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ABSTRACT

Context-awareness has become a critical factor in improving
the predictions of user interest in modern online TV recom-
mendation systems. In addition to individual user preferences,
existing context-aware approaches such as tensor factorization
incorporate system-level contextual bias to increase predict-
ing accuracy. We analyzed a user interaction dataset from
a WebTV platform, and identified that such contextual bias
creates a skewed selection of recommended programs which
ultimately locks users in a filter bubble. To address this issue,
we introduce the Twitter social stream as a source of external
context to extend the choice with items related to social media
events. We apply two trend indicators, Trend Momentum and
SigniScore, to the Twitter histories of relevant programs. The
evaluation reveals that Trend Momentum outperforms SigniS-
core and signalizes 96% of all peaks ahead of time regarding
the selected candidate program titles.
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INTRODUCTION

With the rapid growth of Internet connectivity, movies and
videos are increasingly available online. Whilst streaming ser-
vices continuously expand their market share, channel-based
linear TV also remains very popular [17]. IP Television (IPTV)
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providers therefore typically offer their customers access to
both Live and VoD content. Recommenders in such TV sys-
tems play a key role in unburdening users from the choice of
whether to watch linear TV channels or browsing through a
confusingly vast catalog of recorded TV programs [28]. TV
program recommenders have their own unique characteristics
when compared with other recommending scenarios. Usually,
TV broadcasters try to incorporate their assumptions about
viewers preferences and habits in their schedule to achieve
high viewing figures. For example, news and weather reports
are mostly arranged in the morning while dramas and sports-
related content is generally scheduled in the evening or during
the weekend. Thus when we analyze users’ viewing behavior
in a linear TV scenario, the patterns we observe reflect the
arrangement of TV schedules to some degree. This charac-
teristic often limits the benefit of a traditional Context-aware
Recommender (CAR) for TV content since the observed user
preferences are highly biased by the broadcasted TV programs.

A CAR usually defines a system’s internally traceable auxiliary
information (e.g. “time of day”, “day of week”, “location”)
as contextual factors [9]. Using logged clickstream data with
detailed playback statistics, we analyze users’ viewing habits
in the “Vision” system, a production-level live and on-demand
streaming service used by a large Living Lab user community
at Lancaster University, UK. We find a significant portion
of the users’ consumption habits with respect to both live
linear and on-demand TV content to be attributed to contextual
bias. 1Tt is not surprising that recommendation algorithms
that reliably predict items according to this filter bubble bias
show high performance in laboratory tests. However, the
resulting recommendations can be monotonous and repetitive
to the end users. In order to escape from this self-fulfilling
prophecy, additional external information is required. In this
paper, we propose using TV domain relevant late-breaking
events detected from social media as an external contextual
factor to provide more diverse and precise recommendations.

Incorporating social media and crowd-sourced supplemental
attributes has become an increasingly popular approach in
recent recommender designs [41, 16, 27]. However, most so-
cial aware recommenders consider such factors only from the
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perspective of analyzing large-scale social graphs constructed
from user-item relations. Though methods known from time
series analysis such as “anomaly detection” and “trending top-
ics analysis” are widely used for use cases like earthquake
detection [35], breaking news event detection [29], and rep-
utation monitoring [39], they havn’t been attemped in social
source analysis in recommender area to our best knowledge.
There is a distinct lack of research investigating the utility
of hot events or trends in social media as a recommendation
factor. Our work make up for this vacancy by introducing
trend analysis of domain related social media streams as an
external contextual factor in a TV recommendation scenario.
At the same time, since no internal information is needed prior
to producing recommendations, the cold start problem with
new users is addresses by our approach.

The introduction of social media trends as an external con-
textual factor for TV recommenders involves a number of
challenges. For example, there is no concise statistical model
of a trend, though some work summarizes frequently used
features [33] and creates taxonomy of different trend types [4].
In addition, the relationship between the events in the social
domain (e.g. Twitter stream) and the Online TV domain (e.g.
users’ content browsing and playback activities) is not well
understood. To address these challenges, the present paper
makes two main contributions: 1) we provide quantifications
for the measurements of trend in both TV user watching data
streams and Twitter social media text streams; and 2) we show
that the trends detected in the Twitter social stream highly
cover peaks observed in the user data (but not necessarily vice
versa), proving it’s not contrary to user behavior and appli-
cable in a TV platform. Specifically, we use two indicators
known from stock market analysis — Trend Momentum [29]
and SigniScore [37] to capture the hotness of specific TV
programs in the “Vision” user data via their related Twitter
timelines, which we obtained by crawling the results from a
keyword based Twitter search. Through investigation of the
two parallel datasets, we identify the best hyper parameters
for both trend measures through a grid search. The quantified
evaluation of Omission rate (OR) and time difference between
the trend indication and consumption peaks demonstrates that:
1) Trend Momentum (TM) can better predict points of high
user demand in IPTV services; 2) OR can serve as a criterion
for filtering out the programs which do not lend themselves
well to the proposed approach.

The remainder of the paper is structured as follows. Sect. 2
summarizes related work on recommenders in TV services
and social trend analysis. Contextual bias within online TV
dataset is analyzed in Sect. 3, while the definition of external
context is introduced in Sect. 4. Our approach towards TV
domain trend analysis in Twitter streams combined with user
activity data is presented in Sect. 5. Finally, Sect. 6 evaluates
the trend measures and a conclusion and an outlook on future
work is given in Sect. 7.

RELATED WORK
In this section, we review the literature with respect to three
aspects: Recommender systems for IPTV services, the use

of contextual factors in recommenders, and trend analysis in
social networks.

Recommender System in IPTV Services

Recommender systems have been broadly applied by IPTV
providers to increase users’ Quality of Experience (QoE) when
they watch TV programs over the internet [S]. The classical
recommendation strategy Collaborative Filtering (CF) essen-
tially clusters users based on their choice of content in the
past [40] and infers potentially interesting items using similar-
ity between clusters [21]. Unfortunately neither item-based CF
nor user-based CF addresses the cold start problem, which
arises when a new user or item is added to the system with-
out any prior information on usage. A similar issue surfaces
for outlier content (i.e. gray sheep problem) and is highly
undesirable in the TV domain [15]. Solutions include using
demographic user information obtained from user profiles or
a linked social media account to generate group-based recom-
mendations for new users [7]. However, profile information
creates new concerns about user privacy, many systems thus
deploy hybrid algorithms that use Content-based Filtering
(CB) to compensate CF drawbacks.

In the TV domain, Electronic Program Guide (EPG) data
serves as a standardized source for CB models. The similar-
ity between programs is often calculated through semantic
analysis of their EPG descriptions [32, 6, 11]. Extensions
via online databases like Internet Movie Database (IMDb)
and DBpedia! [19] can help to enhance the descriptiveness of
representations. Given the availability of meta-data, a wide
range of well-known techniques from the field of information
retrieval and extraction are then employed to compute sim-
ilarity scores in textual feature space [2]. Nevertheless, CB
recommenders tend to over-specialize and constrain their rec-
ommendations to a filter bubble of similar items [6]. As a
result, recommenders often fail to adapt to new trends and
changes in user preferences.

Contextual Factors in Recommenders

Abreu et al. conducted a survey of TV viewer behaviors, ac-
cording to which more than half of the relevant determinants
for program selection depend on the situational context of
the user [1]. Furthermore, 60% of respondents state that the
presence of company and the available time are important
contextual factors to select a program. Context-aware recom-
mender algorithms, e.g. based on tensor factorization [24, 23]
incorporate time [26, 45, 9] or location [14, 28] as additional
parameters to encode contextual information. In addition,
some advocate to model the local social environment [43,
30] and propose strategies to improve recommendations in
households with multiple users sharing a single device [38].

Although existing context-aware approaches take influential
factors into consideration to improve diversity of recommenda-
tions, contextual bias still exhibits significant influence even in
state of the art model encodings [34]. The problem is mainly
attributed to the restriction of the training set to system-level
internal user behavior data. In the TV domain such contextual
bias from user behavior is more prevalent, because programs

! http://wiki.dbpedia.org last accessed Oct.23, 2016



are intentionally arranged by TV stations to match temporal
preferences and target audiences. To address this issue, we
extend the notion of context to domain relevant trends detected
in online social media streams like Twitter, such that the se-
lection presented to a user is not restricted to content that is
biased towards the usual choices at the specific moment in
time.

Social Trend Analysis

Defining “hot” events as trends in the external context of social
media creates the need for techniques such as trend detection
and prediction, which have been successfully applied to social
streams to identify trending topics [18, 31], political opin-
ions [42, 39], and news stories [46, 20]. Directly modeling the
time series with keyword co-occurrence [36] is a typical ap-
proach to detect and observe trending conditions. Others apply
clustering methods [3] and incorporate user authority informa-
tion to improve detection rate [10]. Qualitative examinations
by Asur et al. [4] reveal typical emergence and decay patterns
of twitter trends that can be exploited at model creation time,
e.g. when selecting sensible ranges for hyper parameter search.
Since 2015, Twitter provides an API endpoint for locally sen-
sitive trending topics® [22]. To quantitatively define the trend
indication, Lu and Yang introduce TM, a smoothed version of
Moving Average Convergence-Divergence (MACD) and use a
threshold crossing point as trend indication signal [29]. Mean-
while, Schubert et al. [37] propose a z-score based on Exponen-
tially Weighted Moving Average (EWMA) and Exponentially
Weighted Moving Average Variance (EWMAVar) as a quan-
titative measure of trendiness. However, to our knowledge,
there is currently no research adopting mentioned methods for
the purpose of TV program recommendation.

CONTEXTUAL BIAS

In this section, we introduce the concept of contextual bias
to the evaluation of recommender systems. We intuitively
explain its influence on user behavior using a concrete scenario,
namely the IPTV service “Vision”, operated by Lancaster
University.

The computation of recommendations is usually seen as a data
mining or machine learning task. Thus a specific evaluation
protocol and adequate metrics (like precision and recall) are
used to determine how well the predicted results fit with the
ground truth of static datasets (c.f. [12, 25]). Normally, the
more accurate the algorithm predicts missing values, the better
it is considered to be. Recommender algorithms taking into
account contextual factors in their models often outperform
“normal” approaches. This has been observed in some recent
studies where time is used to track the evolution of user pref-
erences [44] and to identify periodicity in user behavior [8].
However, once bias exists in the dataset, its fingerprint is visi-
ble in the statistical patterns allowing a targeted improvement
of recommendation quality. To the present date there has not
been extensive research on the impact of this bias information.
We analyze the phenomenon that users become increasingly
trapped in a limited selection of items and receive very few
new recommendations due to contextual bias.

Zhttps://dev.twitter.com/rest/reference/get/trends/place Oct. 26, 2016

In IPTV services, TV programs are often scheduled for a long
duration of one to several hours. Therefore, temporal bias of
users’ choices is more prevalent than in other services such as
YouTube. We use users’ behaviors as captured by “Vision” to
quantitatively analyze contextual bias in detail. In “Vision”,
TV programs are broadcasted as live TV and also recorded by
a cloud-based service for on-demand retrieval beyond their
original broadcast time. Users can decide themselves how and
when they retrieve arbitrary content. The dataset from “Vision”
contains fine details of user interactions with the service
including clickstream data and playback statistics (e.g., play,
pause, resume, etc). The dataset also encapsulates EPG data
of 106,710 programs videos from a set of 12,809 unique titles
over 23 genres and 62 channels. Over a period of 26 months,
2241 users made 204,920 requests to the site that are labeled
“live” (142,011) or “vod” (62,909) depending on how the
request was served. The cumulative playback duration over all
requests was about 90,000 hours, about a third of which were
streamed via Video-On-Demand (VOD). The majority of the
programs are provided with genre specification via EPG and
a third party TV catalog service. Exploration of this dataset
reveals typical “time of day” contextual bias in the selection
of channels, genres and programs in both Live and VOD mode.
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Figure 1: Frequency distribution on channels per “time of the
day” for VOD and live.

For visualization, we split a day by grouping every three hours
as a time segment, such that 8 time segments span a whole day.
Figure 1 shows the ranked frequency statistics of channels
(channels ranked after 5 are colored gray) in different time
segments. From such ranked channels under both live (upper
sub-figure) and VOD (bottom sub-figure) environment, we can
see that within each time segment, the top 5 out of 62 distinct
channels always hold more than half of the watching consump-
tion. Though the channels consumed in a live environment are
more diverse than under VOD, five most dominant channels
in each categorical time bin are already sufficient to make a



satisfactory suggestion for over half of the users of Live TV.
Regarding the VOD environment, the pattern is more obvious
that the rank of the top 5 channels is consistently E4, Channel
4 HD, BBC Three, ITV HD, and ITV2 over all time segments.
The observation is a typical example where relying on the
statistical property of temporal bias can serve as a “good” rec-
ommendation strategy for both linear Live TV and a VOD yet
at the expense of sacrificing diversity.

In Figure 2 we present a bar chart for the viewing frequency
statistics on genres with respect to “time of day” in both Live
and VOD consumption mode. Similar to our observations
regarding the channel popularity distribution, the top 5 genres
(Sitcom, Drama, Entertainment, Soap, Comedy) rank stably
under VOD in each time segment, while such a distribution is
slightly more diverse in the Live setting.
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Figure 2: Frequency distribution on genres per “time of the
day” for VOD and live.

In Figure 3, the frequency of viewing of the top 30 most re-
trieved programs is plotted (black dots) for each time segment
in both Live and VOD settings. The most viewed program
title and its proportion in this time category is also filled in
a box in the place near its own solid circle. In addition, the
percentage of the top 30 programs in each time segment is
also written as text in middle area of every sub-figure. The
frequency distribution of programs in each time segment de-
picts power law distribution. Out of 12,809 unique program
titles, the proportion occupied by the top 30 programs in each
temporal category ranges from 30% (21:00 - 24:00 in live
settings) to 56.6% (3:00 - 6:00 in live settings), with an out-
lier of 70.18% (6:00 - 9:00 in live settings). It appears that a
very small proportion (0.23%) of the programs attract around
30% to 50% of user playback requests within every temporal
category. This proves that contextual bias exists not only in
high-level user selections (such as channels and genres) but
also at the individual program-level.
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Figure 3: Frequency distribution on programs per “time of the
day” for VOD and live.

Figure 4 in the next page displays frequency statistics concern-
ing the time lag between airing and subsequent VOD request
for four popular programs over the whole time-span in the
dataset. We observe distinctive user behaviors on two types of
programs. First, programs like Gogglebox and Match of the
Day receive periodic attractions over a long period of time af-
ter their initial broadcast. This reflects the stable “time of day”
regularity, which we identified in Figure 3. For this type of
program, it makes sense to break its temporal bias and also rec-
ommend content at special moments determined by external
factors. Conversely, some programs such as This Morning and
Coronation Street can be grouped as the second type, which
receive most of their on-demand playback requests within the
first few hours after broadcast. Their popularity then suddenly
drops to a minimal level, and no obvious periodic pattern can
be caught. For these programs, only relying on system internal
record information limits the possibility of their appearance in
the recommendation list, thus introducing an external source
thereby creates new opportunities for them to come back to
users’ sight.

Our exploration of the user interaction data indicates some
strong contextual bias, which suppresses the diversity of rec-
ommendations in IPTV services. We thus introduce TV do-
main related trends in social media as an external contextual
factor to help the users escape from the unfavorable filter
bubble.

EXTERNAL CONTEXT

To address the problem of contextual bias, we opt to include
Twitter as external context source for TV domain recommen-
dation. Though Twitter is one of the most popular social media
platforms for second screen usage, its user base is eventually
heterogeneous and its applicability to the TV domain needs to
be evaluated. We obtained our data by crawling only tweets
related to relevant program names. To narrow the investiga-



GoggleBox

0 50 100 150 200
50 Match of the Day

0 50 100 150 200

This Morning

0 50 100 150 200

Coronation Street

0 50 100 150 200

Figure 4: Delayed hours of watching from the first time aired
for selected programs under VOD setting.

tion range, we select 12 titles from the 30 most requested TV
programs on the “Vision” platform and perform a Twitter key-
word search? to crawl Twitter histories. In total, the crawler
gathered 4.7 million tweets for the 12 TV programs across a 26
month period parallel to user request dataset. Detailed statis-
tics about the crawled tweets and user requests are provided
in Sect. 6.

We group tweets according to the associated program title into
one hour time bins. The histogram of tweets frequency in
each time bin is first drawn to tell whether Twitter data really
contains trend information regarding TV programs. Figure 5
depicts the frequency distribution of two typical kind of pro-
grams: EastEnders and Gogglebox. Programs like EastEnders
show a generally stable frequency throughout the observed
period, with rare bursts in the trending moments further called
peaks, i.e. timeslots with a significantly higher number of
tweets, that occur at uncertain points in time. In this case,
the trend information is particularly valuable, because it re-
flects the uncertain external trending moment rather than other
fixed bias regularity. On the other hand, Gogglebox represents
another kind of trend phenomenon. The peaks of these TV
programs in tweets even shows periodic regularities, which
often correlate with their airing time.
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Figure 5: Tweet frequency distribution of two selected
programs.

sl J v dodasdians (TN }

I

UBLHHMJ‘JW

3https://twitter.com/i/search/

Knowing that trends exist in the external source, we investi-
gate how trend information correlates with users’ behavior in
choosing programs to watch. In Figure 6, frequencies of user
requests for the program Coronation Street are plotted in red,
while the tweet frequency of the same program is plotted in
green. This data from a short period (1 week) of time series
demonstrates how both tweeting and playback request activ-
ities correspond to the same social events. A peak in tweet
frequency often follows a peak in playback requests, while
the rising flank of the tweet peak can actually happen ahead
of the peak in requests. Crossing points of Trend Momentum
and SigniScore w.r.t. the highest peak of program viewing
frequency have been marked in green and blue scatters respec-
tively, which show the forecasting effect of trend indicators in
Twitter regarding frequency peaks in TV user requests data.
Our ultimate aim is to use this earlier detection effect of Twit-
ter trends on user request peaks to improve recommendations.
To this end, the concept of both frends and peaks must be
quantified.
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Figure 6: Parallel comparison of data distributions between
tweets and user requests for program Coronation Street. The
two dots mark the threshold crossings of both trend indicators

closest to the center peak.

TREND MEASUREMENTS

To model the dynamics in popularity of a specific program
in both internal user request data and external tweet data, we
unify two concepts. First, a peak represents a point with
significantly higher number of tweets/requests compared to
the average number over the full period of discrete time-bins.
Second, a trend is described by the rising phase of a peak and
often appears shortly before the corresponding peak. That is
to say trends, the early indications of upcoming peaks, are
more valuable because they can help foretell an increase in
popularity of a program in the near future, such that users
receive recommendations for the program prior to its extensive
discussion in social media. At the end of our literature review,
we identified two promising trend measurements that can be
used in our scenario.

(n,k) z n— I]:Hx( ) (1)
MACD(n) = MA(n, kgyst) — MA(n, kgiow) 2)
TM(n) = MA(n, kfasl) MA(n, kslow)a 3)
Momentum(n) = MA(TM(n), ksmooth) )



The first one is the TM score listed in Eq. 3 proposed by Lu
and Yang [29]. It is a smoothed version of MACD stock trend
indicator and has been deployed to detect trending news in the
Twitter stream. The definition stems from the concept of Mov-
ing Average (MA) (as Eq. 1 shows), which captures at the n,
time bin, the average frequency of k previous time bins. Con-
sidering that this average is not enough to represent a rising or
decreasing trend, MACD (as shown in Eq. 2) utilizes the dif-
ference between the MA in k¢4 (shorter) time windows and
the MA in kg, (longer) time windows to determine whether
there is a trend appearing. In addition, with the discount pa-
rameter ¢ assigned as exponential term to longer period MA
in MACD, TM is defined as Eq. 3, and the sign change of
its value from negative to positive or reversely indicates the
appearance of a rising or declining trend. Furthermore, to
avoid a volatile condition, MA is applied again with a third,
even shorter time window kg, to further smooth the trend
indicator as presented in Eq. 4. Throughout the remainder of
this paper, we will simply use the name TM to refer to the
final Momentum value (Eq. 4). By using this measure of mo-
mentum, a trend is said to be emerging when there is a turning
point from negative to positive. Apart from the typical val-
ues recommended by the textbook, the four hyperparameters
(ktast» ksiows ksmoorn and ) can be tuned to improve accuracy
of predicting peaks.

A< x—EWMA )
EWMA <+ EWMA+a - A (6)
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s ) = D

€))

Another trend indicator as defined in Eq. 9 is called SigniScore
and was introduced by Schubert et al. [37]. It is also a member
of the MA family. With x being the frequency of occurrence
within a time bin, the definition of A in Eq. 5 represents the
deviation of this time bin from the EWMA calculated over
preceding bins. After the current time bin has been observed,
A is added to the EWMA in Eq. 6, where « is used as a
weighting factor, similar to a learning rate. Corresponding to
the accumulated mean, i.e. EWMA along the frequency stream,
the formula for the accumulated variance is given in Eq. 7.
As shown in Eq. 8, a can be derived from the half-life time
that ¢ according to domain expert’s knowledge. In our case, the
critical parameter #;4  is used as one of the hyperparameters to
be optimized. On top of EWMA and EWMAVar, SigniScore
is defined in Eq. 9 in the form of a z-score. Here f is the
bias term that avoids division by 0 and at the same time filters
noise. It constitutes the second hyperparameter which will be
searched for in the case of SigniScore. Telling the (normalized)
significance of a trend rather than solely relying on the sign
change is an advantage of this measurement. It makes the
comparison between different trending moments possible.

EVALUATION

Having introduced the two trend measures in the previous
section, we proceed to apply them to the Twitter stream dataset
over a timespan parallel to the user request data. Given the
fact that “Vision” is a UK TV platform, for the 12 targeted
TV titles, we choose 10 UK productions and 2 US productions.
In addition, some program titles mostly consist of stop-word-
like terms, e.g. This Morning and My Wife and Kids. For
these program titles, the obtained tweets contain much more
noise than others, and we include them to estimate the extend
to which unrelated tweets influence the peak alignment. In
Table 1, for both user request data and the crawled Twitter data,
the number of data points, average number of points per non-
empty bin u, standard deviation ¢, number of peaks occurring
over the whole evaluation period #peaks and number of times
where two concecutive peaks appear within 12 hours 0y, are
displayed. We evaluate the precision of using trends in Twitter
stream to predict peaks in user request data by two scores: OR
and earliness of signal Ar.
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Figure 7: Visual comparison of a successful trend indication
(TM) versus a miss (SigniScore).

The evaluation of our approach employs the concept of peaks
in demand as time slots where the number of tweets/requests
exceeds two standard deviations over the mean per (non-
empty) time bin in the respective data stream. Following
this definition, as Table 1 shows, the user dataset contains a
total of 464 peaks for the targeted 12 TV programs, while in
the comparably bigger Twitter dataset exist 3,455 such peaks.
Even though there are relatively few peaks in the user re-
quest dataset, O, (the number of times where two consecutive
peaks appear within a range of 12 hours) excludes the risk that
they all belong to a few major peak windows. In accordance
with the literature, we define the point when a trend measure
crosses a threshold as the signal for the potential arrival of
a peak. If the closest threshold crossing point occurs after the
corresponding peak, we count the trend prediction as missed or
as an omission. Otherwise, the crossing point can be seen as a
successful indication of the incoming peak. A special example
can be found in Fig. 7, where Trend Momentum successfully
predicts the peak while Signiscore misses the chance because
of the late capturing of this peak. For every successful trend
indication, we compute the time delay between the threshold
crossing and the highest peak point as A¢, which shows how



User request data Twitter data
N u o #peaks Op N u o #peaks
Made in Chelsea 1235 2.0 35 20 0 649523 36.2 3124 111
EastEnders 1195 18 14 38 1 | 1276494 65.8 337.0 310
Hollyoaks 2070 1.7 1.1 91 13 | 1010904 527 2238 375
Gogglebox 911 14 1.1 28 0 502954 315 257.0 128
Match of the Day 1122 1.7 1.7 23 2 189331 10.7 424 275
Emmerdale 1601 19 1.5 67 1 457419 245 149.7 175
Coronation Street 2624 2.0 2.1 43 7 295738 15.6  61.3 221
Britain’s Got Talent | 683 2.6 3.6 13 3 126100 7.1 348 102
Frasier 1413 14 0.7 72 23 116387 6.0 43 531
North West Tonight | 1338 2.0 1.6 20 0 76512 1.8 1.3 430
This Morning 1046 1.5 0.8 21 0 17415 1.7 1.4 223
My Wife and Kids 756 1.8 1.1 28 6 10115 43 46 574

Table 1: Comparative statistics per evaluated program for the two datasets in use. N is the number of data points. For bin size of 1
hour, u is the average number of points per non-empty bin and ¢ the respective standard deviation. Peaks are bins with more than
U + 20 datapoints. 8;2 counts the number of times where two consecutive peaks appear within a range of 12 hours.
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Figure 8: Omission rate under combinations of kgyg, ksjow, and ksmootn. Heat map shows the omission rate (in %)

early Twitter stream frend can predict user choice peaks (just
as At shown in Fig. 7). The threshold can later be used to
trade off between precision and recall but during the evalua-
tion we use a fixed threshold 6 = 0 for finding crossings. In
addition to the two trend measurements, we add a baseline
trend indication in the evaluation. The baseline indication
directly use the peaks in tweets frequency as trend indication
signal, where the crossing threshold is a two standard devia-
tions increase over the mean. The calculation of the baseline
is straightforward and no parameters need to be tuned.

The performance of a trend indicator in a particular domain
depends on the values assigned to its hyperparameters. We
deploy grid search to find the best parameter settings for our
target application. The ranges of the grids are derived from
examination of contextual bias in Sect. 3. The performance
criterion to be minimized is the average number of missed
peaks (OR), over the 8 target programs. Since all preliminary
trials reported the best value of ¢ to be 0.8 in TM, we keep
it constant throughout optimization. Then we conduct a 3-
dimensional grid search with ranges kg, € [2,...,48],kfos €
2,...,36], kgnoorn € [1,...,18] and skip trials where kfuy >
kgiow- For the 2-d heatmaps as display in Fig. 8 we fix kg0, at
6 and kg at 18 respectively as they achieved lowest omission

rate throughout the full search. The parameters settings falling
in the dark blue area turned out to be better in reducing the
omission rate. The results indicate that the best parameter
settings for TM are [kxl()w = 183 kfast = 6a ksmooth = 6a a= 08] .

For SigniScore, as described in Sect. 5, the bias term 8 and
half-life setting #;4 ¢ are the parameters to be tuned. Since
there are only two parameters to be searched, one grid is
directly applied in the range as depicted in Figure 9. The
results show that [ = 9,1,y = 9] is the optimal parameter
combination for the problem at hand.

The best hyper parameters determined by the grid search are
used to examine the per-program performance. In addition to
the OR, for each program, we compute the average on At, i.e.
time difference between threshold crossing and peak, to denote
how early the trend indicator takes effect. Aside from that, the
deviation o on At is also provided. Contrary to the usual case
where trend detection is favored to be as early as possible, in
our setup, lower delays represents higher correlation between
trend signal in tweets and peaks in user data. Thus we consider
a small As (and small 6(At)) to be better.

Among the 12 programs under consideration, the evaluation
result for 8 of them turned out to be better (Table 2). The



Trend Momentum SigniScore Baseline

OR At o OR At o OR At o
Made in Chelsea (20) 50% 110 15| 5.0% 143 48| 15.0% 39 1.6
EastEnders (38) 26% 87 2.1 79% 107 95| 263% 11.3 15.1
Hollyoaks (91) 33% 80 26| 209% 6.6 32| 319% 17.6 234
Gogglebox (28) 36% 76 1.8 71% 70 20| 357% 69.1 159
Match of the Day (23) 0.0% 44 23| 39.1% 200 14.6 | 39.13% 339 142
Emmerdale (67) 15% 82 22| 90% 6.6 28| 493% 1125 1225
Coronation Street (43) 23% 98 25|256% 62 40| 512% 315 259
Britain’s Got Talent (13) | 30.77% 9.4 20| 7.69% 10.7 9.5 | 100.0% - -

Table 2: Evaluation of trend indicators and baseline. The number of peaks per program is displayed in braces.

Trend Momentum SigniScore Baseline

OR At o OR At o OR At o
My Wife and Kids (28) | 21.4% 7.8 69| 25.0% 125 104 | 25.0% 106.8 220.6
Frasier (72) 472% 133 124 | 40.3% 1.6 1.8 |458% 194 209
This Morning (21) 952% 170 0.0|61.9% 153.1 805 |571% 11.6 8.5
North West Tonight (20) | 70.0% 10.0 2.7 | 50.0% 476.5 335.8 | 60.0% 87.4 75.7

Table 3: Evaluation of trend indicators and baseline over the excluded programs. The number of peaks per program is displayed in
braces.

35.0
325
30.0
27.5
25.0
225
20.0
17.5
3 4 5 6 9 12 18 24

tha

Figure 9: Omission rate for various combinations of #,r and
B. Heat map shows the omission rate (in %)

comparison reveals that TM outperforms SigniScore and base-
line for most of the target programs in terms of OR, Ar
and o(Atr). The threshold crossing has a relatively consis-
tent At before peaks of about 8 hours. This early increase in
communication is observed for all soaps and reality shows
(like EastEnders and Gogglebox) in the dataset. To a lesser
extent, sports programs such as Match of the Day very well
reflect a general characteristic of Twitter second screen usage.
The reality TV show Britain’s Got Talent constitutes the only
case where SigniScore achieves lower OR, but its data is partic-
ularly sparse with only 13 peaks in total. Another special case
is marked by Made in Chelsea, for which baseline already
shows reasonable performance (the value of Ar is 3.9), while
both trend measurements cross the threshold much earlier.

The varied evaluation results over different programs suggest
that the applicability of the trend indicator is program
dependent. For the other 4 programs out of 12 candidates, the
performance as displayed in Table 3 sets a negative example
of the trend indicators adaptability. Considering programs like
This Morning and North West Tonight, their terms collocations

are not unique, thus the tweet crawler tends to retrieve a
significant number of unrelated tweets. This might be one
important explanation for the poor performance of trend
indicators. Similarly expected are the failures over the US
programs like My Wife and Kids, for which the matching
between Twitter trends and program interest in Vision, a
system based in the UK, is skewed due to different time zones.
In summary, we benefit from our evaluation in terms of both
performance comparison and adaptable program grouping.

CONCLUSIONS AND FUTURE WORK

This paper introduces a novel approach to enhancing TV pro-
gram recommendation based on external social context. We
analyzed user interaction with a hybrid VOD/linear TV plat-
form and identified a prevalent contextual bias. TV consumers’
choices tend to fall in a strong temporal regularity, in which a
few dominant programs or channels account for the majority
in consumption. To overcome the issue of contextual bias and
improve the diversity in recommendation, we harvest Twitter
conversations as a source of social context. Using trend scores
to detect early signs of increasing interest in program-related
Twitter streams we explain peaks in the user request data.
After hyperparameter optimization, we find that the MACD-
based Trend Momentum indicator can very well achieve that
goal, successfully forecasting about 96% of all peaks in TV
programs’ consumption dataset.

Our method comes with numerous advantages over previous
approaches to context-sensitive recommendation. First and
foremost, it alleviates the issue of contextual bias by extend-
ing the notion of context to a societal level, thus increasing
the diversity of recommendations. Secondly, exploiting social
context helps address cold start problem, because a significant
portion of programs is new in TV recommendation scenario.
Since Twitter is an external source, its utilization deprecates



the need for any user- or program-related data prior to model
deployment. A further strength of our method is that it par-
ticularly lends itself to the detection of individually popular
episodes of repetitive programs without the scaling issues that
come with CB alternatives. Finally, recommendation based
on Twitter trends obtains the potential to create a feedback
loop when it leads to more participants joining social conver-
sation and reinforcing the trend. Appropriate access points can
help the user directly engage the relevant discussion thereby
facilitating VOD collaborative watching and the increasingly
popular second screen usage.

Recommendation based on Twitter trends is not a silver bullet.
Its applicability depends on the means by which program re-
lated conversations are collected. Filtering for programs with
distinctive names is trivial as demonstrated by our analysis.
In other cases, if we intend to discern TV program through
the whole context in a Tweet, the approach proposed by Cre-
monesi et al. in [13] can be a good work to refer to. In addition,
Tweets about programs with an international audience may
show reduced correlation to peaks in consumption on plat-
forms with a specific national target audience. Geolocation
information as an additional filter can be used to reduce noise
and augment tweets relevance in the future [41]. Admittedly,
the analysis in the current paper can only illustrate the appli-
cability of social trend in TV recommendation tasks. Yet to
which degree it can enhance the user experience or how much
they can overcome the contextual bias, is to be determined
through future work.
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