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Abstract 

 

Intramolecular interaction of ketone triplet excited states with nucleophilic substituents is 

investigated by studying the electronic properties of phenalenone and a range of phenalenones 

functionalized in position 9 as a model system. In accordance with literature, a (π,π*) triplet excited 

state is predicted for phenalenone. Similarly, 9-fluoro-, 9-chloro- and 9-methoxyphenalenone are 

calculated to have (π,π*) lowest triplet excited states, whereas the lowest triplet states of 9-bromo-, 

9-iodo, 9-methylthio, and 9-dimethylaminophenalenone are predicted to have (σ∗,π*) character. As 

a result of the interaction between halogen and oxygen lone pairs increasing with increasing orbital 

size, the antibonding linear combination of substituent lone pairs with oxygen lone pairs sufficiently 

rises in energy to change the character of the lowest triplet excited state of the 9-substituted 

phenalenones from (π,π*) to (σ∗,π*). These unusual triplet excited states or exciplexes should 

essentially behave like (n,π*) triplets states, but will differ from pure (n,π*) states by showing 

significant spin densities at the substituent heteroatoms, predicted to reach values of 0.25 for 9-

iodophenalenone, and ca. 0.5 for 9-dimethylaminophenalenone. Vertical T1-T2 excitation energies 

calculated indicate that the stabilization of the (σ∗,π*) relative to the (π,π*) state can reach 1 eV. 

Preliminary calculations on the triplet excited states of 2-iodobenzophenone, 4-iodo-2-butanone, 

and iodoacetone indicate that intramolecular triplet exciplex formation should be a general 

phenomenon, as long as the ring being formed is at least a five-membered ring. 

Introduction 

Triplet excited states come in a variety of types, each showing a different reactivity. Annelated 

benzenoid π-systems like naphthalene and anthracene or electron-rich ketones have triplet excited 

states, in which an electron from a bonding π-type orbital has been promoted to an antibonding π*-

type orbital. Such (π,π*)-triplet excited states typically do not show a pronounced free-radical type 

reactivity, but upon reaction with triplet molecular oxygen do form singlet oxygen efficiently.[1] If 

typical ketones such as benzophenone or acetone are excited, on the other hand, the lowest triplet 

excited state formed with high quantum yield is of (n,π*) type. Here, an electron is excited from a 

non-bonding orbital at the carbonyl oxygen atom (a lone pair), to a π* orbital. This type of electronic 

excitation creates significant spin density at the carbonyl oxygen atom, which consequently behaves 

like a highly-reactive oxygen-centered radical, and is efficiently quenched by hydrogen-donor 

molecules like benzhydrol, 1,4-cyclohexadiene, or tributylstannane.[2,3] If no sufficiently low-lying 

empty π*-orbitals are available to accept an electron, electrons can also be promoted to antibonding 

σ*-type orbitals. Thus, (π,σ*) excited states are observed in the case of certain heteroaromatic 

compounds.[4] Two adjacent atoms carrying lone pairs, such as found in disulfides, peroxides, 
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diselenides, or simple dihalogen molecules, have a doubly-occupied π*-type orbital. The lowest 

triplet excited state of such compounds is of (π*,σ*) type, as was found experimentally[5] and later 

computationally[6] for lipoic acid. The lowest triplet excited state of hydrogen peroxide, molecular 

chlorine[7] or fluorine, analogously are calculated to be of (π*,σ*) type.[8] Hydrazine, finally, has a 

high-energy Rydberg-type triplet excited state, where an electron is promoted from the doubly-

occupied antibonding π* orbital of the N-N bond to higher (2s, 3s, 4s) s-type atomic orbitals of the 

four hydrogen atoms.[8]   

Quenching of triplet excited states can occur via a variety of mechanisms. Apart from triplet energy 

transfer to typical triplet quenchers like 1,3-dienes or molecular oxygen, quenching reactions may 

involve hydrogen abstraction, or reaction with nucleophiles. The latter reaction has been known to 

result in the formation of exciplexes,[9-11] which may be associated with full or partial electron 

transfer,[11] and it may be followed by subsequent hydrogen atom or proton transfer.[9] 

Phenalenone 1 is an aromatic ketone that for a long time has served as a workhorse compound in 

studies on ketone photophysics and on singlet oxygen chemistry. Its lowest triplet excited state is of 

(π,π*) type, and it reacts efficiently with triplet molecular oxygen, yielding singlet oxygen O2 (
1∆g) in 

a quantum yield of Φ = 1.0.[12,13] If it is phenyl-substituted in 9-position, photochemical addition of 

the carbonyl oxygen atom on the ortho-position of the 9-phenyl substituent occurs, resulting in the 

formation of a strongly reducing quinoid intermediate that is oxidised to a phenalenyl-type cation or 

radical with great ease.[14-17] Aiming at a more variable and convenient access to 9-substituted 

phenalenones, we recently prepared 9-trifluoromethanesulfonyloxy- and 9-iodophenalenone.[18] I 

now report on quantum chemical calculations on the lowest triplet excited state of 9-

iodophenalenone, as well as of a series of other 9-substituted phenalenones, in a study aimed at 

elucidating the intramolecular interaction of ketone triplet excited states with nucleophiles.  

Computational methods: calculations were performed employing the Gaussian09[19] suite of 

programs. Geometry optimizations were done using the M05-2X[20] and M06[21] functionals. The 

influence of solvation by a polar-aprotic solvent (DMF) was accounted for using a polarizable 

continuum model (scrf=pcm).[22,23] All stationary points optimized were fully characterized via a 

vibrational analysis. As basis set, the Stuttgart-Dresden (SDD) basis set was used throughout.[24,25] In 

addition, a number of calculations were performed using Dunning’s cc-pVTZ[26-28] basis set.  
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Results and Discussion  

The singlet ground states of phenalenone 1 and the 9-substituted phenalenones were optimized at 

the M05-2X/SDD, M06/SDD, M06/SDD(pcm,DMF) and M06/cc-pVTZ (except X = I) levels of theory. 

Table 1 lists relevant geometric parameters of optimized ground-state and lowest triplet excited 

state structures of 1-8. 

 

 

Scheme 1: Numbering of atoms in phenalenones 

Table 1: Selected geometric parameters of ground-states (normal font) and lowest triplet states (in 

italics) of phenalenone and 9-substituted phenalenones 

 X Method R(O-X), S0 

R(O-X), T1 
A(C9’-C1-O), S0 

A(C9’-C1-O), T1 

A(C9’-C9-X), S0 

A(C9’-C9-X), T1 
R(C1-O), S0 

R(C1-O), T1 
R(C9-X), S0 

R(C9-X), T1 
1 H M05-2X/ 

SDD 
2.502 
2.503 

121.9 
120.4 

118.3 
118.3 

1.256 
1.329 

1.083 
1.081 

1 H M06/SDD 2.505 
2.503 

122.1 
120.8 

118.0 
118.0 

1.258 
1.307 

1.087 
1.085 

1 H M06/SDD 
(pcm, DMF) 

2.526 
2.529 

122.0 
121.0 

118.6 
118.5 

1.268 
1.305 

1.086 
1.085 

1 H M06/ 
cc-pVTZ 

2.485 
2.483 

122.2 
121.3 

118.0 
117.9 

1.216 
1.246 

1.083 
1.081 

2 F M05-2X/ 
SDD 

2.705 
2.702 

123.5 
122.6 

121.3 
120.2 

1.253 
1.336 

1.378 
1.384 

2 F M06/SDD 2.710 
2.709 

123.5 
122.9 

121.3 
120.3 

1.254 
1.307 

1.370 
1.376 

2 F M06/SDD 
(pcm, DMF) 

2.710 
2.717 

123.4 
123.0 

120.8 
120.0 

1.265 
1.305 

1.380 
1.388 

2 F M06/ 
cc-pVTZ 

2.669 
2.666 

123.4 
123.1 

121.2 
120.1 

1.214 
1.244 

1.315 
1.320 

3 Cl M05-2X/ 
SDD 

2.881 
2.903 

123.6 
123.0 

124.0 
123.4 

1.253 
1.332 

1.794 
1.800 

3 Cl M06/SDD 2.889 
2.909 

123.7 
123.4 

123.6 
123.2 

1.254 
1.306 

1.795 
1.800 

3 Cl M06/SDD  
(pcm, DMF) 

2.904 
2.927 

123.6 
123.5 

123.5 
123.1 

1.264 
1.303 

1.806 
1.813 

3 Cl M06/ 
cc-pVTZ 

2.840 
2.863 

123.6 
123.5 

123.6 
123.2 

1.214 
1.244 

1.728 
1.732 

4 Br M05-2X/ 2.941 123.4 124.7 1.253 1.932  
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SDD 2.730 122.1 120.0 1.377 1.936 

4 Br M06/SDD 2.949 
2.665 

123.5 
121.7 

124.5 
118.9 

1.255 
1.360 

1.930  
1.939 

4 Br M06/SDD 
(pcm, DMF) 

2.980 
3.001 

123.5 
123.4 

124.7 
124.3 

1.265 
1.303 

1.940 
1.947 

4 Br M06/ 
cc-pVTZ 

2.915 
2.611 

123.4 
121.8 

124.6 
118.7 

1.214 
1.307 

1.887 
1.887 

5 I M05-2X/ 
SDD 

3.031 
2.680 

123.1 
121.9 

125.8 
118.5 

1.254 
1.371 

2.127 
2.121 

5 I M06/SDD 3.029 
2.677 

123.2 
121.9 

125.5 
118.3 

1.256 
1.357 

2.127 
2.124 

5 I M06/SDD 
(pcm, DMF) 

3.055 
2.657 

123.0 
121.7 

125.7 
118.1 

1.265 
1.360 

2.135 
2.124 

6 MeO M05-2X/ 
SDD 

2.658 
2.666 

124.8 
123.9 

118.6 
117.1 

1.256 
1.339 

1.368 
1.374 

6 MeO M06/SDD 2.651 
2.662 

124.7 
124.0 

118.1 
116.7 

1.257 
1.309 

1.362 
1.368 

6 MeO M06/SDD 
(pcm, DMF) 

2.682 
2.691 

124.7 
124.2 

118.5 
117.4 

1.270 
1.306 

1.362 
1.374 

6 MeO M06/ 
cc-pVTZ 

2.616 
2.620 

124.2 
123.8 

118.3 
116.9 

1.217 
1.245 

1.330 
1.335 

7 MeS M05-2X/ 
SDD 

2.678 
2.388 

121.9 
119.8 

121.1 
116.5 

1.261 
1.355 

1.810 
1.817 

7 MeS M06/SDD 2.668 
2.501 

122.0 
120.7 

120.6 
118.0 

1.264 
1.349 

1.813 
1.822 

7 MeS M06/SDD 
(pcm, DMF) 

2.708 
2.488 

122.1 
120.5 

121.0 
117.8 

1.273 
1.351 

1.815 
1.822 

7 MeS M06/ 
cc-pVTZ 

2.619 
2.392 

121.9 
120.3 

120.4 
117.1 

1.224 
1.295 

1.756 
1.759 

8 Me2N M05-2X/ 
SDD 

2.897 
2.170 

123.9 
117.8 

123.9 
114.5 

1.268 
1.345 

1.369 
1.439 

8 Me2N M06/SDD 2.919 
2.276 

124.0 
118.9 

123.9 
116.1 

1.268 
1.337 

1.374 
1.433 

8 Me2N M06/SDD 
(pcm, DMF) 

2.945 
2.310 

124.0 
119.0 

123.7 
116.9 

1.279 
1.331 

1.368 
1.434 

8 Me2N M06/ 
cc-pVTZ 

2.861 
2.267 

123.8 
119.3 

123.6 
116.1 

1.225 
1.288 

1.360 
1.417 

 

9-Halophenalenones (X = F, Cl, Br, I): In case of the singlet ground-state 9-halogen-substituted 

derivatives, repulsion between the halogen and the carbonyl group invariably resulted in an increase 

of the X-O distance via widening of the OCC and XCC angles, relative to parent phenalenone 1. In the 

lowest triplet excited state, the phenalenones investigated show two different types of behaviour. In 

case of 9-fluorophenalenone 2, and 9-chlorophenalenone 3, the oxygen – X distances remain 

essentially unchanged upon triplet excitation, whereas all other derivatives calculated show a 

significant shortening of the oxygen – X distance in the triplet excited state. 9-Bromophenalenone 4 

is calculated to be a special case in that upon triplet excitation, the O-Br distance is predicted to be 

shortened in the gas phase, but not in DMF solution. Figure 1 shows the optimized geometries of the 
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singlet ground states and lowest triplet excited states of both 9-chloro- and 9-bromophenalenone 3 

and 4. 

 

Figure 1: Optimized geometries (M06/cc-pVTZ, gas phase) of 9-chlorophenalenone 3 (top) and 9-

bromophenalenone 4 (bottom). Left: singlet ground state. Right: lowest triplet excited state. 

The fact that in 2 or 3, as well as in 4 (DMF solution), the O-halogen distance remains essentially 

unchanged or increases marginally upon triplet excitation, whereas it is reduced in 4 (gas phase) and 

5, indicates that the nature of the triplet excited state must have changed. This is confirmed by 

performing a population analysis. Figure 2 shows the singly-occupied orbitals for both 3 and 4. 
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Figure 2: singly-occupied natural molecular orbitals (M05-2X/SDD, gas phase) for triplet 9-

chlorophenalenone 3 (top) and triplet 9-bromophenalenone 4 (bottom). Left: HOMO-1. Right: 

HOMO. 

Figure 2 shows that both singly occupied molecular orbitals are π-orbitals for 3, thus demonstrating 

that the lowest triplet excited state of 3 is a (π,π*) state, whereas in the case of 4, the lower singly-

occupied MO is an oxygen-bromine σ* type orbital (Figure 2, bottom left). Hence, the nature of the 

triplet excited state switches from (π,π*) in 3 to (σ∗,π*) in 4. Destabilizing interaction of the carbonyl 

oxygen lone pair with a lone pair on bromine increases the energy of this antibonding linear 

combination to a degree that (σ∗→π*) excitation becomes preferable over (π→π*) excitation as in 

3, where the energy of the chlorine lone pairs is too low to result in significant interaction with the 

carbonyl lone pairs.  

9-Methylchalcogeno-phenalenones (X = MeO, MeS): Again, two different types of triplet states are 

observed. 9-Methoxyphenalenone 6 has a (π,π*) lowest triplet excited state, whereas the 

thiomethoxy derivative 7 has a (σ∗,π*) lowest triplet state, which is again due to interaction of sulfur 

and carbonyl oxygen lone pairs.  In this compound, however, some binding interaction between 

carbonyl oxygen and sulfur already appears to be present in the singlet ground state ketone. The 

sulfur-oxygen distance in 7 is significantly shorter than the sum of the van-der-Waals radii of sulfur 
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and oxygen. In fact, the oxygen-sulfur distance in 7 is calculated to be essentially equal to the 

oxygen-oxygen distance in 9-methoxyphenalenone 6 (7: M06/cc-pVTZ: RSO = 2.619 Å, 6: M06/cc-

pVTZ: ROO = 2.616 Å). This type of bonding situation, a three-center-four-electron interaction 

involving the chalcogen-methyl and chalcogen-oxygen bonds is well known in heavy-chalcogen 

chemistry.[29-31] The optimized singlet ground-state structure is consistent with this picture, with the 

O-S-C(H3) angle very close to 180° (M06/cc-pVTZ: 7: O-S-C(H3) = 179.7°), whereas the corresponding 

angle in 6 is calculated as O-O-C(H3) = 150.8°, at the same level of theory.   

In the lowest triplet excited state of 7, the sulfur-methyl bond is calculated to be orthogonal to the 

plane of the phenalenone system. This maximises interaction between the lone pairs on the 

carbonyl oxygen and the chalcogen atom, as required by the (σ∗,π*) nature of the triplet states. 

Figure 3 shows optimized geometries (M06/cc-pVTZ) of both singlet ground states and lowest triplet 

excited states of 6 and 7, Figure 4 the singly-occupied orbitals of the triplet states of the same 

molecules. 

 

 

Figure 3: singly-occupied natural molecular orbitals (M05-2X/SDD, gas phase) for triplet 9-

methoxyphenalenone 6 (top) and triplet 9-methylthiophenalenone 7 (bottom). Left: HOMO-1. Right: 

HOMO. 
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Figure 4: Optimized geometries (M06/cc-pVTZ, gas phase) of 9-methoxyphenalenone 6 (top) and 9-

methylthiophenalenone 7 (bottom). Left: singlet ground state. Right: Lowest triplet excited state. 

 

9-Dimethylaminophenalenone (X = Me2N):  This compound differs from the systems dealt with so 

far in that the ground state singlet ketone no longer has a plane of symmetry. In case of the 

dimethylamino derivative 8, the phenalenone system is predicted to be significantly twisted 

(M06/cc-pVTZ: D(NC9C1O) = 26.2˚), to minimise repulsion between carbonyl and methyl groups, 

while allowing for overlap of the nitrogen lone pair with the π-system. Pyramidalization at the 

nitrogen atom is calculated to be small (M06/cc-pVTZ: D(C(H3)C(H3)C9N) = 8.5˚), which is similar to 

other dimethyl aryl amines.[32]   
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9-Dimethylaminophenalenone 8 has a lowest triplet excited state of (σ*,π*) type, as indicated by a 

significant shortening of the N-O distance upon triplet excitation, and as also evidenced by the 

singly-occupied molecular orbitals.  

Figure 5 shows calculated geometries (M06/cc-pVTZ) of the singlet ground state and first triplet 

excited state of 8, Figure 6 displays the singly-occupied natural orbitals of the first triplet excited 

state of the same compound.  

 

Figure 5: Optimized geometries (M06/cc-pVTZ, gas phase) of 9-dimethylaminophenalenone 8. Left: 

singlet ground state. Right: first triplet excited state.  

 

Figure 6: singly-occupied natural molecular orbitals (M05-2X/SDD, gas phase) for triplet 9-

dimethylaminophenalenone 8. Left: HOMO-1. Right: HOMO. 

Figures 5 and 6 clearly show that the lowest triplet excited state of 8 is weakly bonding with respect 

to the N-O distance, which is due to an electron being taken out of a doubly-occupied N-O σ* 

orbital. Unlike in 4, 5, and 7, the singly-occupied π* orbital in this (σ∗,π*) triplet excited state is 

predicted to be energetically below the σ* orbital.  
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Electronic properties of phenalenones: spin and charge distribution. Electronic parameters such as 

charge and spin distribution, triplet energy, and energy difference between first and second excited 

triplet state provide insight into the nature of the triplet excited states investigated. Table 2 lists 

these parameters, for S0 and T1 of 1-8. 

Table 2: Selected electronic properties (electronic triplet energy, Mulliken spin density at the 

carbonyl oxygen atom, Mulliken spin density at atom X, APT charge at the carbonyl oxygen atom, 

APT charge at atom X, vertical energy difference between T1 and T2 at the geometry of T1) of 

phenalenone derivatives 1-8. Normal font: singlet ground state. In italics: first triplet excited state. 

 X Method Type of 
T 

ET[kcal 
/ mol] 

Spin 
@O 

Spin 
@X 

Charge 
@O 

Charge 
@X 

∆ET1,2(v) 
[eV]a 

1 H M05-2X/SDD (π,π*) 42.5 0.669 -0.011 -0.812 
0.074 

0.095 
0.097 

-0.404 

1 H M06/SDD (π,π*) 39.9 0.560 -0.015 -0.774 
-0.191 

0.082 
0.084 

-0.635 

1 H M06/SDD 
(DMF) 

(π,π*) 40.9 0.493 -0.015 -1.220 
-0.411 

0.088 
0.089 

-0.651 

1 H M06/cc-pVTZ (π,π*) 43.1 0.402 -0.004 -0.804 
-0.377 

0.070 
0.070 

-0.728 

2 F M05-2X/SDD (π,π*) 43.5 0.716 0.012 -0.748 
0.118 

-0.486 
-0.506 

-0.424 

2 F M06/SDD (π,π*) 41.0 0.587 0.015 -0.716 
-0.151 

-0.487 
-0.508 

-0.192 

2 F M06/SDD 
(DMF) 

(π,π*) 41.8 0.508 0.011 -1.175 
-0.390 

-0.692 
-0.722 

-0.514 

2 F M06/cc-pVTZ (π,π*) 44.9 0.411 0.019 -0.772 
-0.359 

-0.521 
-0.547 

-0.592 

3 Cl M05-2X/SDD (π,π*) 43.4 0.699 0.013 -0.723 
0.086 

-0.266 
-0.280 

-0.417 

3 Cl M06/SDD (π,π*) 40.8 0.578 0.014 -0.684 
-0.166 

-0.309 
-0.322 

-0.145 

3 Cl M06/SDD 
(DMF) 

(π,π*) 41.3 0.506 0.008 -1.132 
-0.395 

-0.477 
-0.491 

-0.448 

3 Cl M06/cc-pVTZ (π,π*) 44.3 0.407 0.026 -0.729 
-0.360 

-0.321 
-0.338 

-0.517 

4 Br M05-2X/SDD (σ*,π*) 42.4 0.961 0.097 -0.716 
-0.346 

-0.186 
-0.278 

0.388 

4 Br M06/SDD (σ*,π*) 41.0 0.899 0.180 -0.678 
-0.326 

-0.228 
-0.282 

0.261 

4 Br M06/SDD 
(DMF) 

(π,π*) 41.5 0.501 0.010 -1.117 
-0.412 

-0.378 
-0.372 

-0.424 

4 Br M06/cc-pVTZ (σ*,π*) 47.7 0.842 0.204 -0.718 
-0.326 

-0.209 
-0.253 

0.314 

5 I M05-2X/SDD (σ*,π*) 41.5 0.832 0.253 -0.714 
-0.284 

-0.070 
-0.311 

0.379 

5 I M06/SDD (σ*,π*) 39.2 0.787 0.309 -0.673 
-0.370 

-0.108 
-0.167 

0.401 
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5 I M06/SDD 
(DMF) 

(σ*,π*) 42.2 0.733 0.359 -1.117 
-0.563 

-0.189 
-0.253 

0.444 

6 MeO M05-2X/SDD (π,π*) 43.6 0.724 0.053 -0.735 
0.091 

-0.889 
-0.966 

-0.392 

6 MeO M06/SDD (π,π*) 41.2 0.595 0.054 -0.701 
-0.126 

-0.883 
-0.930 

-0.114 

6 MeO M06/SDD  
(DMF) 

(π,π*) 43.3 0.516 0.048 -1.150 
-0.374 

-1.190 
-1.291 

-0.397 

6  MeO M06/cc-pVTZ (π,π*) 44.6 0.412 0.049 -0.756 
-0.355 

-0.940 
-0.999 

-0.546 

7 MeS M05-2X/SDD (σ*,π*) 37.9 0.653 0.459 -0.740 
-0.586 

-0.098 
0.029 

0.978 

7 MeS M06/SDD (σ*,π*) 38.1 0.729 0.346 -0.716 
-0.473 

-0.079 
-0.032 

0.768 

7 MeS M06/SDD  
(DMF) 

(σ*,π*) 41.8 0.670 0.401 -1.139 
-0.734 

-0.208 
-0.020 

0.829 

7 MeS M06/cc-pVTZ (σ*,π*) 43.7 0.591 0.488 -0.735 
-0.577 

-0.078 
0.165 

1.098 

8 Me2N M05-2X/SDD (σ*,π*) 39.2 0.640 0.468 -0.742 
-0.778 

-0.869 
-0.184 

1.519 

8 Me2N M06/SDD (σ*,π*) 39.2 0.646 0.428 -0.703 
-0.727 

-0.813 
-0.148 

1.119 

8 Me2N M06/SDD 
(DMF) 

(σ*,π*) 40.2 0.510 0.561 -1.078 
-1.269 

-1.090 
0.205 

1.285 

8 Me2N M06/cc-pVTZ (σ*,π*) 44.8 0.605 0.418 -0.741 
-0.743 

-0.802 
-0.055 

1.042 

 

aA negative value indicates a (π,π*) lowest triplet excited state, a positive value a (σ*,π*) lowest 

triplet excited state. Vertical excitation energies from TD-DFT. 

A number of trends can be derived from Table 2. First, for the systems with lowest (σ∗,π*) triplet 

states, the energy difference between first and second (π,π*) triplet excited states correlates with 

nucleophilicity of the substituent X – the more nucleophilic X, the more the (σ∗,π*) state is favored 

over the (π,π*) state. In case of the systems with lowest (π,π*) state, an increase of nucleophilicity of 

X results in a decrease of the T1-T2 splitting. Second, for the systems with lowest (σ∗,π*) triplet 

states, the triplet energy appears to correlate with the spin density present on the carbonyl oxygen – 

it is particularly high in case of 4, where the Mulliken spin density at the carbonyl oxygen atom is 

particularly high, and lower for 7 or 8, where the nitrogen or sulfur atoms accept significant spin 

density. Third, significant charge transfer is observed for dimethylamino-derivative 8, where the 

nitrogen atom gives up approximately one full charge unit upon triplet excitation,  but very little in 

the other derivatives investigated. Based on this pronounced degree of charge transfer, and on the 

significant change in geometry, the (σ∗,π*) triplet excited state of 8 might be described as a twisted 

internal charge transfer (TICT) state.[33] 9-Bromophenalenone 4, finally, is predicted to have a (σ∗,π*) 

type lowest triplet excited in the gas phase, whereas it is calculated to be a (π,π*) triplet excited 

state in DMF solution (see Tables 1 and 2). This is likely due to the fact that the interaction of the 

oxygen lone pairs is only weak in the case of X = Br, making the system more prone to perturbation 

by other influences such as solvent polarity.     



12 
 

It appears unlikely that the state switching observed for triplet states of 9-substituted phenalenones 

should be limited to this particular system. In fact, the lowest triplet excited states of compounds 

such as 2-iodobenzophenone 9, or 4-iodo-2-butanone 10 are also predicted to have lowest triplet 

excited states of (σ∗,π*) character, indicating that state switching (or intramolecular triplet exciplex 

formation) can be assumed to be a general phenomenon in ketone photochemistry. However, the 

ring formed in intramolecular exciplex formation at least needs to be a five-membered ring – the 

lowest triplet excited state of iodoacetone 11, where an intramolecular (σ∗,π*) type exciplex would 

contain an O-C-C-I four-membered ring is calculated to undergo C-I cleavage. Figure 7 shows the 

lowest triplet excited states of 9-11, optimized at the M06/SDD level of theory. 

 

Figure 7: Optimized structures (M06/SDD) of the lowest triplet excited states of 2-

iodobenzophenone 9 (left), 4-iodo-2-butanone 10 (middle), and iodoacetone 11 (right). Distances 

are given in Å, dihedral angles in °.  

The geometries of the lowest triplet excited states of 9 bears similarity with triplet 5, with very 

similar carbon-iodine and oxygen-iodine bond lengths. In case of the triplet state of 10, the oxygen-

iodine interaction is considerably weaker than in 5 or 9, as evidenced by the much longer O-I 

distance. Nevertheless, the frontier orbitals clearly make this a (σ∗,π*) type triplet state. In 

comparison, exciting 11 to its lowest triplet excited state results in carbon-iodine bond cleavage, 

while significant interaction remains between the iodine atom and carbonyl oxygen atom.  

Conclusion 

A systematic study on triplet excited states of 9-substituted derivatives of phenalenone shows that 

interaction between neighboring  nucleophilic substituents (X = Br, I, SMe, NMe2, but not F, Cl, OMe) 

and the carbonyl oxygen atom results in intramolecular exciplex formation, resulting in a switch 

from a (π,π*) type lowest triplet excited state to a (σ∗,π*) type triplet excited state, which should 

bear similarity to a (n,π*) triplet excited state, with the added feature of significant spin density 

being present at the nucleophilic substituent. Preliminary calculations on other systems, such as 2-

iodobenzophenone 9, 4-iodo-2-butanone 10, or iodoacetone 11 indicate that intramolecular (σ∗,π*) 

type triplet exciplex formation likely is a more general phenomenon, as long as the ring being 

formed in exciplex formation at least is a five-membered ring. Intramolecular exciplex formation of a 

ketone excited state  is consistent with the well-known formation of intermolecular triplet 

exciplexes.[9-11,34,35]  In particular if X is a heavy halogen, it will dramatically increase the intersystem 

crossing rate constant via spin-orbit coupling, and therefore result in dramatically shortened excited 

state lifetimes.[36] An important new aspect is that the proximity between the substituent X and the 

carbonyl oxygen atom does not necessarily have to result in efficient C-X cleavage.[37] The 

photochemistry of 2-bromoacetophenone and 2-bromobenzophenone had previously been 
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investigated using ns LFP and product studies,[38] and the authors of this work had already stated 

that the very high reactivity of the triplet state of 2-bromobenzophenone “could reflect a direct, 

through-space charge transfer interaction between the bromine atom and the carbonyl…”. 

According to the results presented here, the through-space interaction bears very little if any charge 

transfer character (with the exception of X = NR2, where charge transfer is significant), but should 

nevertheless provide a deactivation pathway, via enhanced spin orbit coupling. This triplet 

deactivation mechanism might potentially be of relevance to applied fields of chemistry such as 

sunscreen formulations, in particular if nucleophilic substituents (like X = SR) are employed that are 

bound more strongly to the ketone framework.[39] 
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