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ABSTRACT  

Metabolite identification is one of the most challenging steps in metabolomics studies and 

reflects one of the greatest bottlenecks in the entire workflow. The success of this step determines 

the success of the entire research, therefore the quality at which annotations are given requires 

special attention. A variety of tools and resources are available to aid metabolite identification or 

annotation, offering different and often complementary functionalities. In preparation for this 

article, almost 50 databases were reviewed, from which 17 were selected for discussion, chosen for 

their on-line ESI-MS functionality. The general characteristics and functions of each database is 

discussed in turn, considering the advantages and limitations of each along with recommendations 

for optimal use of each tool, as derived from experiences encountered at the Centre for 

Metabolomics and Bioanalysis (CEMBIO) in Madrid. These databases were evaluated considering 

their utility in non-targeted metabolomics, including aspects such as ID assignment, structural 

assignment and interpretation of results.  

INTRODUCTION 

The importance of metabolomics and its utility is still increasing, both in terms of the range 

of applications and their frequency. Amongst the different applications, non-targeted metabolomics 

plays a vital role, revealing new and unexpected findings that can lead to further research in a 

particular direction [1-4]. However, the success of this approach highly depends on the possibility to 

understand and interpret the information hidden within a complex metabolomics dataset. Most 

metabolomics studies are based on ESI-MS [5-7], usually with a preceding separation step such as 

liquid chromatography, tending to measure the ratio of mass to charge (m/z) and abundance of each 

ions which originate from chromatographically separated molecules. After data pre-processing and 

statistical analysis, a list of discriminating signals between sample groups can be obtained [8]. 

However, to understand the nature of this separation and its cause, masses must be annotated with 

metabolite identifications, which can be mapped onto biochemical pathways to understand their 

origins. Metabolite identification is influenced by a range of factors, which should be taken into 

consideration from the initial experimental design through to the interpretation of results (Figure 1).  

 To annotate measured masses with metabolite IDs, a data source is needed for comparison. 

One solution would be to use an in-house library based on the authentic standards analysed under 

particular conditions. In this way, at least two independent and orthogonal characteristics (e.g. mass 

and RT) could be used for comparison, providing first, the highest level of identification confidence 

according to MSI (Metabolomics Standards Initiative) guidelines [9]. This method is rather restrictive 

though, since only commercially available metabolites can be introduced to the library and used for 

annotation. New strategies utilising on-line accessible databases that contain a large array of 

information have emerged to mitigate this shortfall [10-15]. Cross comparison of experimental data 



to databases can be performed using only one characteristic (mass) (second level of confidence for 

MSI) which highlights a limitation compared to using in-house libraries. Nevertheless, the amount of 

information provided is huge, covering different subclasses and including not only endogenous 

metabolites but also substances originating from the microbiome, diet, plants or supplementation. 

Therefore, the coverage of annotations across the data is much more promising. Furthermore, in 

silico predicted compounds are now available, considering biological modifications of known 

metabolites that may occur under particular conditions [16]. This somehow responds to the clear 

need to open metabolomics research to consider new or previously unidentified metabolites. 

Moreover, databases are continuously growing due to the contribution of many researchers. 

In 2011 Fiehn and colleagues divided databases into two categories, making a clear 

distinction between pathway-centric and compound-centric databases [17]. In this review only 

compound-centric databases are examined, omitting databases such as KEGG 

(www.genome.jp/kegg), Reactome (www.reactome.org) and Wikipathways (wikipathways.org). 

Additionally, only on-line, open-access databases are included, omitting commercial resources. 

Finally, only ESI-MS dedicated resources allowing exact mass searching are assessed. Following these 

restrictions, 17 data sources were selected for review from a total of 47 considered. For a 

comprehensive list of those rejected, refer to table 1S (Supplementary Information). Data sources 

covered in this article are: BioCyc Database Collection (BioCyc) (biocyc.org), Ceu Mass Mediator 

(CeuMM) (ceumass.eps.uspceu.es), Compound Structure Identification: FingerID (CSI:FingerID) 

(www.csi-fingerid.org), Human Metabolome Database (HMDB) (www.hmdb.ca), Kazusa Omics Data 

Market (KomicMarket) (webs2.kazusa.or.jp/komicmarket/index.php), LipidBank (lipidbank.jp), LIPID 

Metabolites And Pathways Strategy (LipidMaps) (www.lipidmaps.org), MAGMa 

(www.emetabolomics.org/magma), MassBank (www.massbank.jp), MassTRIX (masstrix3.helmholtz-

muenchen.de/masstrix3/), MetFrag (msbi.ipb-halle.de/MetFragBeta), METLIN (metlin.scripps.edu), 

Metabolic In Silico Network Expansion Databases (MINE) (minedatabase.mcs.anl.gov), 

MycompoundID (www.mycompoundid.org), MzCloud (www.mzcloud.org), MZedDB 

(maltese.dbs.aber.ac.uk:8888/hrmet/search/addsearch0.php) and UCSD Metabolomics Workbench 

(Workbench) (www.metabolomicsworkbench.org). The number of compounds contained in each is 

depicted in Figure 2. Figure 3 illustrates the number of citations of each data source in google 

scholar, while information on the initial release data and latest updates for each are given in table 2S 

(supplementary information). All information given on each database is true as of January 15th 2017. 

It is important to highlight that this review was constructed based not only on literature research but 

also on usage and revision of databases at the Centre for Metabolomics and Bioanalysis (CEMBIO), 

Madrid.  

Of the data sources reviewed, BioCyc, HMDB, KomicMarket, LipidBank, LipidMaps, 

MassBank, METLIN, MzCloud and Workbench are considered databases sensu stricto. All the other 

on-line tools reviewed are mediators which use the information provided by databases: CeuMM, 

CSI:FingerID, MAGMa, MassTRIX, MetFrag, MINE and MZedDB. Detailed information on the sources 

used by each database and mediator is stated in table 3S (Supplementary Information). Both types 

of on-line tool are very important for the metabolomics society and both require continued 



improvement. Different databases focus on different types of molecules, therefore it is 

recommended to use a combination of resources for optimal coverage. In this way mediators are 

advantageous since they perform searches across different sources through a single interface. 

However, not all mediators offer multi-source usage. For example MAGMa, MetFrag and MINE 

permit the use of only one source at once. MassTRIX on the other hand searches KEGG, HMDB and 

LipidMaps together or separately (as defined by the user) and CeuMM permits the search between 

all combinations of HMDB, KEGG, LipidMaps, Metlin and MINE as required. Within this review, the 

general characteristics of each of the data sources are detailed, followed by a discussion of 

functionality to compare and contrast the advantages and limitations of each for different aspects. 

GENERAL CHARACTERISATION 

This section contains a short description of each database/mediator. Functionalities, 

advantages and limitations of each database are detailed in table 1. 

BioCyc [18], developed by SRI International (Menlo Park, California), is a collection of curated 

databases for different organisms. Databases are organised according to the level of manual updates 

they have received. Tier-1 databases such as EcoCyc (for E. coli) and HumanCyc are highly curated, 

while most BioCyc databases (Tier 2 and 3) have been computationally derived. These databases are 

particularly applicable to organism specific metabolite identification and metabolic reconstructions 

using the pathway search.  

CeuMM (ceumass.eps.uspceu.es), a collaborative development from the CEMBIO and the 

Bioengineering Laboratory of Polytechnic Faculty at Universidad CEU San Pablo Spain,is a tool which 

performs an automated search across external data sources (HMDB, KEGG, LipidMaps, METLIN and 

MINE) and provides possible identifications for a given mass (unifying similar hits given from more 

than one database into a single hit).  

CSI:FingerID [19] is a database specific for MSn identification. It supports further research on 

peaks unidentified at the MS level. It is a collaborative development between Friedrich Schiller 

University, Germany and Helsinki Institute for Information Technology at Aalto University, Finland, 

that combines fragmentation tree computation and machine learning to improve both the total 

percentage of identified molecules and the precision of identification. 

HMDB [20] is a database devoted to human metabolism developed with support from the 

Canadian Institutes of Health Research, Alberta Innovates - Health Solutions and The Metabolomics 

Innovation Centre. For each data entry, information is given on the chemical, biological and clinical 

characteristics as well as references to the literature including reported disease associations, related 

enzymes and transporters in addition to links to external databases such as KEGG.  

Komic Market (Kazusa Omics Data Market) is a database of metabolite annotations from MS 

peaks detected in metabolomics studies. It comes from the project “Development of Fundamental 

Technologies for Controlling the Material Production Process of Plants”, supported by the New 

Energy and Industrial Technology Development Organisation, Japan. 

LipidBank [21] is the official database of the Japanese Conference on the Biochemistry of 

Lipids (JCBL). This database is devoted to neutral lipids. It covers several different classes and all 



molecular information is manually curated and approved by experts in lipid research. Each entry 

includes a lipid name, molecular structure, spectral information, and literature references.  

LipidMaps [22] is funded by a large-scale collaborative research grant ("Glue Grant") from 

the NIH National Institute of General Medical Sciences. Its aim is to provide identification and 

quantitation of mammalian lipids including the quantification of changes in response to 

perturbation. LipidMaps Proteome Database (LMPD) is also included in this resource. 

MAGMa [23] is an annotation tool developed within the eMetabolomics project, funded by 

the Netherlands eScience Center at Wageningen University in collaboration with the Netherlands 

Metabolomics Centre. MSn data can be uploaded as a hierarchical tree of fragment peaks, based on 

m/z or chemical formulae and candidate molecules are automatically retrieved from PubChem, 

KEGG or HMDB. A matching score is calculated based on the quality of explanation of the fragment 

peaks. 

MassBank [24] is a public repository of mass spectral data based on sharing identifications 

and structure elucidations of chemical compounds detected by mass spectrometry. MassBank is 

accessible through two domains: Japanese (http://massbank.jp) and European (http://massbank.eu) 

(NORMAN MassBank). The tool is deployed in both domains, but some functions are only provided 

in the Japanese one.  

MassTRIX [25, 26] is an on-line tool for the annotation of high precision mass spectrometry 

data. Results are displayed on organism specific KEGG pathway maps and any additional genomic or 

transcriptomic information can be added. The tool was developed at the Helmholtz Zentrum 

München in a collaboration between Philippe Schmitt-Kopplin and Karsten Suhre. 

MetFrag [27, 28] is a tool designed for in silico fragmentation data for computer assisted 

identification of metabolite mass spectra using general chemical rules based on standard reactions. 

Its development is concentrated around Leibniz Institute of Plant Biochemistry and Eawag: Swiss 

Federal Institute for Aquatic Science and Technology. It is currently available through two web 

pages: MetFrag Web 2010 and the updated MetFrag Web beta. A search can be performed against 

the listed databases or from a fully customised file, allowing the use of the in silico fragmentation 

function on users own compounds. It provides a score based on the algorithms implemented. 

METLIN [29] is a trademark of the Scripps Research Institute, which develops and applies 

mass spectrometry-based technologies for understanding metabolism. It includes cloud-based data 

processing informatics (XCMS), and nanostructure imaging mass spectrometry (NIMS). With almost 

1,000,000 real compound entries (not from prediction), this is one of the largest databases available. 

Entries in METLIN include metabolites, lipids, steroids, plant and bacterial metabolites, small 

peptides and exogenous drug metabolites and toxicants. IsoMETLIN - A module for isotope-based 

metabolomics is also included.  

MINE [16] taps into data sources such as KEGG, EcoCyc, YMDB and Chemical Damage, 

generating theoretically possible metabolites based on known entities. It does this using an 

algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert 

curated reaction rules based on the Enzyme Commission classification system. The tool comes from 

collaboration between several research centres including Northwestern University, Argonne 

http://www.helmholtz-muenchen.de/en/start/index.html
http://www.helmholtz-muenchen.de/en/start/index.html
http://www.helmholtz-muenchen.de/ioec/biogeomics/person/schmitt-kopplin.php
http://mips.gsf.de/staff/suhre/


National Laboratory, West Coast Metabolomics Center, University of California and Davis and King 

Abdulaziz University 

MycompoundID [30, 31] is a web-based resource developed at the University of Alberta for 

identification of compounds based on chemical properties including accurate mass. Different 

searches are possible including MS, MS2, PEP searches of unlabelled and dimethyl labelled peptides, 

and chemical isotope labelled MS data. Searches are performed across an evidence-based 

metabolome library (EML) which consists of 8,021 known human endogenous metabolites and their 

predicted metabolic products including 375,809 compounds from one metabolic reaction and 

10,583,901 from two reactions. In silico predicted compounds are generated from HMDB entries.  

MzCloud (www.mzcloud.org) is a trademark of HighChem LLC from Slovakia. It is an 

advanced database of high-resolution MSn spectra acquired under different conditions that are 

filtered, recalibrated and arranged into spectral trees. Identification is possible through the 

Precursor Ion Fingerprinting (PIF) tool that can expand on compounds that are already listed in the 

database to new metabolites, identified based on substructure information through the comparison 

of product ion spectra of structurally related compounds. It is also a repository for databases of 

contributors. 

MZedDB [32] is a database for metabolite signal annotation developed by the Aberystwyth 

University High Resolution Mass Spectrometry Laboratory. It is largely derived from established 

repositories (aracyc, dico, HMDB, KEGG, lmdb, mammal, metacyc, plant, ricecyc) and performs 

automated, high throughput analysis of data derived from soft ionisation. It is possible to apply rules 

about adduct formation and neutral losses to prove or discard certain hits. Also, a molecular formula 

generator is available for identifying molecules based on chemical formulae. 

Workbench [33], developed within the Metabolomics Program's Data Repository and 

Coordinating Center (DRCC) and sponsored by the Common Fund of the National Institutes of 

Health, serves as a national and international repository for metabolomics data and metadata, 

providing analysis tools and access to metabolite standards, protocols, tutorials and training 

material. MS search for ID assignment is possible using three types of database: a virtual database of 

lipid classes, a reference set of metabolites (RefMet) and the Metabolomics Workbench Metabolite 

database (combination of compounds from LipidMaps, ChEBI, HMDB, BMRB, PubChem and KEGG). 

The Human Metabolome Gene/Protein Database (MGP) is also available.  

 

FUNCTIONALITY 

  

There are some key considerations which determine the applicability of different data 

sources in the metabolomics workflow. One key consideration is whether or not the resource is 

freely available (which can differ between academia and industry). Table 2 presents information on 

the licence and data usage policies for different databases. Additionally, only some tools offer the 

possibility to save searches or export results that is particularly useful in large-scale or multi-

platform studies with a huge number of masses requiring annotation. A summary of these 

characteristics including the exact information that can be exported using different tools is given in 



table 4S (supplementary information). Some on-line tools provide Application Programming 

Interfaces (APIs). An API is a common language for communication between different computer 

systems. APIs enable search automation and integration into workflows of third-party metabolomics 

tools. Galaxy Workflow4metabolomics is an example of a tool where many other external 

metabolomics tools can be integrated through their APIs [34]. Some databases do not provide APIs 

(Table 2) and others are now out of service (for example METLIN’s API has been out of service since 

2011 due to security issues). APIs may be developed in different paradigms and Representational 

State Transfer (REST) is one example for constructing web services [35, 36]. REST architecture leads 

to a stateless model where resources can be accessed through primitive methods such as GET or 

POST. On-line tools which implement this API usually provide resources independently and are not 

used as methods for performing queries based on experimental masses. APIs can be developed for a 

specific programming language as shown in table 2.  

Another consideration is how user-friendly each resource is. Of course each resource can be 

more or less useful for a particular purpose and the assessment of each can be highly subjective, 

however to provide a guide of the main practical aspects of each data source, table 3 summarises 

design features, asynchronicity (lack of need for a full page reload every time the user performs an 

action), login requirements and ease of familiarisation for each source. 

Due to the range of tools available, global characterisation is challenging without separating 

them by functionality. Functionality will therefore be discussed under the following classifications: i) 

ID assignment, ii) structural assignment and iii) data interpretation. ID assignment involves 

annotation of peaks with known metabolites. Structural assignment includes MSn information used 

for structural confirmation or elucidation by matching structural similarity to known compounds on 

the MS or MSn level. Data interpretation covers any information useful to understand and interpret 

results including pathway analysis, literature search, depiction of metabolites and their classification.  

 

i) ID assignment 

ID assignment relates the exact mass of a compound detected to the exact mass of a known 

metabolite in a database (with a given tolerance suitable for the instrument used in data 

acquisition). It is the only option when there is no more than MS level data available and therefore  

no structural elucidation can be performed [37]. Of the data sources discussed in this review, the 

following are suitable for ID assignment: BioCyc, CeuMM, HMDB, LipidMaps, MassBank, MassTRIX, 

METLIN, MINE, MycompoundID, MZedDB and Metabolomics Workbench. The remainder of this 

section discusses the features that are deemed as relevant for the ID assignment task; all these 

features are summarised in Table 2. 

Tolerance 

In non-targeted metabolomics, identification power is determined by the mass accuracy of 

the data; databases can provide high precision when masses are recorded to four or more decimals. 

Databases offer the possibility to set a tolerance either in absolute (Da or mDa) or relative (ppm) 

terms (table 2). The majority of databases give absolute freedom to establish the tolerance, while 

MassTRIX, LipidMaps and Workbench define set ranges of tolerance. Each measurement, regardless 



of the power of the instrumentation, comes with some inaccuracy. For this reason, it is necessary to 

establish an appropriate tolerance for each dataset. A good way to decide the tolerance is to assess 

the error on an internal standard or well-known compound. Choosing whether the tolerance should 

be absolute or relative is also important. For example, a relative error of 10 ppm on a low molecular 

weight compound such as choline (MW=104.1075Da) would be in the range ±0.0020Da, while for 

PC(21:0/22:6) (MW=875.6404Da), 10 ppm would be in the range ±0.0176Da.  

Search mode 

An important aspect to evaluate databases is whether searches can be performed by batch 

(multiple masses can be submitted simultaneously) or only single searches are permitted. Manually 

querying hits mass by mass can be tedious and repetitive if not impractical. 

Adducts 

During the process of ionisation using ESI, adducts that alter the detected mass of the 

metabolite can be formed [38]. Working in positive mode, the most common adduct formations are: 

[M+H]+, [M+Na]+, [M+NH4]+ and [M+H-H2O]+ and in negative mode: [M-H]-, [M+HCOO]-, [M+Cl]- and 

[M-H-H2O]- [39]. A great deal of time can be saved with the option of searching multiple adducts and 

multimers simultaneously [32]. This is of particular importance for datasets obtained using high 

sensitivity equipment, where different adducts are detected, even those with very low abundance. 

This plays an even more relevant role when multi-signals originating from a single molecule are not 

combined into single values during data reprocessing. On inspection of the data sources, three types 

of search can be distinguished: neutral mass search only, m/z search for a single adduct and m/z for 

multi-adducts. Information on the search mode for each database is presented in table 2 and a 

detailed list of possible adducts is given in table 5S (Supplementary Information). Lipids are best 

identified by their m/z and applying knowledge about possible ionisation and adduct formations in 

order to select adequate hits. By ordering these possible hits by RT, different adducts corresponding 

to the same molecule can easily be identified. Moreover, this method allows the identification of 

mis-assignments considering the chemical properties and elution order. It is important though, when 

selecting possible adducts for ID assignment, only to allow those expected to minimise the risk of 

mis-assignment. Small molecules and acids should be also searched considering possible in-source 

fragmentation with the most common neutral loss of water [40, 41]. Some databases, for example 

MZedDB, offer the option to select multi-adducts following a list of defined rules regarding adduct 

formation [39] (Putative ionisation product tab). These rules were established considering aspects 

such as the number of particular elements or chemical groups in a molecule (-OH, -COOH, -NH2 etc.), 

the number of electrons or charges and information on non-covalently bound products and solvents. 

Although there are no on-line tools that can combine metabolic features split by multi-

adducts, some tools (e.g. METLIN) do offer the option to calculate the mass of different adducts, 

multimers and charges for any given compound. Similar options are also offered in LipidBank, 

LipidMaps and Metabolomics Workbench where m/z value is given for single adduct. In MZedDB, 

even when there is no compound listed for an exact mass in the database, the generated chemical 

formula can be used to predict m/z values for different adducts (adduct manipulation tab).  



The possibility for batch searching and searching considering multi-adducts are of vital 

importance when considering the usefulness of a resource. Figure 4 depicts these functions for the 

different data sources considered in this review.  

Exporting options 

The purpose of ID assignment can be to provide a quick putative hit for detected masses, or 

to generate a longer list of options that can be later used in ID confirmation by MSn analysis. 

Regardless of the purpose, the list of hits should be easily exportable. Most of the databases offer 

the possibility to save search results in a chosen format, e.g. csv, xls or sdf. KomicMarket, LipidBank, 

MassBank, MassTRIX, METLIN, MzCloud, MZedDB and Workbench do not offer automatic data 

download options for MS searches, thus results must be manually copied from the webpage. 

Workbench offers the option to save results but only one compound at a time which can render it 

ineffective for larger datasets.  

Filters 

The number of hits for any given search mass can be quite high. Careful filtration of this list 

to reduce the number of plausible hits is required. This filtration is generally performed manually, 

however CeuMM, CSI:FingerID and MZedDB offer functions to aid this process by restricting hits 

based on chemical alphabet (a list of elements selected based on expectation in given samples) or by 

restricting or including halogens and metals in the hits based on expectation. LipidMaps, BioCyc and 

Workbench offer the alternative option of allowing selection of expected compound classes, (e.g. 

lipids, carnitines, amino acids) and excluding all other hits in order to filter the number of matches. 

LipidMaps, by definition, searches only lipids and related compounds, however it is possible to 

restrict the search to a particular class, category or chemical composition in the ontology section 

(e.g. considering number of carbons, double bonds, rings or particular functional groups). MzCloud 

offers a useful list of filter categories (see list 1 in Supplementary Information) to aid both MS and 

MSn searches. One relevant possibility is to exclude some compounds from it, an option also present 

in METLIN. Since most databases were constructed considering utility in human studies [15], the 

option to restrict certain types of compound can be particularly useful when using databases for 

different (model) organisms with a more controlled metabolome [42]. Such options are possible in 

BioCyc, LipidBank and MassTRIX, where the former two use different data sources based on the 

restrictions and the latter highlights more plausible hits by organism selection in the output.  

In silico compounds 

Since ID assignment is restricted to available database entries, many experimental masses 

can be left unannotated after a search. As a solution to this, some databases now include the option 

to predict compounds in silico with the aid of chemical rules or restrictions. Expansion of the known 

metabolome can be performed using as an example the BNICE framework (Computational 

framework for predictive biodegradation) with hand-curated reaction rules generalised from 

chemical theory and literature [16]. LipidMaps and Workbench include a virtual database of lipids 

created by combining head groups with acyl/alkyl chains, including glycerophospholipids, 

glycerolipids, sphingolipids, acyl carnitines, acyl CoAs, cholesteryl esters and wax esters. Also a list of 

virtual fatty acids (OH:hydroxyl, Ke:keto(oxo), Ep:epoxy, cyclo:ring) and cardiolipins is available. Two 



mediators: MINE and MycompoundID are open for all types of metabolites, not only lipids, and 

consider some biotransformation reactions that are known to commonly occur. MycompoundID 

takes the approach of searching one or two chemical transformations over compounds from HMDB. 

For example alanine - methylalanine (positively changed in mass), or sphinganine and 

dehydrosphinganine (negatively changed in mass). The list of possible biotransformations includes 

76 positions and is based on literature revision [31]. A similar function is present in MINE, however 

in contrast to MycompoundID, the search cannot be restricted to just real or predicted compounds 

and therefore the list of hits is longer and mixed. CeuMM searches the MINE database, restricting 

the hits to generated compounds only. This is based on API services provided by MINE, but not 

accessible from MINE’s on-line service itself. 

 

    ii) Structural assignment 

While for some purposes putative identification is sufficient, the majority of researchers 

require a more defined approach to metabolite identification, especially where potential biomarkers 

are being proposed. MSn data is required for this purpose to confirm hits by comparison of a 

compounds fragmentation pattern relative to MSn (usually MS2) spectra in databases, or better still 

to the fragmentation pattern of the authentic standard analysed under the same experimental 

conditions. Amongst the databases discussed in this review, ten offer functions related to the use of 

MS2 spectra: CSI:FingerID, HMDB, KomicMarket, LipidMaps, MAGMa, MassBank, MetFrag, METLIN, 

MycompoundID and MzCloud.  

MS2 

When comparing experimental fragmentation to spectral resources in databases, it is vital to 

consider the instrumentation and parameters used in data acquisition, since fragmentation can be 

highly dependent on both these aspects. For this reason, HMDB, LipidMaps, MassBank and MzCloud 

are particularly useful given the amount of information available with spectra. The type of mass 

analyser, tolerance for precursor and product ions, collision energy and ion mode are particularly 

relevant. A list of experimental m/z values (product ions with or without precursor) and 

corresponding abundances are used to search and compare against relevant spectra in the 

databases. Depending on the database, the upload of this information can vary, but once uploaded 

the matching process is similar. Careful experimental design considering the options available in 

databases can significantly improve the efficiency of metabolite annotation using fragmentation 

comparison. For example, data are usually acquired using fixed collision energies of 10, 20 and 40 

eV; therefore it is sensible to collect data on an unknown compound using one of these thresholds. 

When data are acquired using a slope for collision energy determination (particularly relevant for 

very fragile compounds) several different spectra available in the databases should be checked to 

improve the likelihood of a good match.  

LipidMaps and KomicMarket are the only two databases covered that do not contain the 

option to search against MS2 spectra. Furthermore, the MS2 spectra that are present in these 

databases are often limited by single ion mode or collision energy. However, these databases do 



offer alternative useful information. LipidMaps has valuable information on possible ionisation and 

fragmentation, while KomicMarket contains a huge number of unannotated compounds with 

information on extraction, measurement and detection including example MS2 spectra for many 

entries. HMDB and METLIN in contrast to other MS2 databases allow determination of collision 

energy in the search parameters. Of the databases with MS2 search-match functionality, all except 

HMDB, MAGMa, MassBank and MzCloud, offer the possibility to determine adducts. Most databases 

use mirror graphs (HMDB, METLIN, MassBank) to display experimental and database spectral 

matches, or present the query and library spectra together with the difference spectrum showing 

exactly which peaks do not match (MzCloud). MassBank offers the very useful option of visualising 

and comparing several spectra at once, with options to change various display settings.  

Another way to evaluate the MS2 match efficiency is using a score (particularly advantageous 

when considering multiple hits). HMDB, MAGMa, MassBank, MetFrag, METLIN, MycompoundID and 

MzCloud all generate scores for this purpose. HMDB presents three scores: Fit, RFit and purity [43]. 

Fit is calculated comparing the library spectrum to the acquired one and RFit is the opposite. 

MycompoundID generates scores for fit in explaining product ions. MzCloud generates three scores 

that correspond to different algorithms useful for structure explanation (HighChem HighRes, 

Opt.Data Product and NIST(modified)).  

MSn 

MSn (n>2) data can be particularly useful to determine the exact identification of a 

metabolite that has strong structural similarities with other compounds, often encompassing vastly 

different biological function. Differences can be as small as a position of a double bond or functional 

group. Specific analysers are required to generate such data (ion trap, Fourier transform ion 

cyclotron resonance or orbitrap) and data must later be organised into structural trees illustrating 

the fragmentation patterns. CSI:FingerID, MassBank MzCloud and MAGMa contain the relevant 

information to identify molecules in this way. MzCloud supplies a wide variety of filters and options 

for MSn searching. Identification can be performed in compound mode through tree search or in 

substructure mode for subtree search. In MzCloud, spectral comparison at any MS level can be 

performed on filtered or recalibrated spectra, where results can be additionally filtered based on 

compound or spectrum (ionisation mode, mass analyser, ion activation, collision energy etc.). The 

possibility to assign substructures or explain neutral losses is most useful, making MzCloud highly 

valuable for use with MSn data. CSI:FingerID and MAGMa follow a different strategy for 

identification. Fragmentation trees are computed and used to predict the molecular structure 

fingerprint using a machine learning approach, which can later be searched against structures in 

PubChem (CSI:FingerID) and/or KEGG or HMDB (MAGMa).  

Predicted MS2 

Although new entries are continually made to MS2 spectral libraries, the number of available 

standards is restricted and therefore the databases will never be complete. To overcome this, 

fragmentation prediction can be especially useful. Predicted MS2 spectra are available in HMDB, 

MetFrag, METLIN, MycompoundID and MzCloud. Differences in the algorithms used in each do lead 

to (often relevant) differences in the result and therefore careful analysis is required while using 



these functions. HMDB and METLIN predict spectra using Competitive Fragmentation Modelling for 

Metabolites Identification (CFM-ID), a method that learns and generates models of collision-induced 

dissociation (CID) fragmentation from data (cfmid.wishartlab.com/). In single energy CFM (SE-CFM) 

[44], ESI- MS2 fragmentation is modelled as a stochastic, homogeneous, Markov process involving 

state transitions between charged fragments. MetFrag obtains a candidate list from compound 

libraries based on the precursor mass, subsequently ranked by the agreement between measured 

and in silico predicted fragments [28]. It is a combinatorial fragmentor using the bond disconnection, 

top-down approach, starting with an entire molecular graph and removing each bond successively. 

MzCloud, in contrast to other databases, uses Mass Frontier (Thermo Scientific™) for the prediction 

of fragments, applying general fragmentation rules for more than a hundred thousand mechanisms, 

published in peer-reviewed journals.  

Amongst other databases offering spectral prediction, CSI:FingerID, MAGMa and MetFrag do 

not contain real spectra. In MetFrag, searches are performed in two steps: first a database search is 

employed to find possible candidates corresponding to a particular parent ion and second product 

ions are explained. MetFusion (msbi.ipb-halle.de/MetFusion/), an extension of MetFrag, combines 

information from GPD, MassBank or METLIN with candidates generated in MetFrag [11]. 

CSI:FingerID combines fragmentation tree computation and machine learning to increase the 

number of MS2 spectra available [14]. Support vector machines are employed for directly predicting 

a chemical fingerprint that is used to search for the metabolite with the closest match. MAGMa 

annotates hierarchical spectral trees obtained from multistage MSn experiments. It performs queries 

using a selected source to explain fragments and score and rank candidate substructure matches.  

Structure search 

Structure searches using MS2 data can be used in three modes: similarity, substructure and 

exact, whereby parts of the structure can be matched to find candidates with similar structures or 

candidates containing the observed structures as a substructure. Structure search options are 

available in HMDB, LipidMaps, MzCloud, MassBank, BioCyc and MINE (details given in table 4). The 

method for structure search is similar for most, except BioCyc where queries are performed through 

four different input options (chemical formula, SMILE InChI key or InChI string) rather than through 

uploading or drawing the structure. HMBD and MINE database compute a similarity threshold which 

can be used to filter out non-relevant candidates. It is also possible in HMDB to make a search from a 

pre-selected compound. In this way structures need not be drawn, instead particular metabolites 

can be selected and their structures used in the search. MzCloud offers the widest selection of 

filters, where a search can be restricted to certain compounds or precursors and several aspects of 

the structure can be ignored including charges, radicals, adducts and isotopes.  

Additional functions 

METLIN contains a very useful function for identification of unknowns: it allows searching by 

a list of fragments or neutral losses ignoring the precursor ion. This is particularly applicable when in-

source fragmentation is high and the precursor ion is not present in the dataset. A similar 

assessment of fragments and neutral losses can be made in MassBank through the option 

“prediction” when working in the Japanese domain, although the precursor ion must also be 



present. MyCopmoundID contains a useful feature called “deisitope”. This can be used to perform a 

search using only the first isotope, excluding all other natural isotopic peaks to avoid false matching. 

Moreover, this data source has the option to restrict candidate matches by filters including min/max 

precursor mass, intensity or score of fit. Useful tools are available within some of the data sources to 

explain unidentified fragments by predicting formulae from m/z. MassBank performs this based on 

data from Keio and Riken ESI-QTOF-MS2, generating a list of possible formulae from the database 

given a suitable tolerance, that can be restricted to particular elements.  

 

    iii) Data interpretation 

Metabolite annotation, performed on either MS or MS2 levels can lead to a long list of 

possible candidates. If there is no possibility to obtain additional information about the structure, 

other mechanisms must be employed to exclude certain hits. Physical and chemical properties, 

origin, or biological role can be useful considerations for this. Some data sources offer clear 

advantages over others to assist the user in this regard.  

Pathways 

As already stated, pathway-centric databases are excluded from this review, however some 

of the databases considered do contain pathway related functions worth mentioning. Pathway 

information is available in BioCyc, CeuMM, HMDB, MassTRIX, MINE and Workbench. HMDB pathway 

information is based on its sister platform Small Molecule Pathway Database SMPDB (smpdb.ca/). 

All SMPDB pathways include information on the relevant organs, subcellular compartments, protein 

complex cofactors, protein complex locations, metabolite locations, chemical structures and protein 

complex quaternary structures, which might be particularly important for multi-omics studies. 

BioCyc also uses its own pathways, which are built and curated based on evidence from the 

literature. CeuMM, MassTRIX, MINE and Workbench use KEGG (http://www.genome.jp/kegg/) 

pathway information. In addition to KEGG, workbench uses HMDB/SMPDB information. CeuMM has 

the option to upload a list of metabolite KEGG identifiers and identify involved pathways ordered by 

number of hits.  

Description and classification 

HMDB provides a great deal of information about each metabolite entry. This information is 

stored in a “metabocard” which details the taxonomy, ontology, physical, chemical and biological 

properties, spectra, expected physiological concentrations, literature references and appropriate 

links. LipidBank also contains very useful information for data interpretation, including genetic, 

bioactivity and metabolic data in addition to literature references and Workbench provides 

literature references too. Table 6S (Supplementary information) details the information provided in 

each data source.   

Classification approaches can be used to help filter or interpret hits given in databases using 

a forest or tree approach, for which taxonomy and ontology can be useful [45]. This data is available 

in BioCyc and HMDB for all metabolites and in LipidMaps and Workbench for lipids only, calling on 

LipidMaps whose nomenclature is the recognised standard for lipid classification. BioCyc includes 



additional useful information including metabolic reactions in which metabolites are involved or 

information on their presence or abundance in culture medium, for example. This is particularly 

useful when considering the plausibility of a metabolite as a statistically significant feature of a study 

and can also be useful in the experimental design stage to choose certain experimental conditions if 

there are particular metabolites of interest that may be affected by that. Similarly, MINE provides 

information about enzymes and products of reactions in which metabolites are involved.  

Workbench contains information about previous projects and research where particular 

metabolites were already found. The highly detailed data includes a further description of project, 

samples used, conditions applied and treatments and analytical conditions employed. Even 

measured abundances for particular masses across all the samples are stated. 

 

CONCLUSIONS 

 

Data analysis is a critical, but often an under-considered aspect of metabolomics research. In 

general, close to 50% of features detected in a non-targeted metabolomics study are unidentified 

compounds, leading to an important loss of information. Moreover, if features are mis-identified, 

data is wrongly interpreted and false conclusions are drawn onto which new experiments can be 

proposed. It is therefore vital to get this step right and be aware of the advantages and limitations of 

the tools at our disposal. As discussed, there is a range of different open access resources, with 

different characteristics that have been critically reviewed here. On-line tools will benefit from the 

input of a broad spectrum of scientists interested in metabolomics. However, the community as a 

whole should contribute to establish rules about data collected using different extraction protocols 

and analytical methods.  
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FIGURES 

Figure 1. Different aspects of metabolite identification in the metabolomics workflow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 2. Number of compounds available in different data sources. Those containing only previously 
detected compounds are depicted in blue and those that include in silico generated compounds are 
depicted in red. CeuMM is the only mediator which gives information on the total number of 
compounds and is therefore the only mediator represented here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3. Number of citations of each data source by name in google scholar (as of 15th January 
2017). 
 

 
 

 

 

 

 

 

 

 



 

Figure 4. Classification of on-line tools for performing MS searches based on their features. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



TABLES 

Table 1. On-line tool characteristics. 

On-line tool Functionalities Strong points Weak points 

BioCyc - ID assignment 
- Structure search 
- Data interpretationa 

- Organism selection 
- Information about possible reactions 
of compound 
- Literature references 
- Ontology search 
- Multi-conditions search 
- Customisable results 

- Limit for batch searches based on URL length 
- Only neutral mass search 
- Subscription model (not freely available) 
- Limited information in exported file by defaultb 

CeuMM - ID assignment 
 

- Unlimited search in batch mode 
- Multi-adduct 
- Chemical alphabet  
- Possibility to choose data source 

- No structure available 
- No API 

CSI:FingerId - MSn spectral search 
(fragmentation tree based on 
molecular formula prediction) 

- Chemical alphabet - Fixed relative error 
- Limited number of adducts 
- Positive ionisation mode only 
- No mass of compounds in results 
- No exporting option 
- No API 

HMDB - ID assignment 
- MS2 search 
- Structure search 
- Data interpretationc 

- Batch mode (700 masses at once) 
- Comprehensive characterisation of 
metabolites 
- High quality real and predicted spectra 
- Multi-adduct 
- Multi-conditions search 
- Spectra comparison 
- Very user-friendly 

- No compound name in exported results 
- No exporting option for MS2 search 
- No API 



KomicMarket - ID assignment 
 

- Easy comparison with other studies 
- Filter by species (only 3) 
- Filter by analytical method 
- Filter by sample type 
- RT information for some compounds 

- Single search 
- Single adduct 
- Limited number of adducts 
- No name or formula assigned for most compounds 
- No exporting option 
- No API 

LipidBank - ID assignment 
- Data interpretationc 

- Hierarchical organisation 
- Biological activity, physical properties, 
spectral data, organism and references 
available 

- Single search 
- No monoisotopic mass 
- Query only from average neutral mass 
- Out-of-date front-end technology and design 
- No exporting option 
- No API 

LipidMaps - ID assignment 
- Structural assignment 
- Data interpretationc 

- Hierarchical organisation 
- Physicochemical properties, spectral 
data and references available 
- Ontology search 
- MS2 library for standards 

- Single search 
- Neutral mass 
- Fixed absolute error 
- MS2 spectra only for single collision energy 

MAGMa - MSn spectral search 
(fragmentation tree based on 
substructure prediction) 

- Substructure search 
- Tolerance in Da + ppm 
 

- No adduct search 
- No API 

MassBank - ID assignment 
- MSn search 
- Structural assignment 

- Filter by analytical method 
- Molecular formula generator 
- Repository for contributors  
- Package view for multi-hits 
comparison in MSn search 

- Batch mode only under request for MS1 
- Neutral mass 
- No unification about experimental conditions 
- No exporting option 
- No API 

MassTRIX - ID assignment 
- Data interpretationd 

- Unlimited search in batch mode 
- Organism selection 

- Fixed relative or absolute error 
- Limited list of adducts 



- No direct data query, queue jobs system 
- No exporting option 
- No API 

MetFrag - MSn in silico explanation (based 
on structure fragmentation) 
 

- Well-structured downloaded files for 
explanation of fragments 

- Single adduct 

METLIN - ID assignment 
- MS2 search 
- ID assignment for isotope 
labelling  
- Fragment search 
- Neutral loss search 

- Batch mode (500 masses at once) 
- Multi-adduct 
- Option to include/remove drugs, 
peptides and toxicants 
- Information on where compounds can 
be purchased as standards 
- Spectra comparison 

- Confusing MS2 spectra (differences in 
real/predicted and/or energy collision) 
- No possibility to exclude predicted spectra for MS2 
search 
- No exporting option 
- No API 
- Problems with access (often banned) 

MINE - ID assignment 
- Structural assignment 
- Data interpretatione 

- Unlimited search in batch mode 
- Multi-adduct 
- Multi-conditions search 
- Information about possible reactions 
of compounds 
- Possibility to choose data source 

- No clear indication and distinction between real 
and predicted compounds 
- No possibility to limit search to only real or 
predicted results in the on-line version 
 

MyCompoundID - ID assignment 
- MS2 search 
- ID assignment for isotope 
labelling  
 

- Unlimited search in batch mode for 
MS1 
- Batch search for MS2 search (100 
spectra at once) 
- Detailed information about MS2 peaks 
explained from library 
- Deisotope function for MS2  

- Single adduct 
- Limited list of adducts 
- Exporting option only available for one mass at a 
time 
- No API 

MzCloud - ID assignment - Compound filter (See list 1 in - No adduct search (Only [M+H]+, [M-H]-) 



- MSn search 
- Structural assignment 
- Fragment search 
- Data interpretationa 

Supplementary Information) 
- Contributor repository 

- No exporting option 
- No API 
- Built in Microsoft Silverlight (technology 
deprecated by Microsoft) 

MZedDB - ID assignment 
 

- Multi-adduct 
- Chemical alphabet  
- Molecular formula generator 
- Possibility to choose data source 
- Adduct/neutral loss rules 

- Single search 
- No exporting option 
- No API 

WorkBench - ID assignment 
- Structural assignment - Data 
interpretationa 

- Unlimited search in batch mode  
- Ontology search 
- Repository for contributors 
- Possibility to choose data sourcef 

- Single adduct 
- Only absolute error 
- No exporting option 
 

a) organism selection, information about reactions and pathways information  
b) only information about mass, compound name and chemical formula, without any link for further researching 
c) detailed description and references 
d) pathway analysis 
e) information about possible reactions 
f) three options: virtual database of lipids, a reference set of metabolites and Metabolomics Workbench Metabolite Database (database collected from 
multiple repositories: LIPID MAPS, ChEBI, HMDB, BMRB, PubChem, and KEGG) 



Table 2. Features available in each database. 

Feature Description Databases  

Source Database BC, HM, KM, LB, LM, MBa, ME, MZC, WB 

Mediator CMM, CF, MG, MT, MF, MI, MY, MZD, WB 

MSn MS2 CF, HM, KM, LM, MG, MB, MF, ME, MY, MZC 

MSn CF, MG, MB, MZC, 

Real spectra HM, KM, LM, MB, ME, MY, MZC 

Predicted spectra CF, HM, MG, MF,ME, MY, MZC 

Search mode 
for MS 

Single KM, LB, LM, MG, MBb, MF, MZC, MZD 

Batch BCc, CMM, HM (700), MT, ME (500), MI, MY, WB 

Search mode 
for MS2 

Single CF, HM, MG, MF, ME 

Batch MB, MY (100), MZC 

Adducts* Single KM, MY, WB 

Multi CMM, CF, HM, MT, MF, ME, MI, MZD 

Neutral BC, LBd, LM, MG, MB, MZC 

Last update* [0-1 years] BC, CMM, CF, HM, LM, MG, MB, MF, ME, MI, MZC, 
WB 

[1-3 years] MY 

[3-more years] KM, LB, MT, MZD 

Licensing 

Open CMM, LM (BSD), MG (Apache), MF (GNU), MI (CC 
4.0) 

Proprietary BC, KM, LB, MT, ME, MZC, MZD, WB 

Not Specified/Depends on 
contributor 
 

CF, HM, MB, MY, MZ 

Usage of data 

Free (Non-commercial) CMM, CF, HM, KM, LM, MG, MF, ME, MI, MZC, 
MZD, WB 

Free (All purposes)  MG 

Fee BC (except EcoCyc and MetaCyc) 

Not Specified/Depends on 
contributor 

LB, MB, MY 

Export formats* csv, xls, tsv BC, CMM, HM, LM, MG, MF, MI, MYe 



sdf LM, MG, MF, 

html(only) CF, KM, LB, MB, MT, ME, MZC, MZD, WB 

API REST BC, LM, WB 

WebService BC, KM, MI 

Other programming 
languages 

BC (Python, Perl, Java, and Lisp), LM (PHP), MF (R), 
MI (Python, JavaScript, Perl) 

None CMM, CF, HM, LB, MG, MB, MT, ME, MY, MZC, 
MZD 

Search Options Mass BC, CMM, CF, HM, KM, LBd, LM, MG, MB, MT, MF, 
ME, MI, MY, MZC, MZD, WB 

Formula BC, CF, HM, KM, LB, LM, MG, MB, MF, ME, MI, 
MZD, WB 

Name BC, HM, KM, LB, LM, MB, ME, MI, MZC, MZD, WB 

ID BC, HM, KM, LB, LM, MF, ME, MI 

Ontology BC, LM, WB 

Substructure/Sub-formula BC, HM, LM, MB, MI, MzC loud 

Origin of compoundf BC, LB, MT 

Chemical Alphabet CMM, CF, MZD 

Nature of compoundg HMh, MEi 

Join several conditions BC, CMM, CF, HMh, LB, LM, MB, MT, MF, MEh, MIh, 
MZD, WB 

Tolerance ppm BC, CMM, CF (2.5-15), MF, ME, MZD 

Da LM (0.01-100), MB, WB (0.0005-1) 

Both HM, KM (0-1Da, 0-100ppm), MG, MT (0.001-1Da, 
0.1-3ppm), MI (0-15mDa,0-15ppm), MY, MZC 

* Details available in Supplementary Information 
(Table S1, S2 and S3) 
a) Data repository. Data comes from 
contributors 
b) Batch mode available only by mail request  
c) Number of input masses limited by URL length 
d) Only average mass 
e) Peak by peak 
f) Distinguished by organism e.g. human, mice, 
E.Coli etc. 

BC = BioCyc Database Collection (BioCyc) 
CMM = Ceu Mass Mediator 
CF = Compound Structure Identification: FingerID 
(CSI:FingerID) 
HM = Human Metabolome Database (HMDB) 
KM = Kazusa Omics Data Market (KomicMarket) 
LB = LipidBank 
LM = LIPID Metabolites And Pathways Strategy 
(LipidMaps) 
MG = MAGMa 



g) The type of compound e.g. toxins, drug, 
exogenous etc. 
h) Only available for single search 
i) Distinction for drugs, peptides and toxicant 

MB = MassBank 
MT = MassTRIX 
MF = MetFrag 
ME = METLIN 
MI = Metabolic In Silico Network Expansion 
Databases (MINE) 
MY = MycompoundID 
MZC = MzCloud 
MZD = MZedDB 
WB = UCSD Metabolomics Workbench 
(Workbench) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. User-friendliness of the tools. 

 Design Asynchronous 
techniques 

Login 
mandatory 

Easiness for 
familiarisation 

BioCyc 
    

CeuMM 
    

CSI:FingerID 
    

HMDB 
    

KomicMarket 
    

LipidBank 
    

LipidMaps 
    

MAGMa 
    

MassBank 
    

MassTRIX 
    

MetFrag 
    

METLIN 
 

 

a  

MINE 
    

MycompoundID 
    

MzCloud 
    

MZedDB 
    

Workbench 
    

a) Locking users out when multiple consecutive searches are performed 

 

 

 

 

 

 



 

Table 4. Features for structure search 

Data source Software Search mode Filter 

BioCyc - 
 

substructure exact 
 

HMDB 
MarvinJS, 
ChemAxon similarity substructure exact 

- similarity threshold 
- molecular weight (range) 

LipidMaps GGA Ketcher 
 

substructure exact 

- all 
- curated records only 
- computationally generated 
records only 

MassBank not stated 
 

substructure 
 

- search in MassBank  
- search in KNApSAck 

MINE 
MarvinJS, 
ChemAxon similarity substructure exact - similarity threshold 

MzCloud not stated 
 

substructure identity 

- filter compounds 
- search in compound  
- search in precursor 
- ignore charges 
- ignore radicals 
- ignore adducts 
- ignore isotopes 

 

 


