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Abstract 23 

Large sanidine crystals from the Mesa Falls Tuff (MFT), Yellowstone volcanic field, have been split 24 

and individually dated via high-precision 40Ar/39Ar geochronology with the undated portions further 25 

analysed for major elements, trace elements, Pb and Sr isotopes in the sanidine and trace elements in 26 

the melt inclusions. This allows the geochemical and geochronological identity of an individual 27 

sanidine to be combined. Our MFT sanidines return a preferred eruption age of 1.3011 ± 28 

0.0015/0.0016 Ma (2-sigma, n=56, MSWD 0.8, analytical / full external) with a significant component 29 

of subtly older (up to ~2 Ma) crystals. Combined with recent results (Rivera et al., 2016, Journal of 30 

Petrology 57, 9, 1677-1704) our data define a global mean sanidine 40Ar/39Ar age for the MFT of 31 

1.3022 ± 0.0006/0.0008 Ma (2 sigma, analytical / full external) relative to Alder Creek sanidine at 32 

1.1891 Ma and total λ40Ar 5.5305e-10, which gives 𝑅𝐴𝐶𝑠
𝑀𝐹𝑇: 1.09542 ± 0.00050. The ability to couple 33 

geochemistry and geochronology from a single grain allows us, for the first time, to evaluate the origin 34 

of the subtly older sanidines present in the same pumices as juvenile sanidines. Melt inclusions from 35 

all Mesa Falls sanidines represent extremely fractionated melts with low Sr contents (max. 12 ppm, 36 

n=39), and rare earth element patterns which require that they be formed from an A-type magma 37 

rather than the preceding subduction-related Eocene volcanism as previously suggested. 87Sr/86Sr from 38 

juvenile and subtly older sanidines shows the same range of 0.7073 to 0.7096 illustrating the 39 

susceptibility of such low-Sr melts to slight degrees of assimilation. Pb isotopic compositions are more 40 

restricted and identical between the juvenile and subtly older sanidines in the Mesa Falls Tuff 41 

(207Pb/206Pb 0.900-0.903, 208Pb/206Pb 2.217-2.226, n=83) and these compositions rule out the 42 

underlying Huckleberry Ridge Tuff member B as a potential source for the subtly older sanidine. LA-43 

ICPMS 206Pb/238U dating of Mesa Falls zircons supports no role for the Huckleberry Ridge Tuff. 44 

Rather, these subtly older sanidines are interpreted as containing excess mantle-derived Ar. The ability 45 

to couple the geochemical and geochronological records within individual sanidine crystals that we 46 

demonstrate here has potential to provide new insights for a variety of petrological studies such as 47 

diffusional modelling.     48 

 49 
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1. Introduction 51 

With the increasing appreciation that most (if not all) magmatic systems represent open rather than 52 

closed systems, the challenge for igneous petrology has become how to best exploit the complex 53 

geochemical records found within a single volcanic deposit. Open system behaviour may be observed 54 

in a variety of ways, most commonly it is exhibited in the complex crystal cargo evident in many 55 

volcanic rocks. Complexity in crystals has been reported in major elements, trace elements, and in-situ 56 

isotopic measurements (Davidson et al., 2007; Charlier et al., 2007; Stelten et al., 2015). With the 57 

advent of isotopic micro-sampling and so called ‘crystal isotope stratigraphy’ (e.g. Davidson et al., 58 

2007 and references therein), it appears that with rare exceptions isotopic heterogeneity is pervasive 59 

(e.g. Knesel et al., 1999). The ability to geochemically fingerprint individual crystals and zones within 60 

crystals allows for different crystal populations to be discriminated. These populations are most 61 

typically referred to as phenocrystic (i.e. that grew from the melt in which they are found), antecrystic 62 

(precursor grains which grew in an earlier part of the magmatic system) and xenocrystic (foreign 63 

grains), yet even such distinctions are complicated as each term comes laden with implied meaning. 64 

Thus, the history of a population of grains within a single deposit is challenging to unravel.   65 

Recent improvements in geochronological techniques, particularly in the realm of ID-TIMS 66 

U/Pb and 40Ar/39Ar geochronology are allowing the timescales of magmatic processes to be 67 

investigated in unprecedented detail (e.g., Crowley et al., 2007; Schoene et al., 2010; Schmitz and 68 

Kuiper, 2013). This improved precision on individual measurements is allowing subtle differences in 69 

the ages of individual grains to be recognised and is serving to highlight the role of antecrystic 70 

material during petrogenesis. Sluggish diffusion within zircon allows the growth of the crystal, 71 

reflecting the magmatic history, to be tracked in both compositional and temporal space with either in-72 

situ measurements (Wotzlaw et al., 2014, 2015) or a combination of in-situ and bulk isotope dilution 73 

measurements (e.g. Rivera et al., 2014; Szymanowski et al., 2016). This coupling of compositional 74 

information with high-precision geochronology provides a powerful toolkit with which to investigate 75 

magmatic processes, yet hitherto it has been most fully utilised with zircon. To generate the highest 76 



precision 40Ar/39Ar ages involves the total fusion or step-heating of a potassium-rich mineral phase 77 

(typically sanidine/anorthoclase or biotite). However, conventional approaches to dating using 78 

40Ar/39Ar methods have required that compositional and chronological information be retrieved from 79 

different grains (i.e., data are disconnected). This disconnect can lead to a situation whereby the same 80 

crystal could be considered phenocrystic or antecrystic depending on the analytical method employed. 81 

The importance of this distinction is of particular importance for diffusion-based studies where zoning 82 

patterns in crystals are used to infer timescales of processes immediately pre-eruption (e.g. Morgan 83 

and Blake, 2006; Till et al., 2015).       84 

This paper for the first time retrieves geochemical and textural information from a population 85 

of sanidine grains which are also dated via high precision 40Ar/39Ar, and compares the chronological 86 

record in sanidine to that derived from zircons (via LA-ICPMS) to illuminate how large-volume 87 

magmas are generated using the Mesa Falls eruption from Yellowstone as a case study. 88 

 89 

2. Geological Background 90 

The Yellowstone volcanic field is the present-day manifestation of a long-lived thermal anomaly in the 91 

inland northwest of North America which has produced the Earth’s youngest large igneous province. 92 

Volcanism began with the Columbia River flood basalts which began erupting ~ 16.5 Ma from a series 93 

of vents in northern Nevada and eastern Oregon (Hooper et al., 2007). Synchronously, rhyolitic 94 

volcanism was occurring from widely spread sources across Oregon, Idaho and Nevada (Coble and 95 

Mahood, 2012). At approximately 14.5 Ma, silicic volcanism became focussed along the track of the 96 

Snake River Plain with a broadly time-transgressive evolution of volcanism from south-western Idaho 97 

from the Bruneau-Jarbidge eruptive centre and surrounds through the central Snake River Plain to the 98 

Heise and Yellowstone eruptive centres. This time-transgressive rhyolitic activity produced numerous 99 

large-volume eruptions which are found as ignimbrite sheets on the margins of the plain (e.g. Ellis et 100 

al., 2012a; Knott et al., 2016) and as tephra deposits which are found across much of the western 101 

U.S.A. (Perkins and Nash, 2002; Nash et al., 2006). Presently, the hotspot lies directly under the 102 



Yellowstone volcanic field as illustrated by the high heat flow and abundant geothermal activity (see 103 

review by Lowenstern et al., 2006).  104 

 105 

----INSERT FIGURE 1 location map with chemistry inset---- 106 

 107 

The Yellowstone volcanic field has evolved episodically over the past ~ 2 Ma with a number 108 

of large-volume eruptions separated by periods of relative quiescence during which rhyolitic and 109 

basaltic lavas were erupted (Christiansen, 2001). The Mesa Falls Tuff (MFT) covers ~2,700 km2 of 110 

south-eastern Idaho and western Wyoming (Fig. 1) with an estimated bulk volume of 280 km3 111 

(Christiansen, 2001). It consists of a series of parallel-bedded fallout deposits of well-sorted, angular, 112 

framework-supported pumice and coarse ash beds overlain by a non to weakly-welded ignimbrite 113 

containing a variety of lithic clasts. The MFT is a high-silica rhyolite (75.8-77.8 wt.% SiO2; Fig. 1) 114 

with a mineral assemblage containing sanidine + quartz + plagioclase + augite + fayalite + ilmenite + 115 

magnetite and accessory zircon and apatite as is typical for Yellowstone rhyolites. Isotopically, the 116 

MFT has bulk 87Sr/86Sri of 0.7084-0.7088 (Doe et al., 1982), εNd of -10.1 (Nash et al., 2006), and 117 

206Pb/204Pb of 17.26, 207Pb/204Pb of 15.56, and 208Pb/204Pb of 38.25 (Doe et al., 1982). In terms of stable 118 

isotopes, the MFT is normal in terms of δ18O, as is usual for the larger eruptions at Yellowstone 119 

(Bindeman and Valley, 2001).  120 

3. Methods 121 

The samples used for this study were collected from a classic locality of the MFT exposed on the west 122 

side of highway 20, approximately 6 km north of the town of Ashton, Idaho (Fig. 1). Large single 123 

sanidine crystals up to 1 cm in diameter were separated from larger fragments of pumice with crystals 124 

hand-picked under a binocular microscope. Crystal surfaces show no evidence of alteration and were 125 

typically transparent. Selected sanidines were then cleaned using dilute HNO3. Grains without 126 

adhering glass and the fewest melt inclusions were selected for further work. Sanidines were split into 127 



smaller fragments (typically two, but occasionally three or four) using a clean razor blade and a 128 

fragment less than 2 mm in diameter was selected for 40Ar/39Ar dating with the other fragments placed 129 

into separate labelled vials for geochemical analyses. The grains for 40Ar/39Ar dating were then 130 

individually re-cleaned in methanol to remove any debris from the cutting process (Fig. 2).  131 

 132 

----INSERT FIGURE 2 of grains cut---- 133 

 134 

3.1 40Ar/39Ar geochronology 135 

40Ar/39Ar analyses were conducted at the NERC Argon Isotope Facility, Scottish Universities 136 

Environmental Research Centre (SUERC). Details of irradiation durations, irradiation correction 137 

factors and discrimination corrections are provided in appendix file SF#1 (.xls).  138 

Two dating experiments were conducted, which required samples to be irradiated in separate 139 

batches. Experiment 1: bulk sanidine separates harvested from the MFT ignimbrite (90118) and MFT 140 

fallout (90116) were loaded in two large wells in an Al disc for irradiation. Alder Creek sanidine was 141 

loaded in to 4 wells surrounding the two samples to allow accurate determination of the J-parameter. 142 

These samples were irradiated in the CLICIT facility of the OSU reactor for 120 minutes. These 143 

samples were analysed prior to progressing to phase II (split grain approach). Experiment 2: 144 

approximately 12 months later the grain fragments produced from cutting the large sanidine crystals 145 

(90118) were loaded in to a 21 pit Al disc for irradiation (5 discs in total). Each single fragment had its 146 

own well position (17 fragments in each Al disc). For J determinations Alder Creek sanidine was 147 

loaded into 5 different positions (centre, top, bottom, left, right – see SF#1) in each Al disc. This 148 

allowed for determination of an accurate J parameter for each individual disc. These samples were 149 

irradiated in the CLICIT facility of the OSU reactor for 120 minutes. 150 

Single crystals of Alder Creek sanidine (ACs) were fused using a CO2 laser and the argon 151 

isotope composition of cleaned extracted gases analysed using a MAP 215-50 noble gas mass 152 

spectrometer using methods described by Mark et al., (2008) and Smith et al., (2011). For 153 



determination of the J parameter for each Al disc the weighted average 40Ar*/39ArK was calculated for 154 

each well, and the arithmetic mean and standard deviation of the 40Ar*/39ArK for all standard wells 155 

from each different Al disc were used to characterise the neutron fluence for the unknowns. This 156 

approach was deemed sufficient, as due to the relatively short irradiation durations there was no 157 

significant horizontal variation in J parameter across the irradiation holder.  158 

The unknown samples were analysed in exactly the same way as the standards. The standard 159 

and unknowns were measured within a couple of days of each other. Background and mass 160 

discrimination measurements (via automated analysis of multiple air pipettes) specific to each batch 161 

are summarised in appendix file SF#1 (.xls). Air pipettes were run (on average) after every 5 analyses. 162 

Backgrounds were measured following every two measurements and subtracted from ion beam 163 

measurements were arithmetic averages and standard deviations. Mass discrimination was computed 164 

based on a power law relationship (Renne et al., 2009) using the isotopic composition of atmospheric 165 

Ar (Lee et al., 2006) that has been independently confirmed (Mark et al., 2011). Corrections for 166 

radioactive decay of 39Ar and 37Ar were made using the decay constants reported by Stoener et al., 167 

(1965) and Renne and Norman (2001), respectively. Ingrowth of 36Ar from decay of 36Cl was 168 

corrected using the 36Cl/38Cl production ratio and methods of Renne et al., (2008) and was determined 169 

to be negligible. Argon isotope data corrected for backgrounds, mass discrimination, and radioactive 170 

decay and ingrowth are given in the appendix file SF#1 (.xls).  171 

Ages were computed from the blank-, discrimination- and decay-corrected Ar isotope data 172 

after correction for interfering isotopes based on the following production ratios, determined from 173 

fluorite and Fe-doped KAlSiO4 glass: (36Ar/37Ar)Ca = (2.650 ± 0.022) x 10-4; (38Ar/37Ar)Ca = (1.96 ± 174 

0.08) x 10-5; (39Ar/37Ar)Ca = (6.95 ± 0.09) x 10-4; (40Ar/39Ar)K = (7.3 ± 0.9) x 10-4; (38Ar/39Ar)K = 175 

(1.215 ± 0.003) x 10-2; (37Ar/39Ar)K = (2.24 ± 0.16) x 10-4. Ages and their uncertainties are calculated 176 

using the methods of Renne et al., (2010), the decay constant parameters of Renne et al., (2011) and 177 

the ACs age of Niespolo et al., 2016 (1.1891 ± 0.0008 Ma), except where noted. For some of the age 178 

comparisons made herein, contributions from sources of systematic uncertainty (i.e., uncertainties in 179 

40Ar/40K of the standard and 40K decay constants) are neglected and only analytical uncertainties in 180 



isotope measurements of samples and standards are included. These uncertainties are referred to herein 181 

as “analytical precision”. For the purposes of this study analytical uncertainties include contributions 182 

from uncertainties in the interference corrections because these interference corrections have variable 183 

effects due to the slightly variable chemistry of the samples considered. Where not otherwise 184 

distinguished, uncertainties are stated as X ± Y/Z, where Y is the analytical uncertainty as defined 185 

above, and Z is the full external precision considering both analytical and systematic sources of 186 

uncertainty (e.g., decay constant). 187 

 188 

3.2 Geochemistry 189 

The sub-grains for geochemistry were imaged on JEOL JSM-6390 SEM at ETH Zurich (full collection 190 

of images in supplementary data) prior to analysis. Major elements were determined via electron 191 

microprobe at ETH Zurich using analytical conditions of 15 kV and 15 nA with a beam diameter of 10 192 

μm and counting times were shortened for Na and K to avoid element mobility. Trace elements in 193 

sanidines, zircons and melt inclusions were determined via LA-ICPMS using a 193 nm ArF Excimer 194 

laser from Resonetics coupled to a Thermo Element XR ICPMS within the Institute for Geochemistry 195 

and Petrology, ETH, Zurich (full data in supplementary materials). For trace elements spot sizes were 196 

either 67 microns for sanidines or 30 microns for zircons and melt inclusions. NIST-612 was used as a 197 

primary standard and GRD-1 as the secondary standard. Trace element data were reduced following 198 

procedures described in Szymanowski et al., (2015) and are considered to be precise to better than 5% 199 

of the reported value.  200 

Lead isotope compositions in individual sanidine crystals were measured using laser ablation 201 

multicollector inductively-couple plasma mass spectrometry (LA-MC-ICP-MS), using a Photon 202 

Machines G2 excimer laser ablation system and NuPlasma MC-ICP-MS at Oregon State University. 203 

Analytical techniques followed those given in Kent (2008) using Faraday Cup detectors to measure all 204 

required isotopes. Analyses were made using a 85 µm laser spot translated at 5 µm/sec and using a 205 

pulse frequency of 7 Hz. Measured ratios were corrected for mass bias based on measurement of 206 

NIST-612 glass at similar ablation conditions throughout the analysis session, and an accepted value 207 



of 208Pb/206Pb = 2.1694). Multiple replicate analyses of the NIST-612 and BCR-2G standard glasses 208 

(full data in supplementary materials) show that measured 208Pb/206Pb and 207Pb/206Pb ratios are within 209 

0.1% of the accepted values.    210 

Strontium isotope analyses on grain portions were performed at the Institute of Geochemistry 211 

and Petrology, ETH Zurich. Samples were digested with concentrated HF/HNO3 in Teflon beakers, 212 

then evaporated and redissolved in 6 N HCl. All solutions were evaporated and the dry residues were 213 

converted in 2.5 N HNO3, followed by Sr separation in ion exchange columns. The chromatography 214 

technique used PP columns with Sr- and TRU-spec resin. Strontium isotope ratios were measured on a 215 

ThermoFisher multi-collector TritonPlus thermal ionization mass spectrometer (TIMS) using single 216 

outgassed Re-filaments. Strontium isotopic analysis was conducted in a static mode. The Sr isotope 217 

ratios are mass fractionation corrected to 88Sr/86Sr = 8.375209; the NBS-987 standard measurements 218 

returned 87Sr/86Sr of 0.710246 ± 0.0000034 (2 SE; n=14) during the period of analysis. In most cases 219 

Rb and Sr concentrations were determined by isotope dilution using a highly enriched 87Rb/84Sr spike, 220 

while in other cases the Rb and Sr contents derived from LA-ICPMS determinations were used. 221 

87Sr/86Sr ratios were age corrected using either the precise age of the individual grain, or in rare cases 222 

an assumed age of 1.3 Ma. All results are provided in supplementary material.  223 

 224 

3.3 Zircon U/Pb geochronology 225 

Zircons for U-Pb geochronology were separated from pumices of the MFT via classical magnetic and 226 

density separation techniques. A subset of these were prepared via chemical abrasion following the 227 

procedure of Mattinson (2005) and mounted along with untreated zircons from the MFT to assess the 228 

effects of chemical abrasion on zircons of this age. Grains were imaged via cathode luminescence 229 

(CL) at the ScopeM facility of ETH Zurich using a FEI Quanta 200 FEG scanning electron 230 

microscope. Following CL imaging both chemically abraded and untreated zircons were analysed via 231 

LA-ICPMS with the whole procedure of analysis and data reduction following that described by 232 

Guillong et al., (2014).  233 



 234 

4. Results 235 

4.1 40Ar/39Ar sanidine geochronology 236 

The two samples selected for conventional 40Ar/39Ar dating, the MFT ignimbrite (#90118) and the 237 

MFT fallout (#90116) yield ages of 1.3017 ± 0.0040 Ma and 1.2993 ± 0.0033 Ma, respectively (2-238 

sigma, analytical precision). Both samples showed extensive contamination with crystals older than 239 

the defined juvenile population with large numbers of individual data points (ages) rejected from 240 

calculation of the weighted mean eruption age, 74% for the ignimbrite and 25% for the fallout. The 241 

occurrence of subtly older sanidine crystals has been observed in a number of other studies of 242 

Yellowstone rhyolites including deposits erupted both explosively and effusively (Gansecki et al., 243 

1996; Ellis et al., 2012b; Rivera et al., 2014; Singer et al., 2014; Stelten et al., 2015; Matthews et al., 244 

2015; Troch et al., 2017). Owing to the large degree of contamination and the data not defining clear 245 

juvenile age populations, the Mass Spec programme was used to screen the data to provide an age 246 

using the ‘youngest gaussian’ filter with a MSWD probability cutoff of 0.05.  247 

Owing to the large degree of antecrystic contamination in the ignimbrite we focussed on this 248 

sample for the follow-up study – the split grain work (#91235-#91309) to investigate the linking of 249 

geochemical-geochronological data for the same grain. Taking this group of split grains as a whole 250 

sample population they define an 40Ar/39Ar age of 1.3015 ± 0.0022 Ma (2 sigma, analytical precision). 251 

The same statistical filter was used for these data as above. As expected, a large percentage (67%) of 252 

the data were rejected from calculation of the mean eruption age for the split grains, attesting to the 253 

presence of a significant older population. 254 

Because of the unique way the split grains were irradiated and given the range of sanidine 255 

ages, the potential for grain to grain variability in J-value to be affecting the calculated age should be 256 

addressed. Even following splitting, the grains within this study remain relatively large (Fig. 2) and so 257 

it is conceivable that some grains may be acting to shield others from the fast neutron bombardment 258 

during irradiation. We can evaluate the potential for this in two different ways. Firstly, when the 259 



calculated ages of grains are plotted against pan position during irradiation (supplementary figure 4), 260 

no relationship is apparent. Secondly, the amount of 39Ar can be plotted against age of the grain to test 261 

whether shielding of the interior of large grains is occurring. The lack of correlation between the 262 

amount of 39Ar and the age of the crystal suggests that this is not an issue.  263 

The 40Ar/39Ar ages for samples from the two experiments are indistinguishable. We have thus 264 

determined a global weighted average 40Ar/39Ar age for the MFT: 1.3011 ± 0.0015/0.0016 Ma (2-265 

sigma, n56, MSWD 0.8). This eruption age for the Mesa Falls Tuff is in excellent agreement with the 266 

published ID-TIMS zircon ages (Wotzlaw et al., 2015; Rivera et al., 2016) and with the most recent 267 

40Ar/39Ar age of Rivera et al., (2016). We note that the 40Ar/39Ar of Rivera et al., (2016) is calculated 268 

using a different Alder Creek sanidine age (Rivera et al., 2013) and a different decay constant (Min et 269 

al., 2000). Despite the use of different calibrations the data are indistinguishable. The data of Rivera et 270 

al., (2016) recalculated relative to the calibration employed by this study becomes 1.3027 ± 0.0009 Ma 271 

(analytical precision), which is indistinguishable (1.6 ± 1.3 ka) from our age for MFT.  Taking both 272 

datasets (this study and Rivera et al., 2016) we can calculate a global mean age for the MFT of 1.3022 273 

± 0.0006/0.0008 Ma (2 sigma), which defines 𝑅𝐴𝐶𝑠
𝑀𝐹𝑇: 1.09542 ± 0.00050. 274 

 275 

----INSERT FIGURE 3 new Ar/Ar geochronology---- 276 

 277 

4.2 Sanidine textural and compositional data 278 

Individual grain sizes for the ‘geochemistry sub-grains’ were typically in the range of a few hundred 279 

microns (images of all grains used for in-situ geochemistry in supplementary materials). Backscattered 280 

electron images indicate limited compositional zonation and that about 60% of the crystals contain 281 

melt inclusions which make up less than 5% of the observed section (e.g. grains 2, 5, 42, and 66 in 282 

supplementary materials). The frequency of melt inclusions in the geochemistry sub-grains was 283 

heightened by them being excluded from the portions of crystals sent for dating.     284 



In terms of major element compositions, the Mesa Falls sanidines (n=166) show little variation 285 

with compositions of Or59-63 and no coherent sense of zonation within a crystal.  These compositions 286 

and the occurrence of major elemental homogeneity within a crystal agree well with previously 287 

reported MFT sanidine data (Gansecki et al., 1998). Unlike the major elements, trace elements in the 288 

Mesa Falls sanidines do show large compositional ranges which in the most extreme case, Ba, span 289 

two orders of magnitude (69-8721 ppm). Large ranges are also observed in Ti (34-104 ppm), Sr (26-290 

209 ppm) and Rb (91-152 ppm). Interestingly, despite the large range in overall compositions, no 291 

coherent sense of zonation is observed when plotting rims against cores of individual grains, nor is 292 

there compositional variability as a function of crystal age. While our analyses are best efforts at 293 

analysing rims and cores of grains we note with the split grain method the discrimination of rims and 294 

core of grains without concentric zonation remains problematic. Nevertheless, given the number of 295 

grains (n=84) in this study, it is likely that the true compositional range of Mesa Falls sanidine has 296 

been characterised. 297 

 298 

----INSERT FIGURE 4 Compositional data ---- 299 

 300 

Melt inclusions hosted in Mesa Falls sanidines are large and homogeneous (as shown in 301 

supplementary material) allowing for trace elemental determinations to be carried out via LA-ICPMS. 302 

The melt inclusions within the sanidines are similar to other Yellowstone glasses (e.g. Vazquez et al., 303 

2009) and represent extremely fractionated rhyolite liquids as illustrated by the low Sr contents of 2-304 

12 ppm and strong negative Eu anomaly (Fig. 5). Overall, the relatively flat normalised rare earth 305 

element (REE) patterns of the MFT melt inclusions are identical to those observed in other rhyolites of 306 

the province (e.g. Szymanowski et al., 2015) and in contrast to the steeper patterns observed from 307 

subduction zone rhyolites. Notably, REE patterns in glassy melt inclusions are identical between 308 

juvenile and subtly older sanidine grains (Fig. 5).        309 

 310 



----INSERT FIGURE 5 REE in melt inclusions---- 311 

 312 

4.3 Radiogenic isotopes 313 

Sanidine within the MFT exhibits only slight variability between grains, with 208Pb/206Pb ratios 314 

spanning 2.217-2.226 and 207Pb/206Pb ratios spanning 0.900-0.903 (full data in supplementary 315 

materials). The majority of this variability is contained within the precision of the measurements 316 

(taken as 2 standard errors) and sanidine LA-ICPMS values are in good agreement with the bulk Pb 317 

isotopic data for the Mesa Falls Tuff published by Doe et al., (1982). When compared to all Pb 318 

isotopic data from the Yellowstone volcanic field (Fig. 6), it is clear that the Mesa Falls Tuff exhibits 319 

relatively little variability. In Pb isotopic space all sanidines appear identical within analytical 320 

precision, regardless of the age of the crystal (Fig. 6). 321 

 322 

----INSERT FIGURE 6 Pb isotope data for MFT and all Yellowstone----    323 

 324 

Mesa Falls sanidines show a large degree of isotopic variability in 87Sr/86Sr with 35 grains 325 

covering a range from 0.707355 ± 0.000167 to 0.709558 ± 0.000012 (Fig. 7, full data in 326 

supplementary material). That the range in 87Sr/86Sr is significantly larger than that displayed via Pb 327 

isotopes (above) is unsurprising given the relatively low Sr contents of the Yellowstone rhyolitic 328 

liquid (2-11 ppm in the melt inclusions) rendering them extremely susceptible to small degrees of 329 

contamination. Indeed, such Sr isotopic variability appears relatively common in rhyolites (Charlier et 330 

al., 2007; Davidson et al., 2007). The 87Sr/86Sr does not appear to be related to the trace elemental 331 

identity of the crystal with variations in Ba contents of more than 5,000 ppm observed between 332 

crystals with identical isotope ratios. Such decoupling of trace elements from isotopes may be a result 333 

of the variable effects of cumulate remelting which readily returns elements sequestered in cumulates 334 

(such as Ba and Sr) to the melt without significantly altering isotopic compositions (e.g. Wolff et al., 335 

2015). As might be expected when comparing sub-crystal scale compositions to averages of whole 336 



pumice clasts, the range of 87Sr/86Sr returned from the split grains is significantly greater than the 337 

values of bulk Mesa Falls Tuff of 0.7084 and 0.7088 (Doe et al., 1982) and the 0.70868 of Hildreth et 338 

al., (1991).                339 

 340 

----INSERT FIGURE 7 Sr variability in here---- 341 

 342 

4.4 The record from zircon 343 

Zircons from the MFT commonly show oscillatory zonation in CL images with a lack of notably 344 

bright zones or dark cores (images in supplementary material). In terms of trace element composition, 345 

Ti contents vary from below detection limit (in two cases) to 16 ppm which is similar to the range 346 

observed previously for Yellowstone zircons (Rivera et al., 2014, 2016; Stelten et al., 2015; Wotzlaw 347 

et al., 2015; compositional data are provided in supplementary materials). While analyses optimised 348 

for trace elemental abundances did not return high U and Th values, some spots analysed for U-Pb did 349 

find elevated values similar to those observed by Bindeman et al., (2008) in their two Mesa Falls 350 

analyses. 351 

LA-ICPMS 206Pb/238U ages derived for zircons from the MFT range from 1.133 ± 0.073 Ma to 352 

1.634 ± 0.079 Ma (individual uncertainties at 2 standard error). As illustrated in Figure 8, with the 353 

exclusion of three outliers from the total population of 65 grains that were used for final age 354 

determination, the average ages of the chemically abraded and untreated grain populations are 355 

indistinguishable. However as is shown in the supplementary material, the proportion of discarded 356 

analyses due to common Pb contamination is significantly reduced following chemical abrasion. The 357 

distribution of ages is close to a normal distribution. It is therefore possible to report a single 358 

crystallisation age of the zircons of 1.322 ± 0.024 Ma. While this age is within uncertainty of the 359 

preferred eruption ages defined by both 40Ar/39Ar and ID-TIMS (Figure 3), the higher precision ID-360 

TIMS measurements of Wotzlaw et al., (2015) and Rivera et al., (2016) provide better estimates of 361 

eruption age. The value of the LA-ICPMS ages provided here is that the oldest age returned is 1.634 362 



Ma. Zircon ages older than the inferred eruption age have been reported from the SIMS study of 363 

Bindeman et al., (2008) which returned zircon core ages of 1.45 ± 0.03 Ma and 1.49 ± 0.05 Ma and a 364 

single rim age of 1.49 ± 0.05 Ma. The ID-TIMS studies of Wotzlaw et al., (2015) and Rivera et al., 365 

(2016) report zircon ages as old as 1.327 ± 0.017 Ma and 1.568 ± 0.011 Ma respectively.    366 

 367 

----Figure 8 Zircon U-Pb diagram---- 368 

 369 

5. Discussion 370 

5.1 The origin of ‘too old’ sanidine  371 

Clearly the MFT, in addition to all other Yellowstone rhyolites so far dated via 40Ar/39Ar (e.g. 372 

Gansecki et al., 1998; Ellis et al., 2012b; Rivera et al., 2014, 2016; Singer et al., 2014; Stelten et al., 373 

2015; Matthews et al., 2015; Troch et al., 2017), contains sanidines that are slightly, but distinctly, 374 

‘too old’ to be considered juvenile to the magma which erupted. Below we assess the potential reasons 375 

for the presence of this older sanidine.  376 

 377 

5.1.1 Entrainment of pre-existing material 378 

One potential source of older sanidines within the Mesa Falls Tuff would be the country rocks through 379 

which the Mesa Falls magma transited en-route to the surface. For such material to be incorporated in 380 

the MFT magma and not be fully re-equilibrated would require the material to be taken in only a few 381 

months prior to eruption. Diffusional calculations for Yellowstone rhyolites by Gansecki et al., (1996) 382 

indicate that even xenocrysts of 1000 Ma would return juvenile ages after only several years 383 

immersion in the magma. Gansecki et al., (1996) proposed that the older sanidine and plagioclase they 384 

observed was sourced from the Eocene Absaroka volcanics and older basement rocks, on the basis of 385 

slightly more anorthitic plagioclase compositions (up to An40) and rare 40Ar/39Ar ages as old as 370 Ma 386 

but more commonly around 25-50 Ma. The use of the ‘split-grain’ approach allows us to address this 387 



by looking at compositions of melt inclusions within the dated sanidines. It is clear that all of the 388 

sanidines in our study crystallised from A-type rhyolitic magmas as illustrated by the relatively flat 389 

REE patterns with steep negative Eu anomalies (Fig. 5) and the relatively low Sr contents, rather than 390 

melts generated from subduction-related magmatism. The lack of Eocene ages in our LA-ICPMS U/Pb 391 

zircon dataset further suggest limited incorporation of significantly older materials, consistent with 392 

other studies of Yellowstone zircon (e.g. Bindeman et al., 2008; Watts et al 2012; Stelten et al., 2015). 393 

Gansecki et al., (1996) proposed that the slightly higher anorthite contents of the plagioclase may 394 

reflect a subduction-related origin, but such compositions are readily observed within the earlier 395 

Yellowstone-related volcanism in the Snake River Plain (Ellis et al., 2013). We speculate that the pre-396 

Yellowstone ages reported by Gansecki may be a consequence of using a ‘degassed’ basalt to promote 397 

coupling between clear feldspar and laser during these early analyses.  398 

Alternatively, the ‘too old’ sanidine could be from entrainment of slightly older volcanism 399 

from the Yellowstone episode. The pre-MFT geology is poorly known, particularly in the area of the 400 

caldera which would have been devastated by the MFT eruption. It is entirely conceivable that this 401 

region contained numerous rhyolitic lavas and tuffs, which are no longer preserved. The potential for 402 

such preservation bias is clear; the pre-MFT record is poorly known at Yellowstone, with only 6 small 403 

volume lavas (5 post Huckleberry Ridge Tuff and the earlier Snake River Butte lava) known 404 

(Christiansen, 2001). When compared to the post Lava Creek Tuff record of volcanism, where at least 405 

40 separate rhyolitic units are known from a roughly equivalent period of time, the difference is stark. 406 

Based on the mapped distributions of rhyolites from Yellowstone, a likely potential substrate for 407 

entrainment would be Huckleberry Ridge Tuff member B which underlies the whole source region of 408 

the MFT (Christiansen, 2001; Fig. 6). The majority of the ‘too old’ sanidines have ages intermediate 409 

between those of the MFT and the HRT which would allow partial re-equilibration of the Ar inventory 410 

during the period between entrainment and eruption. Although in many cases (e.g. major elements and 411 

trace elements) compositional information derived from the sanidines may be equivocal, the Pb 412 

isotopic record demonstrates that there is no contribution from HRT member B (Fig. 6). This 413 

conclusion is supported by the U-Pb measurements in zircon (even at the relatively low precision 414 

afforded by LA-ICPMS), which preclude significant involvement of HRT with none of the 65 zircons 415 



measured here (either in the chemically abraded or untreated populations) returning an age >2 Ma 416 

which could have crystallised in the HRT (Fig. 8). However it is noteworthy that the Island Park lava 417 

dome series which erupted from the same caldera system immediately following the MFT eruption 418 

have Pb isotopic compositions in sanidines which are identical to MFT (Troch et al., 2017) suggesting 419 

a localised geographic isotopic signature.  420 

 421 

5.1.2 Excess Ar  422 

An alternative explanation for the subtly older sanidine ages in the MFT could be the existence of 423 

excess Ar disseminated either within fluid inclusions or within defects in the crystal lattice (e.g. Esser 424 

et al., 1997; Renne et al., 1997; Winick et al., 2001; Stelten et al., 2015). The lack of observable fluid 425 

inclusions within sanidines during inspection under a binocular microscopes suggests the excess Ar 426 

component may reside within the crystals themselves. The excess Ar explanation is attractive because 427 

it allows for juvenile and ‘too old’ sanidines within the MFT to have the identical geochemistry and 428 

Pb isotopic compositions, with only the age being disturbed, as illustrated in Figure 9. Studies of the 429 

gas and fluid geochemistry of the Yellowstone system have commonly detected a mantle component, 430 

principally in 3He/4He (e.g. Craig et al., 1978) with recent work also documenting the role of thermal 431 

metamorphism of cratonic lithologies in contributing to the degassing budget (Lowenstern et al., 432 

2014). Taking a conservative lower mantle 40Ar/36Ar value of 40,000 (Burnard et al., 1997; Graham, 433 

2002) as a mixing component indicates that only small (typically <2%) mantle components are 434 

required to explain the too-old sanidine (Fig. 9). While partial re-equilibration of sanidine sourced 435 

from the Huckleberry Ridge Tuff could also produce a data array similar to that observed in Fig. 9, as 436 

noted above the Pb isotopic compositions of the sanidines within the MFT preclude recycling from 437 

HRT member B. If the subtly older sanidines in the MFT are indeed due to the presence of excess Ar, 438 

this feature highlights the difficulty in using the term ‘antecryst’. We note that previous studies dating 439 

MFT sanidine using step-heating (Lanphere et al., 2002; Rivera et al., 2016) found older ages in the 440 

lower temperature steps that in the case of the Lanphere et al., (2002) study were interpreted as excess 441 

Ar. While these older ages could be interpreted as re-entrainment of older components of the same 442 



magmatic system the total overlap in all geochemical and isotopic parameters measured here would 443 

require the recycled material to be compositionally identical to the juvenile component. The ability to 444 

directly couple the age of the sanidine to the compositional information contained in the crystal and 445 

discriminate between these two possibilities (i.e. antecrystic vs. excess Ar) highlights the utility of the 446 

new split grain method. 447 

 448 

----INSERT FIGURE 9 Inv. Isochron---- 449 

 450 

5.2 Generation of the Mesa Falls Tuff 451 

The combination of geochemical, isotopic, and geochronological records from sanidine and zircon 452 

allows the petrogenesis of the MFT to be investigated in greater detail. The steep negative Eu anomaly 453 

and low Sr contents in MFT melt inclusions indicate that both the Eu and Sr have been sequestered 454 

into plagioclase during earlier stages of evolution and subsequently removed by fractionation. In terms 455 

of radiogenic isotopes, bulk Sr, Nd, and Pb isotopic values (Doe et al., 1982; Hildreth et al., 1991) Nd 456 

isotopes in glass separates (Nash et al., 2006), Hf isotopes in zircons (Wotzlaw et al., 2015), and the 457 

Pb and Sr analyses from sanidines all indicate limited contributions from surrounding crustal 458 

lithologies, particularly given the strong isotopic leverage provided by the Archean Wyoming craton 459 

(Doe et al., 1982). Indeed, the requirement of crustal contamination to pass from typical Yellowstone 460 

basalt to MFT-like compositions is slight. The large variability observed within sanidines in 87Sr/86Sr 461 

space is typical of the isotopic heterogeneity observed in many large silicic magmatic systems (e.g. 462 

Charlier et al., 2007) and results from the rhyolitic liquids with low Sr contents being particularly 463 

susceptible to assimilation. Published oxygen isotopes reveal a normal-δ18O magma (Hildreth et al., 464 

1984; Bindeman and Valley 2001) in contrast to much of the younger volcanism at Yellowstone. The 465 

normal- δ18O signature along with the trace elemental and radiogenic isotopic evidence above 466 

indicates that the MFT, like the other large-volume explosive rhyolites at Yellowstone, may most 467 



simply be explained as a magma generated by fractionation-dominated processes with limited 468 

assimilation.   469 

 470 

5.3 Potential of the split-grain method 471 

The MFT data raise interesting questions for crystal-specific studies. Given that the similarity in 472 

appearance, major and trace elemental composition of the subtly older crystals within the MFT makes 473 

their distinction without the associated high-precision geochronology impossible. The requirement to 474 

define the provenance of crystals is also clear for the analytically challenging projects involving 475 

radiogenic isotopes or diffusional modelling whereby necessarily few crystals are typically studied 476 

(e.g. Knesel et al., 1999; Morgan et al., 2006; Till et al., 2015). We note that in the studies referred to 477 

the target mineral was sanidine and we propose that the split-grain method outlined here has the 478 

potential to generate exciting avenues of research coupling geochronology and geochemistry in major 479 

phases.    480 

 481 

6. Conclusions 482 

The main conclusions of this study are:  483 

1. For the first time, we demonstrate it is possible to couple high-precision 40Ar/39Ar 484 

geochronology with in-situ major, trace and isotopic determinations of sanidines using the split-grain 485 

approach. This technique has significant potential to help understand the complex age spectra often 486 

observed in volcanic rocks. Indeed, the geochemical aspect of the split-grain approach could readily be 487 

extended to include other avenues of research such as diffusion modelling in the sanidine, O isotopic 488 

studies, or determination of volatile contents of melt inclusions as appropriate to the sample.  489 

2. By combining geochemical, isotopic, and chronological information from sanidines, for the 490 

first time we illustrate how by interpreting the data separately (i.e. just the 40Ar/39Ar data or just the 491 

trace element or isotopic data) may affect the interpretation of the same population of crystals.  492 



3. The 40Ar/39Ar data indicate the ‘too old’ sanidine grains contain excess Ar, a feature 493 

consistent with the elevated 3He/4He found in the Yellowstone system. The occurrence of excess Ar 494 

explains the compositional and isotopic similarity between juvenile and ‘too old’ sanidine. Isotopic 495 

compositions of the ‘too old’ sanidine crystals reveals that they do not represent partially re-496 

equilibrated material scavenged from the underlying Huckleberry Ridge Tuff member B. Such a 497 

conclusion is only possible using the split grain method described here. 498 

4. Radiogenic and stable isotopic compositions of both bulk samples and individual juvenile 499 

sanidines do not require high degrees of any potential assimilant, a conclusion in good agreement with 500 

previous studies of the MFT.  501 
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 686 

Figures 687 

Figure 1: Location map showing the outcrop of the Mesa Falls Tuff ignimbrite and the inferred source 688 

for the deposit (after Christiansen, 2001). Inset shows the bulk compositions of the Mesa Falls pumice 689 

compared to other Yellowstone rhyolites. 690 

Figure 2: Example of a sanidine grain used in this study (grain 64) illustrating the results of splitting 691 

the grains (further examples are in supplementary materials). Cartoon beneath illustrates what the 692 

various portions of the grains are used for.  693 

Figure 3: 40Ar/39Ar ages for the Mesa Falls Tuff with grains in dark blue reflecting those used to 694 

estimate the eruptive age of the deposit while those in light blue are excluded.    695 

Figure 4: Compositions of the sanidine crystals used in this study with darker blue fill representing 696 

grains that returned an eruption age and light blue fill representing those from the older population. 697 

Figure 5: Rare earth element (REE) patterns from sanidine-hosted melt inclusions illustrating similar 698 

compositions between the populations classified as eruption age and subtly older. Similarity in REE 699 

patterns in inclusions indicates that the older sanidines grew from liquids generated in a similar 700 

manner to the juvenile sanidines. Insets show typical normalised REE patterns from the Yellowstone-701 

Snake River Plain province (Ellis et al., 2013) and from the Eocene Washburn volcanic centre (Feeley 702 

et al., 2002).   703 

Figure 6: Pb isotope compositions of dated sanidines from the MFT. Notably, the Pb isotopic 704 

composition of MFT sanidines does not overlap with the composition of sanidines in Huckleberry 705 

Ridge Tuff member B (based on data from Watts et al., 2012 and Stelten et al., 2013). This lack of 706 

isotopic agreement comes despite HRT member B outcropping above the inferred source of the MFT, 707 



the Henrys Fork caldera (H) illustrated in lower inset map (after Christiansen 2001). Upper inset 708 

shows all sanidine Pb isotopic data from Yellowstone.  709 

Figure 7: Sr isotopic composition of sanidine from the MFT. Grey bar highlights the bulk 87Sr/86Sr 710 

values published for MFT by Doe et al., (1982) and Hildreth et al., (1991). The range in 87Sr/86Sr is 711 

much larger than the range in Pb isotopes (Fig. 6).    712 

Figure 8: U-Pb ages of zircons from the MFT. No zircon dated from the MFT returns an age 713 

consistent with crystallisation in the underlying HRT, consistent with the Pb isotopic results. 714 

Figure 9: Inverse isochron diagram showing the MFT data. The older sanidines are found in a wedge 715 

reflecting the presence of excess Ar.  An inverse isochron based on the age of the Huckleberry Ridge 716 

Tuff is shown in purple. The green squares on the y axis represent mixing of an atmospheric 717 

component with various proportions (up to 3%) of a deep mantle source with 40Ar/36Ar of 40,000 (after 718 

Graham, 2002).   719 
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