα represent the innate immune response, 

Stat4 and Tbet the Th1-type adaptive response, Stat6 and CMIP the Th2-type adaptive response, and 

FoxP3 and TGFβ the regulatory response. 
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Figure 3:  Larger fish had lower innate gene expression levels (Mean ± SE) in two lake populations, 

Bhar and Host, on North Uist, Scotland (including linear best fit lines). The innate response variable is 

the first principal component scores of IL-1β and TNFα gene expression levels, with PCA performed 

separately on fish from each population. A high PC1 score indicates high expression levels of both 

genes. 
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Figure 4:  Fish infected with S. solidus had lower Th1-type gene expression levels (Mean ± SE) in two 

lake populations (Bhar = ●, Host = ▲) on North Uist, Scotland. The Th1 response variable is the first 

principal component scores of Stat4 and Tbet gene expression levels, with PCA performed separately 

on fish from each population. A high PC1 score indicates high expression levels of both genes. 

 

 

 


