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Abstract 
Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the 
cortex.  Although this impressive research establishes distributed cortical areas active during the 
conceptual processing that underlies semantics, it tells us little about the nature of this processing.  
While mapping concepts between Marr’s computational and implementation levels to support 
neural encoding and decoding, this approach ignores Marr’s algorithmic level, central for 
understanding the mechanisms that implement cognition, in general, and conceptual processing, 
in particular.  Following decades of research in cognitive science and neuroscience, what do we 
know so far about the representation and processing mechanisms that implement conceptual 
abilities?  Most basically, much is known about the mechanisms associated with:  (1) features and 
frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based 
inference, (4) concept composition, and (5) conceptual flexibility.  Rather than explaining these 
fundamental representation and processing mechanisms, semantic tiles simply provide a trace of 
their activity over a relatively short time period within a specific learning context.  Establishing 
the mechanisms that implement conceptual processing in the brain will require more than 
mapping it to cortical (and sub-cortical) activity, with process models from cognitive science 
likely to play central roles in specifying the intervening mechanisms.  More generally, 
neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that 
contribute essential explanations to how the brain works, going beyond simply establishing the 
brain areas that respond to various task conditions. 

Keywords:  semantics; conceptual processing; neural encoding and decoding; multi-voxel pattern 
analysis; explanatory levels; cognitive mechanisms 

 

 

 

1.  Introduction 
In a recent article, Huth, de Heer, Griffiths, 

Theunissen, and Gallant (2016) established a 
semantic atlas on the cortical surface of the human 
brain.  My aim here is to examine this atlas and 
explore its implications.  In the process, I more 
generally examine the contributions of research in 
voxel-wise modeling and multi-voxel pattern 
analysis (MVPA) associated with neural encoding 
and decoding.  Whereas neural encoding focuses on 
inferring the likely neural activity that results from 

presented stimuli (e.g., inferring the neural activity 
associated with hearing “junk food”), neural 
decoding focuses on inferring likely presented 
stimuli based on observed patterns of neural activity 
(e.g., using an observed neural state to predict that 
“junk food” was just heard).  For excellent reviews 
of neural encoding and decoding, see Naselaris, 
Kay, Nishimoto, and Gallant (2011), Haxby, 
Connolly, and Guntupalli (2014), and Weichwald et 
al. (2015).  Although I will be critical of this 
research in various ways, I admire and respect it in 
many others.  Besides being state-of-the-art in 
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technical sophistication, it is ambitious, has made 
significant contributions, and has considerable 
promise.  As will also become clear, these methods 
can be used in ways consistent with the arguments 
to follow (and have been). 

Although I begin with work that addresses 
semantics in the brain, my arguments more 
generally address conceptual processing.  Whereas 
“semantics” technically refers to the meanings of 
linguistic forms, other important forms of 
conceptual processing occur throughout human 
cognition (e.g., Barsalou, 2012; McRae & Jones, 
2013; Murphy, 2002).  In vision and the other 
senses, for example, conceptual knowledge plays 
central roles in recognizing objects, scenes, and 
events, and in subsequently drawing inferences 
about them (e.g., Henderson & Hollingworth, 1999; 
Kersten, Mamassian, & Yuille, 2004; Schyns & 
Oliva, 1999).  Similarly, conceptual knowledge 
plays central roles in the multimodal simulation 
and imagery that operates across perceptual, 
cognitive, and motor processes (e.g., Barsalou, 
1999, 2008).  Although these conceptual processes 
are undoubtedly shaped by language, they go 
significantly beyond semantics (Barsalou et al., 
1993).  Additionally, conceptual processes in non-
human species play central roles throughout their 
perception, cognition, and action in the absence of 
language (e.g., Barsalou, 2005; Hernnstein, 1984, 
1990; Roitblat, Terrace, & Bever, 1984).  For these 
reasons, my focus here is on conceptual processing, 
while assuming that semantics constitutes a 
significant subset in humans. 

I further assume that a concept is a dynamical 
distributed network in the brain that represents a 
category in the environment or experience, and that 
controls interactions with the category’s instances 
(Barsalou, 2003b, 2009, 2012, 2016a, 2016d, in 
press).  The concept of bicycle, for example, 
represents the category of bicycles in the world and 
controls interactions with them.  Across interactions 
with bicycles, aggregate information becomes 
established in relevant neural systems as an agent 
perceives, evaluates, and interacts with them.  On 
encountering future bicycles, the distributed network 
acquired becomes active to dynamically produce 
extensive context-specific inferences that support 
effective goal-directed action.  Within an 
individual’s conceptual system, thousands of 
concepts represent diverse categories of settings, 
agents, objects, actions, events, bodily states, mental 
states, features, relations, and so forth. 

 

1.1.  Semantic selectivity and semantic tiling of 
the cortex 

1.1.1.  Methods and preliminary analyses.  
To assess semantic processing in the brain, Huth et 
al. (2016) first established semantic selectivity on 
the cortical surface, and then used it to establish 
semantic tiling.  Previous work from their group 
has similarly established semantic selectivity across 
the cortex for a diverse collection of semantic, 
conceptual, and perceptual materials (e.g., Huth, 
Nishimoto, Vu, & Gallant, 2012; Naselaris, Olman, 
Stansbury, Ugurbil, & Gallant, 2015; Naselaris, 
Prenger, Kay, Oliver, & Gallant, 2009; Nishimoto 
et al., 2011). 

In the work of interest here on neural encoding, 
Huth et al. (2016) used fMRI to image the BOLD 
activity of 7 participants as they listened to 10 
autobiographical narratives recorded before a live 
studio audience, each about 10-15 min in duration, 
over the course of 2 imaging sessions.  After 
transcribing the narratives, Huth et al. constructed a 
10,470 word lexicon of the unique words occurring 
across them.  Using methods from computational 
linguistics for corpus analysis, Huth et al. represented 
each story word with respect to 985 basis functions.  
Specifically, they took 985 diverse topic words from 
Wikipedia’s List of 1000 basic words (e.g., above, 
worry, month, tall, mother),1 and looked up how often 
each story word occurred within 15 words of the topic 
word in a large text corpus. 

As Figure 1A illustrates, the result of the co-
occurrence analysis was a 985-value context vector for 
each of the 10,470 story words, reflecting how 
frequently each story word co-occurred with each topic 
(with these vectors log-transformed and standardized).  
As much previous work has shown, such context 
vectors provide indices of lexical semantics (e.g., 
Baroni & Lenci, 2010; Erk, 2012; Landauer, 
McNamara, Dennis, & Kintsch, 2013).  As the context 
vectors for two words become increasingly similar, 
their semantics tend to become increasingly similar as 
well.  By representing the 10,470 story words for their 
co-occurrence with the same 985 topics, Huth et al. 
essentially represented story word semantics with a 
common set of basis functions. 

As Figure 1B illustrates, Huth et al. then regressed 
the BOLD signal in each cortical voxel onto the time 
series of context vectors across individual story words as 
they were heard sequentially in the scanner.  Because 
each of the 985 basis functions had a frequency-based 
value for every story word, its values varied over time 
across the stories.  Of primary interest was establishing 
voxels whose neural activity tracked the fluctuating 
values of a given basis function.  Whereas some voxels 
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had a positive correlation with a basis function’s 
standardized co-occurrence frequencies, others had a 
negative relation or no relation.  Using machine learning 
methods, Huth et al. established a regression coefficient 
for how well each of the 985 basis functions predicted 
the BOLD activity in each of 10,000+ cortical voxels (on 
the order of 100,000 coefficients; see Figure 2A).  
Although four time points along the BOLD function 
were modeled for each voxel, a combined measure was 
reported in the central results.  Auditory processing of 
the story words was also modeled, with this variance 
removed before semantic modeling was performed.  The 
semantic model was subsequently used to predict neural 
activations for the story words in an eleventh story.2 

To better understand the information in the 
coefficient matrix (Figure 2A), Huth et al. 
submitted the 985 vectors of regression coefficients 
across the 10,000 best-predicted voxels to principal 
component analysis.  As Figure 2B illustrates, four 
components explained significant variance at the 
group level.  To the extent that different basis 
functions behaved similarly across voxels, they 
loaded on the same component.  Notably, these 
four components only explained about 20% of the 
variance in the vectors for the 985 basis functions, 
indicating that much unexplained variance 
remained.  Because additional components were 
not significant, the remaining variance was 
relatively unsystematic.  Of further interest, the 
amount of explained variance nearly doubled to 
about 35% when principle components were 
extracted for individual participants, indicating that 
neural activity for the basis functions was 
individual specific.  Rather than being perfectly 
stable across individuals, semantic processing in 
the brain often appears to exhibit strong individual 
differences (e.g., Haxby et al., 2011, 2014; Renoult 
et al., 2012, 2016). 

To interpret the four group principle 
components, Huth et. al projected the 10,470 story 
words into the four-dimensional space that the 
components defined (via the words’ context vectors 
and the basis functions’ loadings on components).  
As a result, a four-valued vector of component 
scores represented each story word’s semantics.  
After finding the 458 best words in the original 
space of 10,470 words, this small subset was 
submitted to cluster analysis, producing the 12 
clusters shown on the left of Table 1 (e.g., clusters 
of visual, tactile, locational, and mental words). 

To the right of each cluster label in Table 1 are 
examples of words that I sampled from each cluster.3  
On the left side of each row are words that strike me 
as reasonable cluster members.  In the visual cluster, 
for example, it seems reasonable to assume that 

colour, yellow, stripes, wide, and shaped all have 
clear visual senses.  It’s nevertheless worth noting 
that even these reasonable cluster members form 
quite a heterogeneous category, including words 
associated with color, patterning, size, and shape.  
Typically, accounts of vision and visual semantics are 
likely to distinguish these sub-categories.  More 
problematically, the words that I have designated as 
questionable in Table 1 seem to have little relevance 
for their respective clusters.  In the visual cluster, for 
example, it seems difficult to justify that fur, steel, 
skull, fielder, cloth, and seal, are visual in the same 
sense as the reasonable cluster members, given that 
many other features seem equally, if not more, salient 
for these words.  As can be seen across clusters, each 
cluster is extremely heterogeneous in the words 
included, with none appearing to constitute a clearly 
coherent semantic category.  Of further concern, the 
words shown here are the 458 best words in the four-
dimensional component space.  It is difficult to 
imagine how the remaining 10,012 words could be 
worse fits with the clusters than those classified in 
Table 1 as questionable, but it seems likely, probably 
making these clusters even more heterogeneous than 
illustrated here. 

Huth et al. (2016) then used these relatively 
amorphous clusters to interpret the four group 
components by assessing where the clusters fell in 
the four-dimensional space, two components at a 
time.  Figure 2A in Huth et al. illustrates this 
process (shown here at the top of Figure 3).  As can 
be seen, the social, emotional, violent, and 
communal clusters were associated with one end of 
the first component, whereas the tactile, locational, 
numeric, and visual clusters were associated with 
the other, suggesting to Huth et al. that this 
component varied with social vs. non-social 
semantics (or, alternatively, with animacy).  As can 
similarly be seen, the visual and tactile clusters 
were associated with one end of the second 
component, whereas the mental, professional, and 
temporal clusters were associated with the other, 
suggesting to Huth et al. that this component varied 
with perceptual vs. non-perceptual semantics (or, 
alternatively, with concreteness).  Interestingly, 
Huth et al. (p, 454) concluded that the third and 
fourth components were uninterpretable.  For the 
third component, the professional, location, and 
visual clusters were associated with one end, 
whereas the mental, abstract, and emotional 
clusters were associated with the other.4  For the 
fourth component, the communal, emotional, and 
social clusters were associated with one end, 
whereas the violent, tactile, and temporal clusters 
were associated with the other. 
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Putting these results in perspective, Huth et al. 
have essentially shown that word meanings vary in 
animacy and concreteness, hardly a novel finding.  
Furthermore, semanticists are likely to find the 
heterogeneity and amorphousness of both the 
clusters and the dimensions in these analyses to be 
not only uninformative but disconcerting.  It’s not 
readily apparent that a coherent semantic analysis 
has been achieved, or that the four component scores 
representing the story words offer any insight into 
their semantics.  The inability to interpret the third 
and fourth components underlines these concerns. 

1.1.2.  Semantic selectivity.  Huth et al. 
(2016) next project the group components onto the 
cortical surface.  As shown in Figure 3 here, Huth 
et al.’s Figure 2b presents projections of the first 
three components for one participant in detail, and 
their Figure 2c presents partial projections for three 
additional participants.  In these figures, as a voxel 
becomes redder, it becomes more social; as it 
becomes greener, it becomes more concrete; as it 
becomes bluer, it has a higher value on the 
uninterpretable third component (all four 
components are projected individually for one 
participant in Huth et al.’s Extended Data Figure 
3a).  As is apparent, semantic selectivity on the 
cortical surface varies systematically with respect 
to these components.  It is interesting and 
impressive that techniques exist for establishing 
semantic selectivity on the cortical surface in this 
extensive and precise manner, voxel by voxel. 

1.1.3.  Semantic tiling and a semantic atlas.  
Finally, Huth et al. (2016) use the semantic 
selectivity just described to establish “a dense, tiled 
map of functionally homogenous brain areas” (p. 
455).  In this analysis, a semantic tile satisfies two 
conditions:  (1) It is a region of contiguous voxels 
that share relatively similar values on the four 
group components, (2) the values in a homogenous 
region contrast clearly with values in neighboring 
regions.  Huth et al.’s Figure 3c illustrates the 
semantic tiles established in this analysis (Figure 4 
here), with color again exhibiting the most 
important components underlying a tile’s 
semantics.  Gray regions illustrate regions whose 
semantics were relatively graded and overlapping, 
such that semantic tiles could not be established. 

 Huth et al. (2016, p. 457) propose that their 
semantic tiles constitute “a comprehensive atlas of 
semantically sensitive areas” that will be “useful 
for many researchers investigating the 
neurobiological basis of language.”  In an online 
tool, interested readers can examine the contents of 
this atlas in detail.5  By clicking on a semantic tile, 
useful pieces of information become available 

about the tile and associated analyses. 
Problematically, however, interacting with the 

online tool suggests that the semantic atlas may 
actually be relatively uninformative for researchers 
who aim to understand conceptual and semantic 
processing.  In my opinion at least, this atlas 
doesn’t actually constitute a coherent semantic 
account in any conventional sense of what an atlas 
is supposed to provide.  Consider the red tile in the 
right temporal-parietal junction labeled LPC R5.  
The story words most associated with this tile 
include: 

cousin, murdered, pregnant, pleaded, arrested, refused, 
son, wife, sister, husband, mother, aunt, asked, 
daughter, confessed 

Rather than constituting a homogenous semantic 
group, these words come from diverse semantic 
categories that include relatives, crimes, and 
communicative acts.  Given the dramatic 
autobiographical narratives from which these story 
words were drawn, it might appear that this tile 
processes relatives discussing criminal activity 
(probably not a general semantic category). 

Even more problematically, if one examines 
individual voxels within a specific tile, they are 
often associated with even more diverse words, 
suggesting that the tile doesn’t actually establish a 
homogenous semantic region.  Consider three 
voxels within the tile just discussed, LPC R5.  In 
voxel [18, 75, 33], the words most associated with it 
include: 

spend, staying, date, last, place, weeks, days, year, 
month, visit, rent, trip, till, and vacation 

In voxel [15, 77, 29], the most associated words 
include: 

insisted, himself, asked, waited, home, sent, leave, 
decided, told, arrives, him, promptly, friend’s 

In voxel [15, 77, 25], the most associated words 
include: 

parents, murdered, arrives, mother, wife, refused, sister, 
home, husband, sent, arrive, visit, aunt, leave, house, 
father, lived, apartment, whereabouts, relatives 

Although remote associations can be established 
between the semantics of these three voxels, it 
seems questionable that they all belong to a 
homogenous semantic tile.  More generally, it 
seems questionable that a meaningful and useful 
semantic atlas has been established on the cortex. 

1.2.  What have we learned about semantics? 
What have we learned about the meaning of a 

word from Huth et al.’s results?  From this 
perspective, a word’s meaning is a distributed 
pattern of activation across the entire cortex, 
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reflecting how the word’s co-occurrence 
frequencies activate cortical voxels via regression 
coefficients for basis functions.  Although the 
interaction between co-occurrence frequencies and 
regression coefficients causes some cortical areas 
to be more important in representing a word’s 
meaning than others, in principle, the entire cortical 
surface carries information about the word’s 
semantics (given that every voxel receives 
predictive information about the word via the 
shared basis functions projecting to it). 

What have we learned about how the brain 
processes meaning?  As we have seen, the semantic 
selectivity of a voxel reflects the regression 
coefficients that project to it from the basis 
functions.  From this perspective, semantic 
processing in the brain results from integrating 
activations for weighted basis functions within each 
voxel, which in turn depends on patterns of co-
occurrence frequencies across words.  As a 
consequence, a voxel can be characterized in terms 
of the basis functions and words that activate it 
most highly. 

Once basis functions are reduced to principle 
components, similar conclusions follow:  A word’s 
meaning is represented as a set of component 
scores on significant components, and a voxel’s 
semantic selectivity is also represented as a set of 
component scores. 

Finally, this approach assumes that particular 
words can be linked to specific voxels and cortical 
tiles to produce a semantic atlas.  It seems rather 
peculiar and unusual, however, to assume that 
specific words are linked to specific voxels in this 
phrenological manner.  Although this assumption is 
perhaps useful if one’s goals are associated with 
neural encoding and decoding, it is perhaps 
misguided and misleading if one’s goal is to 
understand how the brain implements semantic 
processing.  Rather than simply being implemented 
as a pattern of voxels, a word’s meaning is more 
likely to be implemented by mechanisms that 
represent and process conceptual information. 

Although the ability to establish semantic 
selectivity across the cortical surface for a large 
text corpus is impressive, it’s not clear that 
researchers who work on semantics and conceptual 
processing will find these results to offer 
significant new insights.  Other than demonstrating 
that basis functions and principle components can 
characterize semantic selectivity across the cortical 
surface, not much further appears to follow from 
this work.  Furthermore, the considerable 
heterogeneity and ambiguity associated with 

interpreting the principle components diminishes 
the ability to draw useful conclusions about 
semantics per se, or about how the brain produces 
semantic processing. 6 

2.  Levels of explanation 
It is informative to view research on neural 

encoding and decoding from the perspective of Marr's 
(1982) classic levels of analysis.  According to Marr, 
an intelligent system can be characterized at three 
levels of explanation: computational, algorithmic, and 
implementation.  Specifically, the computational level 
describes the tasks that the system performs, and why it 
performs them.  In the process, the computational level 
may formally describe relevant stimuli and behavioral 
responses, along with systematic relations between 
them (e.g., physical analyses of stimuli and response, 
behaviorist laws of conditioning, Bayesian models).  In 
turn, the algorithmic level describes the information 
processing mechanisms within the system that perform 
the task.  From the perspective of the Cognitive 
Revolution, these are cognitive mechanisms inferred as 
latent variables from stimulus-response relations (e.g., 
Lachman, Lachman, & Butterfield, 1979).  Although 
these mechanisms often take the form of 
representations and processes in classic cognitive 
models, the distinction between representations and 
processes becomes blurred in some approaches, such as 
neural nets and dynamical systems.  Finally, the 
implementation level describes the physical medium 
that implements information processing mechanisms.  
A particular set of algorithmic mechanisms, for 
example, could be implemented in biological tissue 
(e.g., a human) or in silicon (e.g., a robot).  As Marr 
(1982) further argued, an intelligent system is only 
understood fully once an integrated account across 
levels exists. 

Since Marr’s original proposal, his framework 
has been applied widely in diverse research domains, 
while continuing to receive considerable attention and 
development (see Peebles & Cooper, 2015, and the 
special issue of Topics in Cognitive Science that 
follows).  As a result, our understanding of Marr’s 
levels and their interaction continues to evolve.  
Nevertheless, the general form of Marr’s framework 
remains widely accepted, continuing to play 
important roles in modern research. 

2.1.  Stressing the importance of mechanistic 
accounts at the algorithmic level 

Impressive methods associated with big data, 
crowd sourcing, voxel-wise modeling, and so forth 
increasingly demonstrate their power and value.  
Often simultaneously (but not necessarily), 
attention diminishes to relevant mechanisms at the 
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algorithmic level.  As a consequence, researchers 
continue to remind the community about the 
importance of algorithmic mechanisms, arguing 
that the scientific goals of explanation and control 
cannot be achieved without them. 

Schyns, Gosselin,  and Smith (2009), for 
example, noted that cognitive neuroscientists often 
focus on relations between tasks and neural 
activity, ignoring the algorithmic mechanisms that 
produce this activity.  Schyns et al. further 
illustrated how reverse correlation methods 
combined with automata theory can be used 
effectively to develop algorithmic accounts of 
visual perception.  Ince et al. (2015) et al. 
developed these methods further (also see Schyns, 
van Rijsbergen, & Ince, 2016).  An important 
conclusion from this work is that we do not 
understand how the brain implements an intelligent 
activity if we don’t understand the mechanisms that 
produce it.  Love (2015), too, argued that 
mechanistic accounts at the algorithmic level are 
essential for understanding the brain’s operation 
(for related arguments, see other articles from the 
same 2015 issue of Topics in Cognitive Science). 

In an analysis of Bayesian modeling,  Jones and 
Love (2011) similarly argued that Bayesian models 
typically focus on principles that underlie rational and 
optimal responses to stimuli, while ignoring process 
models that implement these principles 
mechanistically.  Jones and Love echoed Marr's (1982) 
concern that accounts of intelligent behavior are 
incomplete when they lack an algorithmic account of 
the underlying mechanisms, and that such accounts 
play critical roles in understanding cognition.  Indeed, 
mechanistic accounts are typically viewed as essential 
for explaining phenomena across the sciences (e.g., 
Bechtel, 2008, 2009; Bechtel & Abrahamsen, 2005; 
Bechtel & Shagrir, 2015). 

2.2.  Levels of explanation in neural encoding 
and decoding 

What can we learn about Huth et al.'s (2016) 
findings, specifically, and about neural encoding and 
decoding, more generally, from framing them with 
Marr’s explanatory levels?  Figure 5a illustrates one 
insight that results from such framing.  From Marr’s 
perspective, neural encoding and decoding focus on 
mappings between the computational and 
implemental levels while ignoring the algorithmic 
level.  By presenting people with conceptual stimuli, 
such as words, and measuring the distributed 
patterns of voxel activity that follow, it becomes 
possible to later predict a person’s neural activity in 
response to particular stimuli, and to predict the 
stimuli they’re observing from their neural activity.  

If the goal is to simply perform neural encoding and 
decoding in this manner, establishing mappings 
between the computational and implementation 
levels can clearly be useful. 

Interestingly, neural encoding and decoding do 
not require the postulation and assessment of 
algorithmic mechanisms.  Because establishing the 
mapping between conceptual stimuli and neural 
activity is sufficient for successful performance (to 
some degree), no need exists for establishing 
mediating mechanisms at the algorithmic level.  As 
argued later, however, excluding algorithmic 
mechanisms may significantly limit the success of 
neural encoding and decoding, whereas including 
them may accomplish significantly more. 

Figure 5B illustrates examples of algorithmic 
mechanisms that might be useful for increasing the 
success of neural encoding and decoding.  More 
importantly, however, these mechanisms are likely 
to play central roles in explaining conceptual and 
semantic processing in the brain.  If we want to 
understand how the brain produces conceptual and 
semantic processing, we may well need to include 
such mechanisms in our accounts.  Distributed 
patterns of neural activity will not be sufficient. 

Notably, the methods used in neural encoding 
and decoding are frequently used to address 
hypotheses at the algorithmic level (e.g., Peelen & 
Downing, 2007; Wang et al., 2016; and many 
others).  Nothing intrinsic about the methods 
associated with voxel-wise modeling precludes 
using them to understand algorithmic mechanisms.  
A focus on neural encoding and decoding, 
however, often draws attention to mappings 
between the computational and implementation 
levels, with the algorithmic level dropping out. 

2.3.  Neurobehaviorism 
Interestingly, the Cognitive Revolution in the 

mid-twentieth century originated in a similar set of 
issues (Lachman et al., 1979; also see Jones & 
Love, 2011).  At the time, Behaviorists focused on 
stimuli and responses, largely ignoring the 
cognitive processes that mediated them.  In 
response, cognitive scientists increasingly 
articulated theoretical arguments for the importance 
of mediating processes, with empirical support 
accumulating rapidly.  Since then, the central roles 
of mechanisms and process models at the 
algorithmic level have become fundamental 
constructs across most areas of psychology and 
cognitive science (e.g., Barsalou, 2016a). 

One could argue that an analogous state-of-
affairs has developed in neuroscience, with 
neuroscientists sometimes implicitly adopting what 
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might be called Neurobehaviorism.  As we have just 
seen, research on neural encoding and decoding often 
focuses on the relations between tasks and neural 
activity, without addressing mediating algorithmic 
mechanisms.  Neural encoding and decoding are 
hardly isolated examples.  Considerable amounts of 
other neuroscience research often only establish the 
neural activity associated with a task, without 
specifying the algorithmic mechanisms responsible.  
Thus, a potential lack of algorithmic mechanisms not 
only exists horizontally across the computational 
level in Behaviorism, but also exists vertically from 
the computational to the implementation level in 
Neurobehaviorism. 

2.4.  Reifying brain states at the implementation 
level as algorithmic mechanisms 

Figure 5C illustrates one potential position that 
neural encoding and decoding researchers could 
adopt in responding to concerns about the 
algorithmic level.  Rather than proposing that 
algorithmic mechanisms aren’t important, these 
researchers could argue that the distributed neural 
patterns their methods identify at the 
implementation level constitute mechanisms at the 
algorithmic level.  Regarding Huth et al. (2016), for 
example, one could argue that the distributed 
cortical pattern of activation established for a word 
constitutes its semantic representation.  Indeed, this 
appears to be a basic assumption of their approach 
and results, at least implicitly. 

If so, then several significant issues follow.  
First, is the distributed cortical representation of a 
word uniform with no structure, or does it contain 
parts that enter into larger organizations, with specific 
parts implementing particular functions?  If so, then 
such accounts add additional constructs at the 
algorithmic level, going significantly beyond 
homogenous neural patterns at the implementation 
level (e.g., Bechtel & Abrahamsen, 2005).  Second, 
what kinds of processes operate on these distributed 
representations to perform basic conceptual tasks, 
such as categorization, inference, and concept 
composition?  An atlas of distributed semantic 
patterns does not offer an account of the processing 
performed on these patterns to implement conceptual 
functions.  To the extent that processes are added, 
they further implicate additional algorithmic 
constructs beyond homogenous neural patterns. 

3.  Mechanisms of conceptual processing at 
the algorithmic level 

Decades of research have addressed algorithmic 
mechanisms in conceptual and semantic processing 
across multiple areas of psychology, across the 

disciplines of cognitive science, and across relevant 
areas of cognitive and social neuroscience.  As 
summarized in Figure 5B, the remainder of this 
article focuses on mechanisms central to explaining 
conceptual and semantic processing at the algorithmic 
level.  In the next two sections, I address basic 
representational mechanisms that enjoy widespread 
empirical support:  (1) feature and frame 
representations, (2) multiple representations of 
conceptual knowledge.  In three subsequent sections, 
I address important classes of processing mechanisms 
associated with:  (3) knowledge-based inference, (4) 
conceptual composition, (5) conceptual flexibility.  I 
hasten to add that many other mechanisms are 
potentially relevant, with different researchers likely 
to focus on different ones.  For each class of 
mechanisms addressed here, space only allows a brief 
summary of relevant research.  Rather than providing 
an exhaustive review of each class, I simply try to 
motivate its importance with classic and 
representative examples. 

3.1.  Feature and frame representations 
As we saw earlier, one approach to understanding 

a word’s meaning in the brain is that an 
undifferentiated state of activation across the cortex 
represents it.  Alternatively, researchers have argued 
for decades that word meanings (and other conceptual 
structures) are not undifferentiated holistic states, but 
instead contain a variety of representational elements, 
including features and frame structure.  Furthermore, 
researchers assume widely that these representational 
elements operate as mechanisms at the algorithmic 
level, causally affecting conceptual processing and 
related behaviors. 

3.1.1.  Features.  Perhaps the first, most 
natural place to look for the importance of features 
is in linguistics (e.g., Fromkin, Rodman, & Hyams, 
2013).  For decades, linguists have employed 
features at every level of linguistic analysis, from 
phonetics to semantics.  In morphology and 
semantics, linguists have proposed that 
fundamental features are essential for 
distinguishing different classes of word meanings, 
including animacy (human vs. statue), gender (boy 
vs. girl), number (bird vs. birds), and so forth.  Not 
only do features like these distinguish significant 
word classes, they are central for combining words 
syntactically.  When combining a subject with a 
verb, for example, the subject and verb must often 
agree in animacy, number, and many other features 
(e.g., the woman eats vs. the rock *eats; it walks vs. 
they *walks).  Indeed, it would be difficult, if not 
impossible, to characterize basic language structure 
at any level without features. 
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Features have been no less central to the study of 
concepts and lexical meaning in cognitive psychology 
and psycholinguistics (e.g., Cree & McRae, 2003; 
Hampton, 1979; McRae, Cree, Seidenberg, & 
McNorgan, 2005; Rosch & Mervis, 1975; Wu & 
Barsalou, 2009).  When researchers ask participants 
to generate the features of a concept, they do so 
rapidly, producing diverse features in the process 
(e.g., feathers, wings, flies, and nests for BIRDS).  
Clearly, a wide variety of features are associated with 
any reasonably familiar concept in memory.  At a 
minimum, accounts of concepts at the algorithmic 
level need to explain knowledge of these features and 
their associations with concepts.7 

More critically, however, overwhelming 
evidence indicates that these features play 
functional roles in conceptual and semantic 
processing, implicating them as causal mechanisms 
at the algorithmic level.  Consider Garner's (1976) 
classic filtering task.  In the baseline condition, two 
stimuli that differ on only one feature (e.g., a red 
square and a blue square) are presented one at a 
time, repeating in a random order, with the task 
being to indicate whether the current stimulus is red 
or blue (via binary responses with the left vs. right 
hand, respectively).  In the critical filtering 
condition, the task remains the same (discriminate 
red vs. blue), but now the stimuli can be both 
squares and circles, such that participants must 
filter out shape while focusing on color.  In general, 
participants are excellent at filtering features from 
one another, sometimes exhibiting modest cross-
talk between features, while still generally 
exhibiting excellent filtering performance (e.g., 
Melara & Marks, 1990).  Most importantly, the 
ability to perform the filtering task implicates 
features as causal mechanisms at the algorithmic 
level.  By focusing attention on some feature 
representations in memory and inhibiting others, 
participants perform with high accuracy.  Without 
functional feature representations in memory, it’s 
difficult to explain how people perform this task. 

A wide variety of additional tasks that combine 
filtering with learning further implicate features as 
causal mechanisms at the algorithmic level (e.g., 
Colzato, Van Wouwe, Lavender, & Hommel, 2006; 
Kirkham, Cruess, & Diamond, 2003; Zelazo, Frye, & 
Rapus, 1996).  In the intra-dimensional shift task, 
participants first learn which feature from a 
dimension is currently being rewarded and respond 
when it’s present (e.g., round stimuli), but then must 
shift to a new feature on the same dimension when it 
becomes rewarded instead (e.g., triangular stimuli).  
Similarly, in the inter-dimensional shift task, 
participants must shift from a feature on one 

dimension to a feature on another dimension to 
receive reward (e.g., shifting from round shape to 
green color).  For decades, performance on these 
tasks has been used to measure developmental stage, 
intellectual ability, brain damage, and aging, 
indicating that the representation and processing of 
features plays central roles in human intelligence. 

In traditional conditioning literatures, 
attending to features during learning is often central 
to task performance (e.g., Bower & Hilgard, 1981; 
Domjan, 2014; Mackintosh, 1975; Rescorla & 
Wagner, 1972).  In the classic blocking paradigm, 
for example, organisms initially learn that a feature 
predicts reward or punishment, with a second 
predictive feature being added gradually, as 
learning the first feature stabilizes.  Interestingly, 
participants typically don’t learn that the second 
feature also predicts the outcome, because the first 
feature blocks its use.  From a cognitive 
perspective, attention focuses on a feature that 
produces good performance, while minimizing 
distraction from other features.  Many other classic 
learning phenomena across species similarly 
illustrate the central functional roles of features in 
perception, attention, and learning. 

In learning literatures associated specifically 
with human cognition, features are equally 
important, often controlled by language.  In explicit 
rule learning paradigms, for example, learners often 
specify rules as combinations of features (e.g., 
Trabasso & Bower, 1968).  In most category 
learning paradigms, learning is strongly associated 
with predictive features that control categorization 
via attention and reward (e.g., Ashby & Maddox, 
2005; Kruschke, 2003; Nosofsky, 1984).  Again, it 
seems difficult to explain conceptual processing 
without invoking features as fundamentally 
important causal mechanisms at the algorithmic 
level. 

Some of the most compelling research in this 
area demonstrates that learning new features has 
considerable impact on behavior, further 
implicating their causal roles in cognition.  In 
Schyns and Rodet (1997), for example, participants 
learned complex visual features that distinguished 
different categories of (fictional) Martian rocks 
from one another.  In a key comparison, 
participants learned two features, X and XY, one at 
a time, with two different groups learning them in 
opposite orders (i.e., X then XY vs. XY then X).  
During the critical test phase, participants in the 
first group successfully used feature Y to 
categorize Martian rocks, whereas participants in 
the second group didn’t.  Whereas the transition 
from X to XY isolated Y as a functional feature, 
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the transition for XY to X did not.  Schyns, 
Goldstone, and Thibaut (1998) discuss how these 
and many other findings implicate features as 
causal mechanisms at the algorithmic level. 

In the domain of chick sexing, Biederman and 
Shiffrar (1987) provided another classic 
demonstration of how learning new features can 
have substantial effects on behavior.  To segregate 
male and female chicks at birth, a difficult visual 
discrimination of their genitalia must be made, with 
expertise typically requiring much practice.  In a 
one-minute intervention, however, Biederman and 
Shiffrar presented undergraduates with schematic 
depictions of male and female genitalia (motivated 
by geon theory; Biederman, 1987) that produced a 
50% improvement in classification accuracy, 
relative to the pretest baseline (comparable to 
expert performance on the task).  Again, it seems 
difficult to explain such a large change in 
performance without postulating the representation 
of learned features at the algorithmic level that 
causally affect classification performance. 

Finally, the BUBBLES technique offers a 
powerful method for establishing algorithmic features 
that control conceptual behavior (e.g., Schyns et al., 
2009).  As random apertures (“bubbles”) expose 
regions of a visual stimulus (e.g., a face), participants 
must categorize it in some way (e.g., gender, 
emotion).  Considerable work demonstrates that 
exposing particular features of faces increases the 
accuracy of certain categorizations, demonstrating the 
causal role of features in performing these 
categorizations effectively (Schyns, Bonnar, & 
Gosselin, 2002; Smith, Cottrell, Gosselin, & Schyns, 
2005).  Whereas the eyes are often used to make 
gender discriminations, the mouth is often used to 
make emotion discriminations, with the specific 
patterns of relevant features varying cross-culturally 
(e.g., Jack, Garrod, Yu, Caldara, & Schyns, 2012; 
Jack, Caldara, & Schyns, 2012).  As much work in 
this area illustrates, features function as causal 
mechanisms at the algorithmic level to produce 
conceptual processing and behavior. 

3.1.2.  The status of features in neural 
encoding and decoding research.  It might appear 
that features play central roles in neural encoding and 
decoding.  Perhaps the basis functions often used to 
represent conceptual stimuli in this research can be 
viewed as features of the relevant stimuli.  Perhaps 
establishing voxel selectivity to these basis functions 
can be viewed as establishing these basis functions as 
features in the brain. 

In Huth et al. (2016), for example, every story 
word was coded with a context vector that 

represented the word’s co-occurrence frequencies 
across a common set of basis functions (i.e., topic 
words).  Furthermore, the selectivity of every 
cortical voxel to each basis function was captured 
in the regression cooefficients that predicted the 
voxel’s BOLD time course.  At least since Mitchell 
et al.'s (2008) pioneering work on neural encoding 
and decoding, researchers have been using basis 
functions in this manner to code stimulus meaning 
and to establish voxel selectivity in the brain (for 
further examples, see Haxby et al., 2014). 

Behavioral research also increasingly uses basis 
functions to represent concepts and establish relations 
between them.  Crutch, Troche, Reilly, and Ridgway 
(2013), for example, had participants evaluate 400 
words on 12 diverse features (sensation, action, 
emotion, thought, social interaction, morality, time, 
space, quantity, and polarity), such that each word was 
defined by a profile of values across basis functions, 
thereby establishing it as a point in a high-dimensional 
space.  In the critical analyses, Euclidean distances 
between words in the high-dimensional space predicted 
the comprehension deficits of a stroke patient.  Troche, 
Crutch, and Reilly (2014) took a similar approach, 
using a common set of 12 basis functions to distinguish 
concrete vs. abstract concepts in a multiple-
dimensional space.  Finally, Binder et al. (2016) 
evaluated the meanings of 535 words on 65 basis 
functions that captured neurally-inspired features (e.g., 
colour, bright, texture, taste, path, number, time, 
consequential, self, pleasant, attention).  In multiple 
analyses, they found that representing word meanings 
as profiles across basis functions (points in a 
multidimensional space) recovered similarity relations 
and taxonomic structure within the word set. 

Although one might be tempted to conclude 
that this approach represents the features of 
concepts as basis functions, it is again instructive to 
consider Marr’s levels.  Rather than being 
functional mechanisms at the algorithmic level, 
basis functions appear to be technical descriptions 
of stimuli at the computational (task) level.  When 
co-occurrence vectors are used to represent a 
word’s meaning, these are external descriptions of 
the stimuli, because they describe how a critical 
stimulus—a word—correlates with other words in 
written language (e.g., Huth et al., 2016; Mitchell 
et al., 2008).  Similarly, when rating vectors are 
used to represent a word’s meaning, they describe 
how a critical stimulus is normed by one group of 
participants, external to other participant(s) tested 
in the critical analyses (e.g., Binder et al., 2016; 
Crutch et al., 2013; Troche et al., 2014).  In neither 
case, has a basis function been shown to be an 
internal mechanism that operates as a causal feature 
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to control conceptual processing and behavior 
within an individual’s cognitive system. 

What about the semantic selectivity of a 
voxel?  Could all the voxels that respond positively 
to a basis function be viewed as a feature?  From 
Marr’s perspective, this selectivity simply shows a 
correlation between a stimulus descriptor at the 
computational level and the neural activity it 
produces at the implementation level.  It doesn’t 
necessarily specify a functional feature mechanism 
that controls conceptual processing and behavior. 

To see this, it is informative to explore why basis 
functions distinguish stimuli so effectively and recover 
their underlying structure.  If basis functions are 
sufficiently numerous and diverse, they serve as a 
measurement tool for capturing similarities and 
differences between concepts.  Similar concepts will 
tend to behave similarly when assessed by a given 
basis function, whereas different concepts will tend to 
behave differently.  To the extent that basis functions 
are included that measure important differences 
between important groups of concepts, they distinguish 
these groups, enabling the recovery of taxonomic 
structure.  Nevertheless, a basis function such as colour 
in Binder et al. (2016) probably doesn’t map directly 
onto a feature for a concept in the brain at the 
algrorithmic level, such as yellow for BANANA (i.e., 
yellow probably plays a more important role than 
colour when BANANA is processed conceptually).  
Instead, the basis function, colour, only measures the 
causal feature, yellow, indirectly. 

Thus, basis functions don’t appear to function 
as causal mechanistic constructs in the brain.  To be 
effective, they only need to differentiate the 
representations and processes that operate  at the 
algorithmic level.  As a result, an effective set of 
basis functions could have no direct overlap with 
the feature mechanisms that represent concepts.  
Mitchell et al. (2008, Figure 5) offered an 
informative demonstration of this point.  When 
Mitchel et al. iteratively sampling 25 basis 
functions randomly from 5,000 possible basis 
functions, they typically observed neural decoding 
that was well above chance.  Although decoding 
wasn’t as good as when a set of basis functions was 
hand picked, decoding was nevertheless effective.  
This important result suggests that basis functions 
work simply because differences between them 
allow capturing semantic similarity indirectly, 
without directly assessing the underlying feature 
mechanisms that represent concepts at the 
algorithmic level. 

3.1.3.  Frame structure.  Although features 
play central roles in conceptual processing, they are 

not the only representational mechanisms necessary 
for explaining concepts and meaning.  Instead, 
additional representational mechanisms are 
necessary, in particular, those associated with 
frame structure (e.g., Barsalou, 1992, 1999; 
Fillmore, 1985; Gentner, 1983, 2010; Löbner, 
2014).  It is not sufficient to characterize a concept 
as a conjunctive list of binary features (e.g., 
representing the concept of FACE as eyes & mouth 
& nose).  Instead, considerable research across the 
cognitive sciences illustrates that concepts contain 
additional structure associated with arguments and 
values, conceptual relations, and recursion—
concepts are not “flat” structures (e.g., Barsalou & 
Hale, 1993; Fodor & Pylyshyn, 1988; Smolensky, 
1990). 

In fully representing the concept of FACE, for 
example, recursion is necessary to establish that an 
eye contains an eyeball, which contains a pupil, 
which contains an iris, etc.  Similarly, attribute-
value relations are necessary for specifying that 
EYE COLOUR is an attribute that can take values, 
such as blue, green, and brown.  Finally, conceptual 
relations are required to specify that the eyes align 
at the same level above the nose, which is above the 
mouth.  Every concept appears to exhibit the basic 
properties associated with frame structure 
(Barsalou, 1992; Löbner, 2014), with this structure 
not being rigid but varying dynamically across 
contexts (Barsalou, 2003a).  Furthermore, when 
knowledge engineers and researchers have 
attempted to articulate detailed conceptual and 
semantic content, they have typically gone beyond 
feature conjunctions to frame structure (e.g., Lenat, 
1995).  Although features can be a useful heuristic 
for representing aspects of a concept in various 
tasks, features are simply fragments of more 
complex underlying frame structure (Barsalou & 
Hale, 1993). 

 Besides being necessary for representing the 
detailed structure of knowledge, frame structure has 
strong empirical support in cognitive science.  
Consider a classic demonstration from Markman 
and Gentner (1993).  On each baseline trial, the 
experimenter showed participants two pictures, such 
as:  (1) a delivery man handing a bag to a woman, 
and (2) a woman feeding a squirrel.  The 
experimenter then pointed to an entity in the first 
picture (e.g., the woman), and asked what in the 
second picture went with it.  On these trials, 
participants typically made identity matches, 
mapping the entity identified in the first picture to 
the same entity in the second picture (e.g., the 
woman). 

On critical trials, participants were asked to 
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judge the similarity of the two pictures before 
performing the mapping task.  Because similarity 
judgments often produce deep conceptual processing, 
Markman and Gentner predicted that participants 
would activate frame structure to interpret each 
picture, thereby conceptualizing picture elements as 
values of frame attributes.  On interpreting the first 
picture described above, for example, participants 
should activate the DELIVER frame, bind the delivery 
man to the AGENT attribute, and bind the woman to 
the RECIPIENT attribute.  Similarly, on interpreting 
the second picture, participants should activate the 
FEED frame, bind the woman to the AGENT, and 
bind the squirrel to the RECIPIENT.  Most 
importantly, Markman and Gentner further predicted 
that using frame structure to interpret the pictures in 
this manner should change the mapping from the first 
picture to the second.  Rather than performing an 
identity mapping (i.e., mapping the woman in the first 
picture to the woman in the second), participants 
should perform an attribute mapping (i.e., mapping 
the woman in the first picture to the squirrel in the 
second, because using frame structure to interpret the 
pictures caused the woman and the squirrel to both be 
conceptualized as RECIPIENTS).  As predicted, 
argument mappings increased by about 50% 
following similarity judgments, indicating that frame 
structure had become active to interpret the pictures. 

Many other findings similarly implicate frame 
structure in conceptual processing and similarity 
judgments (e.g., Gentner, 1983, 2010; Goldstone, 
Medin, & Gentner, 1991; Medin, Goldstone, & 
Gentner, 1990).  Most importantly, such findings 
implicate frame structure as a causal mechanism at the 
algorithmic level, given its effects on conceptual 
processing and behavior.  Without the presence of 
frame mechanisms, it is a challenge to explain many 
basic findings associated with conceptual processing. 

3.1.4.  Summary.  The evidence just reviewed for 
features and frame structure only begins to cover 
relevant findings.  As we have seen, however, 
conceptual knowledge appears to contain mechanisms 
for features and frame structure that play causal roles in 
conceptual processing.  Specifically, these mechanisms 
often mediate relations between conceptual stimuli 
(e.g., words, pictures) and diverse conceptual behaviors 
(e.g., filtering, categorization, mapping).  It is highly 
likely that such mechanisms also mediate between 
conceptual stimuli and distributed patterns of neural 
activity.  When voxel-wise modeling only establishes 
mappings between the computational and 
implementation levels, however, we have no 
understanding of the mechanistic representations that 
produced these mappings. 

3.2.  Multiple representations of conceptual 
information 

Different types of representations appear to 
implement concepts at the algorithmic level, each 
having different implications for conceptual 
processing.  Currently, three kinds of representation 
are receiving significant attention across diverse 
research communities in neuroscience and 
cognitive science:  (1) grounded representations in 
the modalities, (2) abstractions in association areas, 
and (3) distributed linguistic representations in the 
language system (Barsalou, 2016b).8  
Problematically, undifferentiated holistic patterns 
of neural activity don’t inform which kinds of 
representation operate in a particular setting, nor do 
they establish the roles that these representations 
play in conceptual processing, individually or 
together. 

3.2.1.  Grounded representations in the 
modalities.  Much behavioral and neuroscience 
research demonstrates that the modalities play 
central roles in grounding conceptual processes 
(e.g., Barsalou, 2008; Coello & Fischer, 2016a, 
2016b; De Vega, Glenberg, & Graesser, 2008; 
Kemmerer, 2015; Martin, 2007, 2016; Pecher & 
Zwaan, 2005).  When representing information 
about a concept, the brain reuses modality-specific 
resources to represent relevant information, 
including the representation of perceptual features, 
actions, and internal states (e.g., Anderson, 2010; 
Barsalou, 2016b).  When representing conceptual 
information about instances in their absence, the 
brain simulates likely states that the brain would be 
in if instances were present, thereby providing 
useful inferences about them.  Such simulations 
may often be unconscious, exhibit bias, vary widely 
in detail, be context-dependent, and reflect strong 
biological constraints (e.g., Barsalou, 1999, 2008, 
2016b). 

In cognitive neuroscience, pioneering research 
by Alex Martin and his colleagues demonstrated the 
activation of modality-specific regions during the 
conceptual processing of tools and animals (e.g., 
Martin, 2007, 2016).  When people represent a tool, 
for example, the fusiform gyrus becomes active to 
represent its shape; premotor cortex becomes active 
to represent action with it; parietal cortex becomes 
active to represent the trajectory of its manipulation; 
temporal cortex becomes active to represent its 
perceived motion.  From Martin’s theoretical 
perspective, the conceptual representation of a 
category emerges from neural activity across the 
distributed brain regions that process its features.  
Related to the research reviewed earlier on features, 
Martin’s work establishes the brain areas that 



 12 

implement features likely to play critical roles in 
conceptual processing at the algorithmic level. 

Subsequent research has produced many 
related findings, demonstrating that the conceptual 
representation of a feature often reuses relevant 
modality-specific resources.  When conceptual 
features for color are processed (e.g., yellow for 
BANANA), their representations often recruit color 
processing resources in the visual system (e.g., Hsu, 
Frankland, & Thompson-Schill, 2012; Martin, 
2016; Martin, Haxby, Lalonde, Wiggs, & 
Ungerleider, 1995; Simmons et al., 2007; Wang et 
al., 2013).  When conceptual features for sound are 
processed (e.g., loud for EXPLOSION), their 
representations often recruit processing resources in 
the auditory system (e.g., Bonner & Grossman, 
2012; Hoenig et al., 2011; Kiefer, Sim, Herrnberger, 
Grothe, & Hoenig, 2008; Trumpp, Kliese, Hoenig, 
Haarmeier, & Kiefer, 2013).  When conceptual 
features for the taste and pleasure of foods are 
processed (e.g., sweet for CHOCOLATE), their 
representations often recruit processing resources in 
the gustatory and reward systems (e.g., Chen, 
Papies, & Barsalou, 2016; Martin, 2016; Simmons, 
Martin, & Barsalou, 2005; van der Laan, de Ridder, 
Viergever, & Smeets, 2011).  When conceptual 
features of actions are processed (e.g., using the foot 
for KICK), their representations often recruit 
processing resources in the motor and spatial 
systems (e.g., Hauk, Johnsrude, & Pulvermüller, 
2004; Kemmerer, 2015; Martin, 2016; 
Pulvermüller, 2013).   When conceptual features for 
visual motion are processed (e.g., swaying for 
TREES), their representations often recruit motion 
processing resources in the visual system (e.g., 
Kemmerer, 2015; Martin, 2016; Watson, Cardillo, 
Ianni, & Chatterjee, 2013). 

Given the accumulation of evidence for 
grounded representations of these features and many 
others, it appears likely that most, if not all, kinds of 
feature representations draw on such resources.  
Indeed, even representations of abstract features 
such as mental state, magnitude, and self appear 
grounded (e.g., Barsalou, 2016b; Leshinskaya & 
Caramazza, 2016; Wilson-Mendenhall, Simmons, 
Martin, & Barsalou, 2013).  As described later in 
the section on conceptual flexibility, grounded 
representations do not always become active during 
conceptual processing, and thus are not obligatory.  
Importantly, however, modality-specific features are 
not unique in this regard.  No conceptual features 
appear obligatory during conceptual processing, 
with all features instead being subject to contextual 
influence (e.g., Lebois, Wilson-Mendenhall, & 
Barsalou, 2015; also see section 3.5 here). 

3.2.2.  Abstractions in association areas.  
For some time, evidence has been accumulating 
that the brain’s association areas also contribute to 
conceptual processing.  Evidence for this 
conclusion comes from establishing the brain areas 
that represent word meanings after controlling for 
word orthography and phonology (e.g., subtracting 
activations for carefully matched pseudo-words 
from activations for words). 

Introducing this methodological approach in 
classic work, Binder et al. (1999) found that 
semantic processing activated areas of the default 
mode network similar to those active during the 
resting state (including dorsomedial prefrontal 
cortex, posterior cingulate cortex, and angular 
gyrus).  Much subsequent research has similarly 
shown that association areas are typically active 
during conceptual processing.  In a meta-analysis 
across 120 experiments, Binder, Desai, Graves, and 
Conant (2009) found that semantic processing 
consistently activated association areas in the 
parietal lobes (angular gyrus, supramarginal gyrus, 
posterior cingulate cortex, ventral precuneus), in 
the frontal lobes (dorsomedial prefrontal cortex, 
ventromedial orbitofrontal cortex, lateral 
orbitofrontal cortex, left inferior frontal gyrus), and 
in the temporal lobes (middle temporal gyrus, left 
fusiform cortex, left parahippocampal cortex). 

Recently, Binder (2016) reviewed additional 
evidence showing that association areas become 
more active as the amount of conceptual processing 
increases.  Specifically, the above areas tend to 
become more active for familiar proper names and 
high-frequency words than for unfamiliar proper 
names and low-frequency words.  These areas also 
become more active when highly related and 
associated concepts are processed together than 
when less related and associated concepts are 
processed together.  Finally, processing concepts 
deeply activates these areas more than processing 
them shallowly.  Because association areas become 
increasingly active as conceptual processing 
increases, they again appear to be associated with 
conceptual processing. 

Across the evolution of monkeys and primates, 
association areas have expanded in size, while 
modality-specific systems have remained relatively 
constant (e.g., Buckner & Krienen, 2013).  This 
pattern suggests that association areas contribute to 
the impressive cognitive and social abilities of 
humans.  The further finding that association areas 
are consistently active during conceptual processing 
suggests that sophisticated conceptual processing is 
central to important human abilities. 



 13 

What specific roles might association areas 
play in conceptual processing?  According to 
Binder (2016), association areas contain 
conjunctive neurons that integrate features for a 
concept across the modalities, thereby 
implementing abstraction and synthesis of 
grounded information (also see Damasio, 1989).  
Simmons and Barsalou (2003) similarly proposed 
that conjunctive neurons in association areas 
pattern topographically according to their similarity 
(as defined by overlapping feature information).  
More generally, Barsalou (2016b) suggests that 
association areas implement data compression of 
multimodal information, where compressions could 
take a variety of forms, including conjunctive 
neurons, prototypes, and/or principal components. 

The previously-mentioned findings that 
familiarity, frequency, relatedness, and depth of 
processing all increase activations in association areas 
implicates data compression (Binder, 2016).  If 
association areas implement data compression, then as 
conceptual processing increases, association areas 
should become more active (i.e., because the amount of 
compressed data being processed increases). 

Fernandino et al. (2016) offered additional 
evidence for this conclusion.  In their experiment, 
participants processed 900 words for concreteness 
during fMRI, whose meanings had been rated by 
other participants for the salience of color, shape, 
motion, sound, and manipulation.  When Fernandino 
et al. regressed BOLD activity for the words onto 
each of these five sensory-motor features, they 
found that the association areas reviewed earlier 
tracked their salience.  As the salience of sensory-
motor information increased, activation in 
association areas grew stronger.  Again, if 
association areas implement data compression, then 
as a concept contains more data relevant to a 
sensory-motor feature, association areas should 
become more active.  In a final analysis, Fernandino 
et al. assessed whether any brain areas tracked all 
five sensory-motor features together, and found that 
central areas of the default mode network did so 
(anterior and posterior regions along the cortical 
mid-line, bilateral angular gyrus).  These results 
again suggest that association areas represent 
abstractions of grounded features via some form of 
data compression. 

A related possibility is that the anterior 
temporal lobes have a special status in representing 
abstractions associated with concepts.  According 
to hub-and-spoke theories, conjunctive neurons in 
the anterior temporal lobes integrate grounded 
features across the modalities (e.g., Lambon Ralph, 
Sage, Jones, & Mayberry, 2010; Patterson, Nestor, 

& Rogers, 2007; Reilly, Peelle, Garcia, A., & 
Crutch, 2016; Rogers & McClelland, 2004).  In 
contrast to other theories that focus on a wider set 
of association areas, hub-and-spoke theories 
propose that abstractions for all concepts reside in 
the anterior temporal lobes.  Other researchers 
propose instead that anterior temporal lobes only 
contain conjunctive neurons for certain kinds of 
concepts, such as those for individuals and social 
cognition (e.g., Binder, 2016; Drane et al., 2008; 
Martin, 2016; Martin, Simmons, Beauchamp, & 
Gotts, 2014; cf. Wong & Gallate, 2012). 

Still another possibility is that association 
areas represent abstract features and relations 
associated with concepts (Barsalou, 2016b; Binder, 
2016; Jamrozik, McQuire, Cardillo, & Chatterjee, 
2016; Leshinskaya & Caramazza, 2016; Wilson-
Mendenhall et al., 2013).  From this perspective, 
abstract features associated with self, mental states, 
thematic roles, integrated event structure, and so 
forth are represented in association areas.  As these 
features become active for relevant concepts, 
association areas become active to represent them. 

Much remains to be learned about 
contributions of association areas to conceptual 
processing.  Clearly, however, they are robustly 
active during conceptual processing, suggesting 
that they play central roles. 

3.2.3.  Distributed linguistic representations.  
Finally, considerable evidence implicates distributed 
linguistic representations in conceptual processing 
(e.g., Andrews, Frank, & Vigliocco, 2014; Andrews, 
Vigliocco, & Vinson, 2009; Barsalou, 2016b; 
Connell & Lynott, 2013; Louwerse, 2011; Louwerse 
& Connell, 2011; Zwaan, 2016).  In the spirit of 
Latent Semantic Analysis and related approaches 
from computational linguistics (e.g., Baroni & 
Lenci, 2010; Erk, 2012; Landauer et al., 2013), 
words associated with a concept provide information 
about its meaning (e.g., word associates of 
BICYCLE, such as wheel, ride, helmet, and 
exercise).  When processing a concept, associated 
word forms become active, providing useful 
information about it.  Although meanings for these 
word forms may not become active, the word forms 
alone (phonological, orthographic) may nevertheless 
provide useful information for performing the 
current task. 

Consider an empirical finding that illustrates 
how distributed linguistic representations play 
causal roles at the algorithmic level.  In Solomon 
and Barsalou (2004), participants were asked to 
verify parts of objects.  On each trial, they received 
an object word followed by a property word and 
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had to indicate whether the property was a part of 
the object (e.g., CAT-claw, BATHTUB-drain).  
Although all participants received the same 100 
true pairs, two different groups received 
unassociated vs. associated false pairs, respectively, 
where unassociated false pairs included PLIERS-
river and BRIEFCASE-wick, and associated false 
pairs included CAT-litter and TABLE-furniture. 

When participants received unassociated false 
trials, the best predictor of reaction times and errors 
on true trials was the associative strength between 
object and part words.  When the other group of 
participants received associated trials, however, the 
best predictor of reaction times and errors on true 
trials was the size of the part (as the part became 
larger, performance declined).  This pattern of 
results suggests that distributed linguistic 
representations controlled performance when false 
trials were unassociated, whereas grounded visual 
representations controlled performance when false 
trials were associated.  Specifically, when false 
trials were unassociated, participants simply needed 
to determine whether the object and property words 
were associated or unassociated—information that 
is available in distributed linguistic representations.  
When the object and property words were 
associated, participants responded true; when they 
were unassociated, they responded false.  Because 
associative strength between the two words 
perfectly predicted correct performance, 
participants could use this linguistic information to 
make decisions.  Conversely, when false trials were 
associated, associative strength between the object 
and property words no longer predicted correct 
performance, given that the words for both true and 
false properties were associated with their 
respective object words.  Instead, participants had 
to consult another source of knowledge—grounded 
visual representations—to assess whether the 
object physically contained the property as a part 
(explaining why property size became important). 

Kan, Barsalou, Solomon, Minor, and 
Thompson-Schill (2003) replicated this experiment 
using fMRI, and found that a fusiform area 
associated with imagining objects only became 
active with associated false trials, not with 
unassociated false trials.  Again, participants 
appeared to be using grounded visual 
representations when associated false trials made 
using this kind of representation necessary, but used 
distributed linguistic representations when 
unassociated false trials made using this kind of 
representation possible instead.  Increasingly, 
results like these demonstrate that distributed 
linguistic representations contribute to conceptual 

processing under relevant conditions. 
3.2.4.  Summary.  As we have seen, different 

types of representations contribute to conceptual 
processing.  Undoubtedly, they work together 
rather than independently.  Nevertheless, we know 
relatively little at this point about how they work 
together.  One finding is that distributed linguistic 
representations appear to operate initially as 
heuristics, with “deeper” simulations being used 
when accurate and detailed conceptual knowledge 
is required (e.g., Barsalou, Santos, Simmons, & 
Wilson, 2008; Connell & Lynott, 2013; Glaser, 
1992; Kan et al., 2003; Paivio, 1986; Solomon & 
Barsalou, 2004; Zwaan, 2016).  A related 
possibility is that abstractions in association areas 
are also used as preliminary heuristic 
representations when deeper representations are not 
necessary (e.g., Binder, 2016; Patterson et al., 
2007).  Alternatively, abstractions may primarily 
serve to index and activate grounded 
representations (e.g., Damasio, 1989; Simmons & 
Barsalou, 2003). 

Clearly, we have much to learn about how 
these different representational systems interact to 
produce conceptual processing at the algorithmic 
level.  Successfully addressing this issue is likely to 
become one of the most important goals in 
establishing the neural bases of conceptual 
processing.  When, however, voxel-wise modeling 
only address mappings between the computational 
and implementation levels, we gain no insight into 
the specific representational mechanisms that 
produced the mapping, nor how they did so. 

3.3.  Knowledge-based inference 
Researchers who study conceptual processing 

often propose that a fundamental purpose of having 
a conceptual system is to produce useful inferences 
(e.g., Barsalou, 2012; Murphy, 2002).  Consider the 
conceptual process of categorization.  Rather than 
being an end in itself, categorization is the gateway 
to knowledge that produces diverse inferences 
essential for perception, cognition, and action.  
Once one knows that a perceived entity is an apple 
instead of a tennis ball, for example, different 
understandings of its origins and morphology 
follow, as well as different actions for using it 
effectively.  “Going beyond the information given” 
is what makes an active agent intelligent and 
effective (Bruner, 1973), and this is indeed what 
conceptual processing is typically all about.  Not 
surprisingly, one of the most central themes in 
modern cognitive science and neuroscience is the 
fundamental importance of prediction across 
intelligent activities (e.g., Bar, 2007, 2009; 
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Barsalou, 2009; Clark, 2013; Friston, 2010).  
Conceptual knowledge is typically the source of 
these predictions. 

Problematically, however, mapping concepts at 
the computational level to neural activity at the 
implementation level doesn’t inform us about 
inference.  Not only do we learn nothing about the 
mechanisms that implement inference at the 
algorithmic level, we have no idea whether the neural 
activations we observe at the implementation level 
reflect the concepts presented on a task vs. inferences 
that go beyond them (e.g., in maps of semantic 
selectivity, such as those in Huth et al., 2016). 

3.3.1.  Knowledge-based inference during 
situated action.  Effectively pursuing goals during 
situated action requires extensive supporting 
inferences.  Figure 6 summarizes this important 
class of inference processes.  In memory, thousands 
of event frames represent the typical content of a 
particular type of event, including its typical 
settings, objects, people, agents, goals, bodily 
states, emotions, actions, and outcomes (Panel A).  
In the current situation, entities and/or events 
activate the most relevant event frame in a 
Bayesian manner (in Panel B, a familiar setting and 
an object activate the best-fitting event frame, via 
priors and likelihoods).  Once the event frame 
becomes active, it generates inferences about other 
likely elements of the situation present or likely to 
follow (Panel C). 

On encountering an apple at a seminar, for example, 
an event frame for eating becomes active.  Besides 
generating the general inference that an eating event might 
follow, the event frame’s activation generates many 
specific inferences about the event not yet observable 
(going beyond the information given).  For example, the 
active event frame might suggest:  (1) the goal of 
consuming the apple, (2) actions useful for consuming it, 
(3), the bodily state of hunger as a condition for 
consumption, (4) a pleasant taste and positive emotion 
during consumption, and (5) hunger reduction and health 
benefits as outcomes. 

Considerable research in cognitive science and 
neuroscience supports this general account of 
knowledge-based inference during situated action.  
As we saw earlier (3.1.3), frames are often viewed as 
a uniform type of representation that underlies 
conceptual knowledge, with frames for events playing 
central roles in integrating conceptual processing 
(e.g., Barsalou, 1992, 1999; Fillmore, 1985; Gentner, 
1983, 2010; Löbner, 2014).  From this perspective, 
event frames in memory are abstracted from relevant 
populations of events experienced in the world (e.g., 
Barsalou, 2003b, 2016c, 2016d; Barsalou, 

Niedenthal, Barbey, & Ruppert, 2003).  On later 
encountering an element of a familiar event, the best-
fitting frame becomes active in a Bayesian manner to 
generate multimodal predictions about what is likely 
to unfold in the current situation (e.g., Barsalou, 
2009, 2011). 

Much evidence demonstrates the wide variety 
of knowledge-based inferences generated from 
event frames to support situated action.  Consider 
three such inferences.  On encountering a familiar 
setting, a relevant event frame becomes active to 
generate inferences about likely objects present 
(e.g., Bar, 2004; Biederman, Mezzanotte, & 
Rabinowitz, 1982; Biederman, Rabinowitz, Glass, 
& Webb, 1974; Palmer, 1975; Yeh & Barsalou, 
2006).  On encountering a kitchen, for example, 
one expects to find food and utensils; on 
encountering a park, one expects to find walking 
paths and dogs.  Conversely, one expects to find 
certain kinds of objects in specific settings, such as 
encountering bicycles on roads.  Computational 
models that explain the interaction between 
bottom-up and top-down processing offer elegant 
accounts of setting-object inferences (e.g., 
McClelland & Rumelhart, 1981; Rumelhart & 
McClelland, 1982; Van Dantzig, Raffone, & 
Hommel, 2011). 

Evaluative inferences constitute a second 
fundamental form of situated inference.  On 
encountering a familiar object or event, the brain 
immediately produces an evaluation of it.  Most 
basically, evaluative inferences provide 
information about affective valence:  Is the 
perceived object or event something that is liked or 
disliked (e.g., Barrett & Bliss‐Moreau, 2009; 
Russell, 2003)?  Is the entity or event something 
that should be approached or avoided (e.g., Carver, 
2006)?  In what ways is the entity or event self-
relevant (e.g., Baumeister, 1998; Northoff et al., 
2006)?  Diverse behavioral paradigms demonstrate 
the central roles of evaluative inferences that occur 
habitually and immediately on encountering 
familiar entities and events (e.g., De Houwer, 
Thomas, & Baeyens, 2001; Herring et al., 2013; 
Hofmann, De Houwer, Perugini, Baeyens, & 
Crombez, 2010).  As this work further illustrates, 
the valence of a stimulus can be conditioned 
rapidly, later producing evaluative inferences that 
control behavior.  In neuroscience, much is known 
about the pathways that produce evaluative 
inferences, with orbitofrontal cortex and the ventral 
striatum playing central roles (e.g., Berridge, 
Robinson, & Aldridge, 2009; Rudebeck & Murray, 
2014; Wilson, Takahashi, Schoenbaum, & Niv, 
2014).  On perceiving a familiar object or food, for 
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example, visual processing rapidly projects to 
orbitofrontal cortex, producing an immediate 
evaluation of the object (e.g., Chaumon, Kveraga, 
Barrett, & Bar, 2014; Chen et al., 2016; Lebrecht, 
Bar, Barrett, & Tarr, 2012). 

Affordances constitute a third fundamental form 
of situated inference.  On encountering a familiar 
object, the brain immediately produces inferences 
about actions that can be used with it to achieve 
desirable goals.  On encountering a hammer, for 
example, one’s dominant hand may prepare to grasp 
the handle with a power grip, and then to 
subsequently swing the hammer, thereby achieving its 
typical function of pounding a nail.  Although the 
action is often not executed, an implicit simulation of 
the object occurs that represents inferences about its 
typical use, which could be potentially useful to 
undertaking a goal in the current setting, or to 
understanding another agent’s intentions.  Since 
classic behavioral research by Tucker and Ellis 
(1998), numerous behavioral researchers have 
demonstrated affordances in diverse ways (for a 
review, see Caligiore, Borghi, Parisi, & Baldassarre, 
2010).  Since classic neuroimaging research by Chao 
and Martin (2000), much neuroscience evidence has 
similarly accumulated for the generation of motor 
affordances to objects (e.g., Lewis, 2006). 

Many additional kinds of knowledge-based 
inferences underlie situated action beyond the three 
just reviewed here (for further examples, see 
Barsalou, 2016d).  Notably, such knowledge-based 
inferences must have occurred continuously and 
frequently as Huth et al.'s (2016) participants listened 
to stories.  The voxel-wise modeling performed, 
however, did not identify the neural activity 
associated with these inferences, nor establish the 
mechanisms responsible for producing them. 

3.3.2.  Event inferences during language 
comprehension.  Psycholinguistics has also 
produced extensive evidence for knowledge-based 
inference during event processing, at least since the 
classic work of Bransford and Johnson (1972, 
1973).  As people comprehend language, they 
produce extensive inferences from words, phrases, 
and sentences that go beyond the linguistic forms 
presented.  On reading that Mary pounded a nail 
into the wall, for example, readers infer that a 
hammer was probably used and that the nail’s 
orientation was probably horizontal (e.g., Graesser, 
Singer, & Trabasso, 1994; Stanfield & Zwaan, 
2001; Zwaan & Radvansky, 1998). 

Research by McRae, Elman, Hare, and their 
colleagues offers a particularly thorough account of 
event inferences during language comprehension 

(e.g., Hare, Jones, Thomson, Kelly, & McRae, 
2009; Metusalem et al., 2012).  In a typical 
experiment, participants received a word prime that 
described some feature of an event.  Following a 
short SOA (e.g., 250 ms), participants received a 
target word that described another event feature, 
and then performed a semantic judgment on the 
word (e.g., evaluating its animacy or concreteness).  
In some experiments, for example, participants 
received the name of an event, followed by a 
typical value of an event attribute (e.g., TRIAL-
judge).  Relative to a matched baseline, the time to 
evaluate the target was typically facilitated by 
about 30 to 60 msec.  According to these 
researchers, activating the concept for the word 
prime activated the associated event frame, 
together with its attributes and typical values, 
which then facilitated reading words for these 
values.  Reading TRIAL, for example, activated the 
TRIAL event frame, which in turn activated the 
attribute for AGENT, which in turn activated the 
value for judge. 

Additionally, these experiments demonstrated 
that reading the word for one attribute value typical 
of an event frame propagated activation to 
correlated attribute values of the same event.  
Priming classroom as the SETTING attribute of the 
SCHOOL frame, for example, activated student as a 
value of the AGENT attribute.  Across numerous 
experiments in multiple articles, these researchers 
demonstrated knowledge-based inferences for many 
of the attributes illustrated in Figure 6. 

3.3.3.  Summary.  As we have seen, 
knowledge-based inferences make situated action 
possible.  Once something in the current situation 
activates relevant knowledge, inferences follow 
that support perceptual anticipations, relevant 
goals, appropriate actions, and desired outcomes.  
The constant interplay between perception, 
knowledge, action, and outcomes produces a 
continual stream of inferences that make intelligent 
action effective and efficient. 

It is difficult to imagine how this constant 
interplay works without postulating mechanisms at 
the algorithmic level.  Not only are mechanisms for 
specific knowledge structures relevant (e.g., event 
frames), so are numerous mechanisms for 
activating these structures, generating inferences 
from them, tracking inference accuracy, making 
corrections when necessary, and learning from 
experience.  Without accounts of such mechanisms, 
we know nothing about perhaps the most central 
role of conceptual processing in intelligence, 
namely, to support situated action. 
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3.4.  Concept composition 
Although concepts and meanings are often 

studied in isolation for the purpose of experimental 
control, they rarely occur in isolation when 
encountered during everyday activity.  When 
processing a concept that represents an element of a 
perceived scene, it is typically processed together 
with concepts that represent other aspects of the 
scene and their integration (3.3.1).  When 
processing the meaning of a word encountered in 
spoken or written language, it is typically processed 
together with the meanings of other words in the 
same phrase, sentence, and text (3.3.2). 

The composition of concepts to create larger 
conceptual representations implicates another 
central set of mechanisms at the algorithmic level.  
When perceiving a scene, compositional 
mechanisms integrate the concepts describing its 
elements and integration.  When understanding 
language, compositional mechanisms integrate the 
meanings of relevant linguistic units.  Importantly, 
composition doesn’t simply result from storing and 
activating patterns of co-occurring concepts, but 
instead reflects productive mechanisms capable of 
producing infinite compositions, including many 
novel ones never experienced (e.g., Barsalou, 1999; 
Fodor & Pylyshyn, 1988).  Typically, frames play 
central relational roles in integrating concepts into 
larger more complex structures that enable 
productive composition.  Much recent research 
across the cognitive sciences addresses 
compositional mechanisms (e.g., Werning, Hinzen, 
& Machery, 2012; Winter & Hampton, in press). 

 3.4.1.  Integrative priming.  Recent findings 
from Estes and Jones (2009) demonstrate how natural 
and pervasive composition is in conceptual 
processing.  Using the phenomena of integrative 
priming, Estes and Jones demonstrated how the 
activation of a concept immediately generates 
inferences and processing machinery relevant to 
combining itself with other concepts present.  
Because concepts are almost always processed 
together in compositions, these inclinations to 
combine should not be surprising. 

On the critical trials in Estes and Jones’ 
experiments, participants first received a word 
prime for 500-2000 msec, and then received a letter 
string in a lexical decision task.  Of primary interest 
were trials where the critical letter string contained 
a word that could be integrated with the prime, but 
that shared no overlapping features with it, nor any 
measurable association (e.g., when the prime was 
FARM, and the target was mouse).  Relative to 
various baselines, Estes and Jones observed 

significant facilitation while making lexical 
decisions on these trials, in the range of about 15-
50 msec.  Notably, these facilitation effects were 
comparable to those in other conditions when the 
prime and target shared overlapping semantic 
features or exhibited strong associative strength. 

Estes and Jones explain integrative priming 
effects as follows.  When participants read a prime 
word, they not only activate features of its meaning, 
but also thematic relations typically associated with it 
(e.g., relations from relevant frames).  When reading 
the prime FARM, for example, a locative relation 
becomes active, specifying that FARM is a location 
attribute that takes other objects located there as 
values (e.g., crops, tractors).  Although mouse may 
not have co-occurred sufficiently often with FARM to 
establish a strong association with it, and although 
mouse and FARM do not share semantic features, a 
mouse is nevertheless something that constitutes a 
potential value of the locative relation associated with 
FARM’s meaning.  Thus, reading FARM followed by 
mouse implicitly forms a natural compositional 
structure of a mouse found on a farm. 

Other research on concept composition 
supports this account.  When researchers have 
assessed the thematic relations associated with 
nouns, they have found that some are more central 
to a word’s meaning than others (e.g., Gagné & 
Shoben, 1997; Gagné & Spalding, 2014; 
Wisniewski, 1997).  Thus, when two nouns are 
combined into a noun-noun phrase, the better they 
fit default thematic relations that become active 
initially, the faster they are combined (with the 
modifier’s thematic relations typically being more 
dominant than those of the head noun).  Consider 
the relative ease of comprehending KITCHEN floor 
vs. KITCHEN plan.  Because KITCHEN tends to 
prime a locative thematic relation faster than an 
instrument thematic relation, participants tend to 
process KITCHEN floor faster.  As for integrative 
priming, thematic relations appear to become active 
rapidly, anticipating composition with relevant 
concepts. 

3.4.2.  Non-linear composition.  When 
concepts combine, their combined meaning could 
be a linear combination of their individual 
meanings.  Interestingly, however, linear 
combination rarely seems to occur, ruling out 
certain classes of compositional mechanisms at the 
algorithmic level and implicating others (e.g., 
Costello & Keane, 2000; Hampton, 1997, 2007; 
Medin & Shoben, 1988; Murphy, 1988; Wu & 
Barsalou, 2009). 

Consider an example of the non-linearity that 
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often occurs, along with implications for potential 
compositional mechanisms at the algorithmic level.  
When Wu and Barsalou (2009) gave participants 
object words and asked them to generate features of 
their meanings, participants overwhelmingly 
produced features from the objects’ exteriors, 
relative to their interiors.  When producing features 
of LAWN, for example, participants produced more 
external features such as green and blades than 
internal features such as roots and dirt.  
Interestingly, however, when another group of 
participants received LAWN combined with the 
modifier rolled-up (i.e., rolled-up LAWN), they 
produced more internal features than external 
features of LAWN.  Notably, this shift from external 
to internal features did not occur for all concept 
combinations, such as rolled-up SNAKE, indicating 
that the shift is not a simple linear function of the 
modifier. 

This pattern of results demonstrates, first, that 
the meaning of a concept composition is not a 
simple linear function of its individual word 
meanings.  If it were, then the relative proportion of 
external to internal features for a concept should 
remain constant across processing the head noun in 
isolation vs. processing it in a noun phrase.  
Instead, concept composition is often highly non-
linear, such that major shifts in feature salience 
occur. 

Second, these results suggest that occlusion 
mechanisms in the visual system contribute to 
concept composition via simulation and imagery.  
Wu and Barsalou predicted that when people 
produce features of an object, they typically 
construct a multimodal simulation of it, and then 
report the features that they perceive in the image.  
As a consequence, people tend to produce 
unoccluded features more easily than occluded 
features, which are less visible.  When people 
produce features for LAWN, they produce more 
external than internal features, given that external 
features are unoccluded (e.g., blades, green).  
Conversely, when objects are combined with 
modifiers such as rolled-up, a simulation of 
removing the external surface may be performed, 
such that internal features become more salient, and 
are thus produced more often (e.g., roots, dirt).  
Because simulating a rolled-up SNAKE doesn’t 
expose its internal features, the shift from external 
to internal features does not occur.  As this pattern 
of results suggests, simulation mechanisms can 
play important roles in determining whether the 
meanings of combined comments exhibit various 
patterns of feature salience. 

3.4.3.  Summary.  As we have seen, concepts 

combine with other concepts naturally and 
ubiquitously, with frames, thematic roles, and 
simulation playing important roles.  Again, it is 
difficult to imagine how concept composition could 
occur without postulating mechanisms at the 
algorithmic level.  Indeed, theoretical accounts of 
concept composition have universally included 
such mechanisms.  In the absence of such 
mechanisms, we understand little about the 
powerful human ability to construct infinite 
complex concepts, many of which have never been 
experienced. 

Finally, taking concept composition into 
account seems essential for successful neural 
encoding and decoding.  To see this, consider the 
design matrix for Huth et al.'s (2016) study in 
Figure 1B.  As can be seen, only context vectors for 
individual words were used as regressors to predict 
BOLD activity.  No regressors for the combinations 
of these words were included, even though each 
word was undoubtedly combined with others.  As a 
consequence, word lists, rather than coherently 
integrated phrases and sentences, established the 
basis for neural encoding.  Although word lists 
enable effective neural encoding to some extent, as 
Huth et al.'s (2016) Figure 1 illustrates, 
significantly better encoding would probably result 
if information about concept composition were 
included as well. 

3.5.  Conceptual flexibility 
For decades, flexibility has been a hallmark of 

conceptual processing.  Although researchers often 
adopt the idealization that a concept’s content 
remains constant, as in Huth et al. (2016), 
considerable evidence illustrates that it does not.  
As we just saw, for example, the information active 
for a concept like LAWN varies non-linearly across 
concept compositions that contain it, exhibiting 
conceptual flexibility as it adapts to accompanying 
words. 

3.5.1.  Further examples of conceptual flexibility.  
As Yeh and Barsalou (2006) review, conceptual 
flexibility has been demonstrated since the early 1970s 
across behavioral literatures associated with perception, 
memory, concepts, and language.  Several classic 
examples associated with semantic processing are 
described next. 

In Barclay, Bransford, Franks, McCarrell, and 
Nitsch (1974), participants were asked to 
comprehend sentences so that they could answer 
questions about them later.  For each critical word 
in the experiment, a given participant received it in 
one of two sentences that made different features of 
its meaning relevant.  For PIANO, the sentence, 
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“The man tuned the piano,” made features about 
the sound of PIANO relevant, whereas the sentence 
“The man lifted the piano,” made features about its 
weight relevant.  Of interest was whether these 
context sentences altered the features that became 
active for PIANO, or whether a stable set of 
features was active in each context.  To assess this 
issue, Barclay et al. gave their participants a 
surprise recall test, asking them to remember nouns 
from the sentences.  To facilitate recall, participants 
received cues relevant to both primed meanings of 
each target word (even though only one meaning 
had been primed for a given participant).  Cues 
relevant to PIANO, for example, were something 
with a nice sound and something heavy.  Barclay et 
al. found that words were best recalled on trials 
when participants were cued with phrases 
consistent with the meaning that had been primed 
for them during learning (e.g., when participants 
had studied the sentence, “The man lifted the 
piano,” something heavy produced higher recall of 
PIANO than something with a nice sound). 

In a verification paradigm, Barsalou (1982) had 
participants read sentences and then verify whether a 
property read after the sentence was true or false of the 
sentence’s subject noun.  If, for example, the 
sentence’s subject noun was BASKETBALL, 
participants might have to verify that floats was a 
property.  To assess conceptual flexibility, half the 
participants received a subject noun in a neutral 
sentence (e.g., “The BASKETBALL was well-worn 
from much use”), whereas the other half received it in a 
priming sentence (e.g., “The BASKETBALL was used 
as a life preserver when the boat sank”).  Of interest 
was whether priming the critical property with the 
sentence sped its subsequent verification.  Consistent 
with conceptual flexibility, a 145 ms priming effect 
occurred.  Drawing attention to a property of the 
subject noun with a sentence increased the property’s 
salience considerably, demonstrating that the noun’s 
representation varied dynamically with context.  In 
subsequent priming experiments with greater control 
and improved designs, Greenspan (1986) demonstrated 
similar findings (for review of additional priming 
experiments, see Yeh & Barsalou, 2006). 

Finally, Hampton (1988) found that category 
membership varies during conceptual composition, 
further demonstrating conceptual flexibility.  
When, for example, participants were asked 
whether chess belongs to the category of SPORTS, 
they tended to say no.  Interestingly, however, 
when participants were asked whether chess 
belongs to the category of SPORTS WHICH ARE 
ALSO GAMES (a more restricted category than 
SPORTS), the likelihood that chess was included 

surprisingly became larger (rather than becoming 
smaller).  Because chess is typically viewed as a 
GAME, the meaning of SPORTS in SPORTS 
WHICH ARE ALSO GAMES expanded toward 
GAMES.  Using the feature listing task, Hampton 
(1987) further demonstrated that the features active 
during these concept compositions changed to 
enable this expansion, again demonstrating 
conceptual flexibility (also see Hampton, 1997). 

3.5.2.  Recent proposals of conceptual flexibility.  
Although demonstrations of conceptual flexibility have 
been prevalent since the early 1970s, current 
researchers continue to echo similar themes strongly.  
Lebois et al. (2015), for example, argued that concepts 
do not have conceptual cores activated automatically 
across contexts.  In an initial literature review, they 
illustrated how classic phenomena associated with 
automaticity actually exhibit considerable flexibility 
and context-dependence (e.g., in Stroop, Simon, 
SNARC, attentional cuing, and grounded congruency 
tasks).  When processing a colour word such as “red” in 
the Stroop task, for example, the semantic feature red 
varies considerably in its accessibility across task 
contexts.  Rather than becoming active in an automatic 
ballistic manner, its accessibility varies with its 
relevance to the current task.  Lebois et al. further report 
experiments from the grounded congruency paradigm 
illustrating how the accessibility of salient spatial 
features in concepts varies across task contexts (e.g., 
high for SKY, low for DIRT; also see Santiago, Román, 
& Ouellet, 2011; van Dam, Brazil, Bekkering, & 
Rueschemeyer, 2014).  Lebois et al. concluded that 
concepts are constructed in a Bayesian manner, such 
that the information most likely to be incorporated into 
a concept on a given occasion reflects:  (1) information 
that has been frequently and habitually active for the 
concept previously (priors), (2) information that is 
relevant in the current context (likelihoods).  Because 
context can exert powerful effects on the information 
incorporated into a concept’s construction, it can 
override habitually associated information, such that 
conceptual cores aren’t observed across contexts. 

Connell and Lynott (2014) similarly proposed 
that every time a concept is represented, it is 
represented in a different manner.  Rather than a 
fixed stable representation always being retrieved 
across contexts, a novel representation is 
constructed, shaped by three constraints: (1) 
perception of the current situation and task 
demands, (2) distributed linguistic representations 
that shape conceptual representations and provide 
place holders (3.2.3), and (3) continuous change in 
the conceptual system over time in long-term 
memory.  As a result of these factors, no concept is 
ever represented the same way twice.  Casasanto 
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and Lupyan, (2015) similarly proposed that all 
concepts are ad hoc.  Rather than a concept being 
associated with static representation in memory, a 
unique representation is constructed on each 
occasion it is processed, reflecting a wide variety of 
current and long-term contributions from cognitive 
and social mechanisms.  For similar accounts, see 
Barsalou (1987, 1989, 1993), Barsalou et al. 
(2008), and Barsalou, Wilson, and Hasenkamp 
(2010). 

Finally, Yee and Thompson-Schill (2016) 
reviewed evidence that a concept’s content varies 
as a function of its long-term context, recent 
context, immediate context, and ongoing context.  
They further argued that a concept’s content cannot 
be separated from the contexts in which it occurs, 
with background contexts often being absorbed into 
a concept’s current form (Schwanenflugel, 1991; 
also see Barsalou, in press).  Finally, Yee and 
Thompson-Schill proposed algorithmic 
mechanisms capable of explaining these effects, 
drawing on the architecture of recurrent neural 
networks. 

3.5.3.  Summary.  As we have seen, concepts 
exhibit considerable flexibility.  Rather than a static 
concept representing a category, temporary 
conceptualizations of the category are constructed 
dynamically across situations, adapting to current 
constraints.  As we have also seen, researchers 
propose that many mechanisms underlie flexibility, 
including grounded representations, distributed 
linguistic representations, features, frames, 
recurrence, and various memory processes.  Again, 
it seems difficult, if no impossible, to explain 
conceptual flexibility without postulating 
mechanisms at the algorithmic level.  Without such 
accounts, we understand little about how concepts 
are constructed flexibly across the situations in 
which they are processed. 

Finally, taking conceptual flexibility into 
account seems essential for successful neural 
encoding and decoding.  To see this, consider 
Figures 3 and 4, showing Huth et al.'s (2016) 
results for semantic selectivity and semantic tiling, 
respectively.  As can be seen, these figures depict 
static semantic maps that do not change across the 
contexts in which a word’s meaning is processed.  
Thus, one problem for this account is that it doesn’t 
capture a basic fact about semantic processing:  
The semantic representation of a word changes 
with context.  Additionally, this approach sanctions 
the mistaken assumption that concepts take static 
forms. 

Another more practical problem is that failing 

to incorporate conceptual flexibility limits the 
success of neural encoding and decoding.  If one’s 
goal is to decode a neural state, for example, then 
anticipating and utilizing conceptual flexibility 
should be useful if not essential.  Because a concept 
takes different forms in different situations, optimal 
decoding should occur when the concept’s 
predicted neural pattern matches the contextualized 
pattern that occurs. 

One possibility would be to map every composition 
containing the same concept into a different neural state 
over the course of voxel-wise modeling, essentially 
constructing a large library of states for a concept across 
all its compositions.  A problem with this approach, 
however, is that it doesn’t productively predict the neural 
states for new combinations.  An alternative would be to 
develop theories of compositional mechanisms at the 
algorithmic level that can be used to productively 
represent and predict neural states at the implementation 
level.  Rather than simply using a look-up table, neural 
encoding and decoding would utilize predictions based on 
the algorithmic mechanisms likely to be operating. 

4. Conclusions 
As we have seen, decades of research across 

diverse research communities have established 
representation and processing mechanisms at the 
algorithmic level that produce conceptual 
processing.  Specifically, we have seen evidence 
for mechanisms associated with features and frame 
structure, multiple representations, knowledge-
based inference, concept composition, and 
conceptual flexibility.  Clearly, much remains to be 
learned about each class of mechanisms, and we 
are far from having anything close to an adequate 
account of the algorithmic mechanisms that 
produce conceptual and semantic processing.  
Many other mechanisms not covered here are 
certainly relevant as well.  Furthermore, some of 
the mechanisms proposed here could be incorrect, 
or at least in significant need of revision.  
Nevertheless, it would be quite surprising if 
conceptual processing could be explained 
successfully without incorporating mechanisms like 
those reviewed here. 

Again, one might argue that we don’t need 
algorithmic accounts of conceptual processing.  
Perhaps mappings between the computational 
(task) level and the implementation (brain) level 
will be sufficient (Figure 5A).  Perhaps distributed 
neural states constitute the critical algorithmic 
mechanisms (Figure 5C).  Arguments like these 
didn’t succeed for Behaviorism prior to the 
Cognitive Revolution, however, and are unlikely to 
succeed for what again might be called 
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Neurobehaviorism.  Mechanisms have traditionally 
played central roles across the sciences, and 
undoubtedly play central roles in neuroscience as 
well (e.g., Bechtel, 2008, 2009; Bechtel & 
Abrahamsen, 2005; Bechtel & Shagrir, 2015).  
From atomic particles in physics, to genetics in 
biology, to representations and processes in 
cognitive science, postulating mechanisms and 
testing hypotheses about them has played central 
roles throughout the history of science. 

4.1.  Voxel-wise modeling provides traces—not 
explanations—of semantic processing 

Assuming that mechanisms at the algorithmic 
level produce semantic processing, what does the 
voxel-wise modeling associated with neural encoding 
and decoding accomplish?  Most obviously, it develops 
effective tools for predicting neural states from stimuli, 
and for inferring presented stimuli from neural states 
(e.g., Haxby et al., 2014; Huth et al., 2016; Naselaris et 
al., 2011; Weichwald et al., 2015). 

Less obviously, voxel-wise modeling provides 
traces at the implementation level of mechanistic 
processing at the algorithmic level.  If one assumes 
that algorithmic mechanisms produce semantic 
processing, then voxel-wise modeling establishes 
how various brain areas participate in mechanistic 
activity.  In Huth et al., for example, we saw that 
voxel-wise modeling establishes how the cortical 
surface responds to computational-level descriptions 
of animacy and concreteness (although “animacy” 
and “concreteness” might not actually be the most 
accurate ways of describing these complex 
dimensions).  Critically, however, the actual 
mechanisms that represent and implement animacy 
and concreteness in conceptual processing remain 
unclear.  Voxel-wise modeling only tells us what 
parts of the brain become active when concepts 
related to these external descriptors are processed.  It 
doesn’t tell us what functions these brain areas 
perform mechanistically.  Because no proposals about 
mechanisms have been made or tested, neural voxel-
wise modeling tells us nothing about them. 

Furthermore, the traces left behind by 
mechanistic processing most likely reflect the specific 
content active for concepts during the specific time 
period when voxel-wise modeling was performed, 
rather than establishing “deep” invariants of 
conceptual content.  Because conceptual processing is 
flexible, adapting to current task conditions, it 
produces context-specific traces that reflect current 
task conditions.  In Huth et al. (2016), for example, 
we saw that the semantic selectivity of tile LPC R5 
appeared to reflect the  specific content processed in 
the autobiographical narratives (i.e., relatives 

discussing criminal activity).  When training with a 
different set of texts (e.g., philosophers vacationing 
on a cruise), the observed semantic selectivity of an 
area might change considerably. 

As mentioned earlier, much other research 
using the techniques of voxel-wise modeling does 
address specific mechanisms, attempting to 
establish them in the brain.  In the absence of a 
mechanistic orientation, however, voxel-wise 
modeling only establishes traces of the mechanistic 
processing engaged by stimulus and task structures 
operative during voxel-wise modeling. 

4.2.  Understanding conceptual and semantic 
processing in the brain 

Presumably, it is important to establish the 
neural mechanisms that produce semantic 
processing, specifically, and conceptual processing, 
more generally.  If we want to understand how the 
brain implements semantic and conceptual 
processing, it seems essential to understand the 
mechanisms responsible for these remarkable 
abilities.  Otherwise, how do we explain the brain’s 
natural capacity to produce them? 

Cognitive science offers one obvious source of 
potentially relevant mechanisms.  As we have seen, 
researchers across the cognitive sciences have been 
proposing and testing mechanisms of conceptual 
processing for decades.  There is no shortage of 
cognitive mechanisms to explore in the brain. 

It is an intriguing question whether these kinds 
of mechanisms will ultimately turn out to be useful 
in explaining how the brain implements conceptual 
processing.  One possibility is that basic forms of 
these mechanisms will remain but evolve as they 
become better understood anatomically and 
physiologically.  Another possibility is that these 
mechanisms will be largely replaced with new 
information processing mechanisms that conform 
more closely to the principles of neural 
computation.  As we increasingly understand how 
specific forms of cytoarchitecture implement 
information processing activities, new constructs of 
representation and processing may enter the 
mechanistic vocabulary (Amunts & Zilles, 2015).  
It wouldn’t be surprising if both of these 
possibilities were realized to some extent.  What 
would be surprising, however, is discovering that 
information processing mechanisms of some kind 
aren’t necessary. 

Assuming that mechanisms remain important, 
it becomes essential to understand how the brain 
implements them, and how they work together to 
produce conceptual processing.  Rather than simply 
trying to localize these mechanisms in the brain, it 
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will be necessary to understand how they 
participate in coordinated systems to implement 
specific processes.  Not only will it be important to 
characterize the input, output, and functional role 
of a given mechanism, it will be important to 
specify the organized operation of interacting 
mechanisms, and the temporal dynamics of their 
joint activity.  Although fMRI has some ability to 
establish mechanisms and processing circuits in 
this manner, other neuroimaging methods such as 
EEG, MEG, and TMS will probably be necessary 
for establishing temporal dynamics successfully.  
Indeed, we may be into completely new 
technologies by the time we are ready to establish 
algorithmic processing effectively in the brain. 

Nevertheless, various areas of neuroscience 
research have begun establishing algorithmic 
networks successfully in this manner, including 
perception (e.g., Ince et al., 2015; Schyns et al., 
2009, 2016), conceptual processing (e.g., Mack, 
Love, & Preston, 2016; Mack, Preston, & Love, 
2013), and decision making (O’Doherty, Hampton, 
& Kim, 2007).  Additionally, methodological tools 
are increasingly being designed to establish 
algorithmic networks, including dynamic causal 
modeling (Friston, Harrison, & Penny, 2003), 
structural equation modeling (Gates, Molenaar, 
Hillary, & Slobounov, 2011; Molenaar, Beltz, 
Gates, & Wilson, 2016), and a variety of 
approaches adapted from mathematical psychology 
(Turner, Forstmann, Love, Palmeri, & Van 
Maanen, 2016). 

Finally, simply establishing intrinsic functional 
connectivity falls short of establishing algorithmic 
networks (e.g., Hansen, Battaglia, Spiegler, Deco, & 
Jirsa, 2015; Sporns, 2010; Yeo et al., 2011).  Rather 
than simply establishing correlated neural activity 
between related brain areas, further establishing each 
brain area’s mechanistic role in coordinated activity to 
implement a specific task is essential. 

4.3.  Integrating levels of explanation 
Following Marr (1982), understanding an intelligent 

activity, such as conceptual processing, is likely to 
require integrated explanations across the computational, 
algorithmic, and implementation levels.  Precise 
descriptions of stimuli, responses, and their relations at 
the computational level are certainly essential, as is 
establishing the corresponding neural regions that 
process them at the implementation level.  When, 
however, neuroscientists believe that mapping task 
descriptions to anatomical structures and physiological 
activity is sufficient for good neuroscience, they fail to 
appreciate that they probably haven’t achieved what they 
really care about.  They haven’t really established how 

the brain works.  Without specifying the mechanisms 
that make performance possible, the brain’s operation 
remains unexplained.  Furthermore, projects such as 
neural encoding and decoding are likely to become much 
more successful when they incorporate algorithmic 
mechanisms than when they rely solely on lengthy 
stimulus-response training and crowd sourcing. 

There is likely to be significant disagreement 
about this.  I predict, however, that neuroscience will 
never achieve its most basic goals until it focuses on 
mechanisms at the algorithmic level, and integrates 
them effectively with task descriptions, neural 
structure, and neural activity at the computational and 
implementation levels. 
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Figure Captions 
Figure 1.  Panel A illustrates the context vectors 

established for each of the 10,470 story words 
with respect to the 985 topic words (basis 
functions) in Huth et al. (2016).  Panel B 
illustrates the design matrix used to predict the 
BOLD signal during fMRI as participants 
listened to the stories.  To model neural 
selectivity for the 985 basis functions, the 
BOLD time course in each voxel was regressed 
onto the fluctuating values of each basis 
function across context vectors for the 
individual words.  See the text for further 
details. 

Figure 2.  Panel A illustrates the matrix of 
regression coefficients that Huth et al. (2016) 
computed during the regression analysis 
illustrated in Figure 1.  One regression 
coefficient was computed for the predictive 
relationship between each basis function and 
each cortical voxel.  Panel B illustrates the 
principle component analysis that Huth et al. 
performed to establish a low-dimensional 
semantic space.  At the group level, four 
components each explained significant variance, 
together explaining about 20% of the variance 
across basis functions.  Principle component 
analyses were also computed for individual 
participants (as illustrated in Figure 3), tending 
to explain about 35% of the variance.  See the 
text for further details. 

Figure 3.  Reproduction of Huth et al.'s (2016) 
Figure 2 (permission pending).  Panel a 
illustrates semantic interpretations of the four 
group components significant at the group level, 
two components at the time.  To interpret each 
pair of components illustrated, positions of 
clusters from the cluster analysis are embedded 
in the respective two-dimensional space.  Panel 
b illustrates maps of semantic selectivity across 
the cortex for one participant, with the color 
map indicating selectivity with respect to the 
three dimensions rendered.  Panel c illustrates 
semantic selectivity maps for three additional 
participants.  See the text for further details. 

Figure 4.  Reproduction of Huth et al.'s (2016) 
Figure 3, Panel c (permission pending), 
depicting a map of semantic tiles across the 
cortex (estimated from the group data).  Each 
colored tile represents a relatively homogenous 
region of voxels as measured by principle 
component scores, contrasting discretely with 
tiles containing a different pattern of relatively 
homogenous values.  This analysis establishes 
cortical regions of semantic prediction shared 
across participants.  See the text for further 
details. 

Figure 5.  Illustrations of explanatory levels adapted 
from Marr (1982).  Panel A illustrates omission of 
the algorithmic level in neural encoding and 
decoding, where the focus is on establishing 
relations between the computational and 
implementation levels for predictive purposes.  
Panel B illustrates representation and processing 
mechanisms at the algorithmic level central for 
conceptual and semantic processing.  Panel C 
illustrates reification of the implementation level 
at the algorithmic level, assuming that distributed 
patterns of voxel activity constitute 
representational mechanisms.  See the text for 
details. 

Figure 6.  Illustration of knowledge-based 
inference during situated action.  Panel A 
illustrates a general frame for an event and its 
attributes.   Panel B illustrates a setting and 
objects in the setting that activate a matching 
event frame in memory.  Panel C illustrates 
subsequent projection of inferences from the 
event frame back into the situation, establishing 
self-relevance, producing relevant bodily and 
motor states, and predicting likely outcomes.  
See the text for further details. 
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Footnotes 
 

1  Only 985 words were available at the time the work 
was done, not 1000.  For the current list, see:  
https://en.wiktionary.org/wiki/Appendix:1000_bas
ic_English_words 

2  The ability of each voxel’s 985 regression 
coefficients to explain its BOLD time course 
across the stories can be found at 
http://gallantlab.org/huth2016/ by clicking on 
the voxel and the displaying its value for model 
performance. 

3  For the full clusters, see page 33 in Huth et al.’s 
(2016) Supplementary Information. 

4  Although Huth et al. concluded that this 
component was uninterpretable, it might be 
construed as associated with external vs. 
internal information. 

5  To use the interactive tool, visit 
http://gallantlab.org/huth2016/ 

6  The construct of distributed is used in several 
different ways throughout this article.  In the above 
section and at many later points, a distributed 
pattern of activation refers to a distributed 
informational state across voxels established by 
voxel-wise modeling (during neural encoding 
and/or neural decoding).  Elsewhere, a distributed 
network refers to a set of local brain areas 
distributed throughout the brain that are central to 
implementing a task or process, with these areas 
perhaps being established through functional 
connectivity methods.  Note that these two senses 
of distributed can overlap, as when distributed 
patterns of activation occur within local areas of 
distributed networks.  Finally, a distributed 
linguistic representation (as described in 3.2.3) is a 
collection of linguistic forms (typically words) that 
operates as a construct at the computational and/or 
algorithmic levels, described shortly.  The specific 
form of distributed being used at a given point in 
the text should be clear from the context. 

7  A common criticism of psychological features is 
that they often appear to have the same status as 
the concepts they describe (e.g., the feature seat 
for the concept chair also appears to be a 
concept; cf. Binder et al., 2016).  One approach to 
this issue is to assume that concepts for objects 
and features similarly represent their respective 
referents in perception and/or simulation 
(Barsalou, 2003a; Wu & Barsalou, 2009).  
Whereas chair is a concept that describes an 
object, seat is a concept that describes a feature of 
a chair (and a similar feature of other related 
objects).  From this perspective, features are not 

 
constitutive of concepts but are simply related to 
them via various thematic relations, such as part-
of, made-of, etc. 

8  A fourth kind of representation, amodal symbols, 
is also of interest to some researchers, but is 
not addressed here for reasons provided in 
Barsalou (2016b). 
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Table 1.  Examples of words from the clusters in Huth et al.’s (2016) semantic analysis used to 
interpret the group principle components. 
  
 
CLUSTER REASONABLE QUESTIONABLE 
  
 
VISUAL  colour yellow stripes wide shaped  fur steel skull fielder cloth seal 
 
TACTILE fingers pinch soft smooth reach  clouds meters screens barrel sheets 
 
LOCATIONAL building stadium shops landscape  visitors golf evenings art company 
 
MENTAL  knew memories asleep experience  senses talked replies moments hadn't 
 
ABSTRACT qualities artificial intricate natural roots flesh environment hip folk 
 
NUMERIC four pair half drop cent per quarter  deck floors top purse sold 
 
EMOTIONAL fear anger hatred peaceful troubled alive truth nature religion illness speak 
 
TEMPORAL minute clock schedule arrive weekend  rumbling heading travel parking trip 
 
SOCIAL married relatives pregnant widow son  arrest suicide calls informed whom 
 
COMMUNAL community public culture society  male sons banker wealthy interests 
 
PROFESSIONAL office business bank meeting owner year school staying visit estate 
 
VIOLENT lethal painful die poison  pause tongue instantly reaction 
  
 
Note.  Clusters were originally reported in the Supplementary Information for Huth et al. (2016).  The assignment of words 
to the Reasonable and Questionable groups has been added here for illustrative purposes, and is not from the original report. 
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