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Global association of air pollution and heart failure: 
a systematic review and meta-analysis
Anoop S V Shah, Jeremy P Langrish, Harish Nair, David A McAllister, Amanda L Hunter, Ken Donaldson, David E Newby, Nicholas L Mills

Summary
Background Acute exposure to air pollution has been linked to myocardial infarction, but its eff ect on heart failure is 
uncertain. We did a systematic review and meta-analysis to assess the association between air pollution and acute 
decompensated heart failure including hospitalisation and heart failure mortality.

Methods Five databases were searched for studies investigating the association between daily increases in gaseous 
(carbon monoxide, sulphur dioxide, nitrogen dioxide, ozone) and particulate (diameter <2·5 μm [PM₂.₅] or 
<10 μm [PM₁₀]) air pollutants, and heart failure hospitalisations or heart failure mortality. We used a random-eff ects 
model to derive overall risk estimates per pollutant.

Findings Of 1146 identifi ed articles, 195 were reviewed in-depth with 35 satisfying inclusion criteria. Heart failure 
hospitalisation or death was associated with increases in carbon monoxide (3·52% per 1 part per million; 95% CI 
2·52–4·54), sulphur dioxide (2·36% per 10 parts per billion; 1·35–3·38), and nitrogen dioxide (1·70% per 10 parts per 
billion; 1·25–2·16), but not ozone (0·46% per 10 parts per billion; −0·10 to 1·02) concentrations. Increases in 
particulate matter con centration were associated with heart failure hospitalisation or death (PM2·5 2·12% per 10 μg/m³, 
95% CI 1·42–2·82; PM10 1·63% per 10 μg/m³, 95% CI 1·20–2·07). Strongest associations were seen on the day of 
exposure, with more persistent eff ects for PM2·5. In the USA, we estimate that a mean reduction in PM2·5 of 3·9 μg/m³ 
would prevent 7978 heart failure hospitalisations and save a third of a billion US dollars a year.

Interpretation Air pollution has a close temporal association with heart failure hospitalisation and heart failure mortality. 
Although more studies from developing nations are required, air pollution is a pervasive public health issue with major 
cardiovascular and health economic consequences, and it should remain a key target for global health policy.

Funding British Heart Foundation.

Introduction
The adverse eff ects of air pollution on cardiovascular 
health have been established in a series of major 
epidemiological and observational studies.1–4 WHO 
estimates that air pollution is responsible for over a 
million premature deaths worldwide every year.5 
Even brief exposures to air pollution have been associated 
with increases in cardiovascular mortality,6,7 particularly 
in susceptible populations.

Heart failure is an escalating public health issue that 
aff ects more than 23 million people worldwide,8 with 
an increasing prevalence in elderly people.9,10 It has 
an annual hospitalisation rate of 2% with subsequent 
1-year mortality of 30%.11 Heart failure ranks as the 
most frequent reason for hospitalisation and 
rehospitalisation in older people,12,13 accounting for 
5% of all hospital discharge diagnoses. The triggers 
of acute cardiac decompensation especially in 
susceptible individuals are therefore a major public 
health concern.

Population and individual level exposures to air 
pollution are associated with acute cardiovascular 
events such as myocardial infarction.14,15 However, the 
eff ect of air pollution on other cardiovascular con-
ditions, such as acute decompensated heart failure, has 
been less well described.16 This issue is important 

because there are major diff erences in the mechanisms 
that trigger myocardial infarction compared with acute 
decompensated heart failure.17–19

Several studies of short-term exposure to air pollution 
have included heart failure hospitalisation and mortality, 
although these endpoints have not been the primary 
focus in most analyses. We therefore systematically 
reviewed the evidence examining the association 
between air pollution and acute decompensated heart 
failure, including hospitalisation and heart failure 
mortality.

Methods
Databases
We searched Ovid Medline, Embase, Global Health, 
Cumulative Index to Nursing and Allied Health 
Literature (CINAHL), and Web of Science using the 
following keywords: “heart failure”, “congestive cardiac 
failure”, “air pollution”, “particulate matter”, “ozone”, 
“carbon monoxide”, “sulphur dioxide”, and “nitrogen 
dioxide”. The full search criteria are available in the 
appendix. Bibliographic reference lists of studies 
selected for inclusion in our meta-analysis and relevant 
review articles were manually searched (appendix). We 
limited our search to studies published between 1948 
and July 15, 2012.
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Selection of articles and extraction of data
Studies were included if they presented original data for 
gaseous (carbon monoxide, sulphur dioxide, nitrogen 
dioxide, ozone) or particulate (PM2·5 or PM10) air pollu-
tants and reported heart failure hospitalisation or heart 
failure mortality. We included all studies that reported 
associations between exposure and outcome up to and 
including lag (day) 7. There were no language restrictions 
and we included only peer-reviewed original articles.

Data were extracted independently by two investigators 
(ASVS and JPL) and confl icts were adjudicated by a third 
investigator (ALH). We contacted authors for additional 
data or clarifi cation where needed.

Both case-crossover and time-series studies were 
included. The case-crossover design compares exposure in 
a case period when the event occurred with exposure 
in specifi ed control periods.20 This design can control 
for individual characteristics such as age, sex, and comor-
bidity, as well as secular trends and seasonal patterns using 
a time-stratifi ed approach, but assumes time-varying risk 
factors are constant within reference periods.21 Time-series 
studies were used to assess the relation between exposure 
and outcome using regression analysis account ing for 
confounding factors, such as meteorological param eters, 
but are less eff ective at controlling for secular trends such 
as seasonality.22 The study design, study popu lation, and 
adjustment undertaken for potential confound ers have 
been summarised for each study in the appendix.

Data synthesis
Relative risks (RR) were pooled for a standardised 
increment in pollutant concentration as follows: 10 μg/m³ 
for PM2·5 and PM10, 10 parts per billion for nitrogen 
dioxide (NO2), sulphur dioxide (SO2), and ozone (O3), and 
1 part per million for carbon monoxide (CO). Many 
studies used generalised linear models and therefore we 
assumed a linear relation between exposure and outcome. 
Standardised risk estimates were calculated for each 
study using the following formula:

Four studies reported stratifi ed risk estimates by age,23 
location,24 and temperature25,26 rather than overall risk 
estimates, and the stratifi ed estimates were included in 
our meta-analysis. Two studies reported results from the 
same population using both case-crossover and time-
series analysis27,28 and estimates from the time-series 
analyses were included. Three studies29–31 subsequently 
revised their time series analyses and the revised 
estimates were included.32,33 Time-series analyses were 
mainly based on routine administrative datasets and did 
not adjust for individual characteristics such as age, sex, 
or socioeconomic status. For all studies, we pooled 
adjusted risk estimates controlling for meteorological, 
temporal, and seasonal parameters (appendix).

Many studies provided multiple estimates for single lags 
(for example lag 0 or lag 1) and were pooled separately. We 
only pooled estimates for single lags where more than 
three estimates were available. The shortest lag was used 
to assess overall risk estimates. A few studies only 
provided cumulative lags (for example lag 0–1 or 0–2), and 
were not suitable for pooling in the single lag analysis, but 
were used to determine overall risk estimates.

Additional analyses
We did additional analyses stratifying studies by study 
design (time-series vs case-crossover), geographical 
location (USA vs non-USA), age (all ages vs ≥65 years of 
age), and outcome (heart failure hospitalisation vs heart 
failure mortality). We assumed that the prevalence of air 
pollution exposure was 100% and therefore calculated 
population-attributable risks per pollutant using our 
overall risk estimates and the formula:

Funnel plots were constructed for assessment of 
publication bias (data not shown) and assessed for 
asymmetry using Egger’s regression test.34 Asymmetry 
was then corrected using the trim and fi ll method, with 
adjusted relative risks and number of studies adjusted 
presented per pollutant.35

We used PM2·5 to illustrate the potential eff ect of reduc-
ing air pollution concentration on heart failure hospital-
isations in the USA. For each state we obtained the number 
of heart failure hospitalisations and average cost per 
hospitalisation (amount charged for the hospital stay 
excluding professional fees) from the US Healthcare Cost 
and Utilization Project State Inpatient Database13 and the 
Chronic Condition and Data Warehouse (appendix). The 
median daily PM2·5 concentration was calculated for each 
state from the Centers for Disease Control and Prevention’s 
Wide-ranging Online Data for Epidemiologic Research 
(WONDER) database. In each state, we estimated the 
population-attributable risks and annual reduction in heart 
failure hospitalisations per 100 000 people for a reduction 
in PM2·5 concentration to 5·8 μg/m³. This concentration 
represents a target threshold below which the adverse 
health eff ects of PM2·5 are uncertain.36,37

Statistical analysis
We anticipated heterogeneity between studies due to 
diff erent study designs, methods of analysis, diff erent lag 
exposures, and geographical and population diff erences. 
We used a random-eff ects model to account for both 
within and between study heterogeneity. Heterogeneity 
was examined using the standard I² test. As this test has 
limited power when applied to a small number of studies, 
we considered the presence of heterogeneity at 10% level 
of signifi cance and I² exceeding 30%. The analysis was 

RR RR(standardised) (original)
Increment(10) Increment(original)=

Population-attributable risks
(RR 1)
RR

=
−
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done using Comprehensive Meta-Analysis (version 2.0, 
2005, Biostat Inc, NJ, USA) and Stata Software 
(Version 11·2 2011, StataCORP, TX, USA). Statistical 
signifi cance was taken as two-sided p<0·05.

Role of the funding source
The sponsor of the study had no role in study design, 
data collection, data analysis, data interpretation, or 

writing of the report. The corresponding author had full 
access to all the data in the study and had fi nal respon-
sibility for the decision to submit for publication.

Results
The abstracts of 1146 articles were assessed and 195 studies 
underwent in-depth review, with 35 studies fulfi lling 
the inclusion criteria. Ten studies used a case-crossover 

Location Published Period Study design Data source Population Number of events* Outcome

Belleudi et al38 Italy 2010 2001–05 Case-crossover Hospital discharge registry ≥65 years 17 561 HA

Bell et al47 USA 2009 1999–2005 Time-series Medicare data All 1 142 928 HA

Haley et al39 USA 2009 2001–05 Case-crossover NYSDOH registry All 170 502 HA

Stieb et al49 Canada 2009 1999–2000 Time-series Emergency department registry All 32 313 HA

Ueda et al50 Japan 2009 2002–04 Time-series Ministry of Health ≥65 years 17 548 Mortality

Zanobetti et al51 USA 2009 2000–03 Time-series Medicare data All 238 587 HA

Colais et al40,46† Italy 2009 2001–05 Case-crossover Hospital discharge registry ≥65 years 55 339 HA

Forastiere et al41 Italy 2008 1997–2004 Case-crossover Regional registries of cause of death All 9569 Mortality

Yang et al26 Taiwan 2008 1996–2004 Case-crossover National Health Institute registry All 24 240 HA

Lee et al25 Taiwan 2007 1996–2004 Time-series National Health Institute registry All 13 475 HA

Peel et al28‡ USA 2007 1993–2000 Case-crossover Billing records >64 years 20 073 HA

Martins et al53 Brazil 2006 1996–2001 Time-series Department of Data Analysis of the 
Unifi ed Health System

≥65 years 24 476 HA

Dominici et al54 USA 2006 1999–2002 Time-series Medicare data ≥65 years 986 392 HA

Wellenius et al43 USA 2006 1986–99 Case-crossover Medicare and Medicaid data All 292 918 HA

Barnett et al23 Australia and 
New Zealand

2006 1998–2001 Case-crossover Government health departments 
(Australia) and Ministry of Health (NZ)

≥65 years NR HA

Wellenius et al42 USA 2005 1987–99 Case-crossover Medicare and Medicaid data ≥65 years 55 019 HA

Bateson et al45 USA 2004 1988–91 Case-crossover Medicare and Medicaid data All 26 923 Mortality

Metzger et al27‡ USA 2004 1993–2000 Time-series Billing data All 20 073 HA

Goldberg et al29,32§ Canada 2003 1984–93 Time-series Billing and prescription data ≥65 years 16 794 Mortality

Koken et al55 USA 2003 1993–97 Time-series Agency for Healthcare Research and Quality All 1860 HA

McGowan et al56 New Zealand 2002 1988–98 Time-series Hospital data admission registry All 5146 HA

Hoek et al30,32§ Netherlands 2001 1986–94 Time-series Death certifi cates All 45 333 Mortality

Kwon et al67 South Korea 2001 1994–98 Case-crossover and 
time-series

Mortality records ≥65 years 1807 Mortality

Ye et al57 Japan 2001 1980–95 Time-series Ministry of Health ≥65 years 4469 HA

Lippmann et al32,58§ USA 2000 1992–94 Time-series Medicare data All 18 615 HA

Stieb et al48¶ Canada 2000 1992–94 Time-series Emergency department registry >30 years 1312 HA

Linn et al59 USA 2000 1992–95 Time-series CA OSHPD All 71 540 HA

Wong TW et al60 Hong Kong 1999 1994–95 Time-series Hospital data admission registry All NR HA

Burnett et al63 Canada 1999 1980–94 Time-series Ontario Ministry of Health All 49 311 HA

Wong CM et al61 Hong Kong 1999 1995–97 Time-series Hospital authority data ≥65 years NR HA

Morris et al64 USA 1998 1986–89 Time-series Medicare data ≥65 years 49 640 HA

Burnett et al62 Canada 1997 1981–91 Time-series Hospital discharge records ≥65 years 157 865 HA

Poloniecki et al66 UK 1997 1987–94 Time-series Hospital episode records ≥65 years 62 853 HA

Morris et al24|| USA 1995 1986–89 Time-series Medicare data ≥65 years 227 985 HA

Schwartz et al65|| USA 1995 1986–89 Time-series Medicare data ≥65 years 38 862 HA

HA=Hospital admissions. NYSDOH=New York State Department of Health. NR=not reported. CA OSHPD=California Offi  ce of Statewide Health Planning and Development. *Number of events, when not 
stated in the paper, were estimated from mean daily values and the study period. †Colais et al initially published results in 2009 looking at NO₂, SO₂, and PM₁₀ in Italian. These data were later published in 
2012 in English but only reporting estimates for PM₁₀. We have therefore used the PM10 estimates from 2012 and NO₂ and SO₂ estimates from 2009. ‡Peel et al and Metzger et al reported results from the 
same study cohort but using case-crossover and time-series study designs, respectively. §Lippmann et al, Goldberg et al, and Hoek et al presented revised estimates of time-series analyses. ¶Stieb et al (2000) 
did not report numerical risk estimates and increment value for pollutants measured. This study was therefore excluded from the meta-analysis. ||Morris et al and Schwartz et al both reported data from 
Detroit across the same study period albeit with diff erent lag structures. Morris et al measured associations across shorter lag structures and these estimates were chosen for the meta-analysis of gaseous 
pollutants. Schwartz et al additionally reported data for PM₁₀ whereas Morris et al did not and the study was included in the PM₁₀ meta-analysis.

Table 1: Contextual details of studies included in the meta-analysis by publication year
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design,26,28,38–46 24 used a times-series design,24,27,29,30,47–66 and 
one used both study designs67 incorporating four million 
events across the world (table 1).

There was a positive association between heart failure 
hospitalisation or heart failure mortality, and all gaseous 
and particulate air pollutants except ozone (fi gure 1). The 
strongest associations were seen at lag 0, with this eff ect 
diminishing at longer lag times. Carbon monoxide was 
the most frequently studied gaseous pollutant, and 
showed a 3·52% (95% CI 2·52–4·54%) increase in heart 
failure hospitalisations or mortality per 1 part per million 
increment across nearly two million events. Both 

PM2·5 (2·12%, 95% CI 1·42–2·82) and PM10 (1·63%, 
1·20–2·07) were positively associated with heart failure 
hospitalisation or mortality with a marked temporal 
relation and the strongest associations present at lag 0.

We did additional analyses by outcome, study design, 
age, and geographical location (fi gure 2). There was no 
change in eff ect direction across all pollutants in these 
analyses. Publication bias (Egger’s test for asymmetry, 
p<0·05) was noted for all pollutants except ozone 
(table 2). Adjusting for asymmetry using the trim and fi ll 
method did not alter the eff ect direction but, as expected, 
did attenuate the eff ect size. We observed heterogeneity 
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Figure 1: Association between (A) gaseous and (B) particulate air pollutants and heart failure hospitalisation or heart failure mortality
ppm=parts per million. ppb=parts per billion.
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Figure 2: Additional analysis across all gaseous and particulate air pollutants
*Kwon et al67 provided separate estimates for all age groups and for people older than 75 years. This study therefore appears twice in the additional analysis when 
stratifi ed by age. For the overall analysis, we have used the estimates provided for all age groups. †Kwon and Peel et al27,28,67 provided separate estimates stratifi ed by 
study design and therefore appear twice in the additional analysis. For the overall analysis, we have used the estimates provided for the time-series study design. 
ppm=parts per million. ppb=parts per billion.
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across all pollutants, which was most evident for nitrogen 
dioxide and carbon monoxide (I² of 91%) and least 
evident for PM2·5 (I² of 53%).

Median daily PM2·5 concentrations varied across states, 
with the highest population-attributable risks seen in 
Mississippi, Kentucky, and Tennessee and the lowest in 
Utah, Wyoming, and North Dakota (appendix). Reducing 
PM2·5 concentrations to 5·8 μg/m³ in each state would 
require a mean reduction in PM2·5 of 3·9 μg/m³ across 
the USA. The greatest eff ect on heart failure hospital-
isations would be in those states with the highest median 
daily PM2·5 concentrations (fi gure 3). We estimate that 
this reduction would prevent 7978 heart failure hospital-
isations and would be associated with savings of around 
US$307 million per year (appendix).

Discussion
There were robust and clear temporal associations between 
exposure to air pollutants and heart failure hospitalisations 
and mortality. The magnitude and direction of our overall 
estimates persisted despite conservative modelling. All 
studies except one were done in developed countries where 
even modest improvements in air quality standards are 
projected to have major population health benefi ts and 
substantial health-care cost savings.

The eff ect of air pollution on heart failure hospitalisation 
and mortality might be underestimated. First, our 
estimates are based on acute events associated with 
short-term exposures and do not take into account the 
adverse eff ects of chronic exposure to air pollution.3 We 

Figure 3: Median daily PM2·5 concentrations and estimated impact of a reduction in PM2·5 to a target 
concentration on heart failure hospitalisation per US state
Heart failure hospitalisation rates were not available for 15 states (appendix); data not shown for Mississippi 
(median daily PM2·5 13·4 μg/m³; annual reduction in heart failure hospitalisations 15 per 100 000).  US state 
abbreviations are defi ned in the appendix.
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Gaseous pollutants Particulate matter

Carbon monoxide 
(ppm)

Nitrogen dioxide 
(ppb)

Sulphur dioxide 
(ppb)

Ozone
(ppb)

PM₂·₅
(μg/m³)

PM₁₀
(μg/m³)

Increment 1 ppm 10 ppb 10 ppb 10 ppb 10 μg/m³ 10 μg/m³

Median pollutant
concentration (IQR)*

1·1 (0·9–1·6) 26·4 (22·5–30·1) 6·3 (4·7–11·9) 23·5 (17·6–32·0) 15·0 (10·8–17·6) 38·0 (27·0–45·5)

Range (min–max)† 0·6–5·6 16·0–77·0 3·0–32·0 12·3–75·0 4·5–20·5 19·0–75·3

Number of studies 18 18 14 18 10 22

Number of estimates 27 28 23 25 11 26

Heterogeneity, I² 91% 91% 78% 87% 53% 75%

Population-attributable risk, 
% (95% CI)‡

3·41 (2·46–4·34) 1·67 (1·23–2·11) 2·31 (1·33–3·27) N/A 2·06 (1·38–2·72) 1·60 (1·18–2·03)

Publication bias

Egger regression test, p value <0·001 0·028 0·009 0·304 0·003 0·007

Non-adjusted RR (95% CI)§ 1·035 
(1·025–1·045)

1·017 
(1·012–1·022)

1·024 
(1·014–1·034)

1·005 
(0·999–1·011)

1·021 
(1·014–1·028)

1·016 
(1·012–1·021)

Adjusted RR (95% CI) ¶ 1·018 
(1·007–1·029)

1·009 
(1·004–1·014)

1·014 
(1·003–1·026)

1·001 
(0·995–1·007)

1·016 
(1·008–1·023)

1·010 
(1·005–1·016)

Number of studies adjusted 12 10 6 2 6 6

ppm=parts per million. ppb=parts per billion. PM=particulate matter. PAR=population-attributable risk. IQR=interquartile range. *Median pollutant concentration (IQR) 
derived from the average daily pollutant concentrations reported per study. †Range of the average pollutant concentrations across the studies from minimum to maximum. 
‡PAR reported per ten-unit increment in air pollutant concentration, except for CO where per one-unit increment. Calculated as PAR = X (RR − 1) / [X (RR − 1) + 1], where 
X indicates prevalence exposure (assumed to be 100% here). §Risk estimates derived from pooled analysis of studies.¶Risk estimates after adjustment for publication bias 
using the trim and fi ll method.

Table 2: Heterogeneity, population-attributable risk, and assessment for publication bias stratifi ed by gaseous and particulate air pollutants
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have not considered long-term studies of air pollution in 
the current meta-analysis and therefore are unable to 
quantify any additive temporal eff ects of air pollution. 
Second, although our meta-analysis estimates the eff ect 
of short-term increases in air pollution on the population, 
this eff ect is likely to be greater in patients with 
pre-existing heart failure. Unfortunately, we were unable 
to stratify our analysis on the presence, severity, or 
phenotype of pre-existing heart failure, since these data 
were not available. Third, regional monitoring sites are 
likely to underestimate personal exposure in individuals 
living near major roadways. This may be an important 
consideration in estimating individual risk given that 
traffi  c-related air pollutants are thought to be the primary 
mediators of the cardiovascular eff ects of air pollution.19

A recent assessment of the global burden of disease 
ranked PM2·5 air pollution as one of the leading causes of 
death and disability worldwide.37 The American Thoracic 
Society recently advocated stricter standards for PM₂.₅ 
recommending a 10 μg/m³ reduction in daily maximum 
concentrations to 25 μg/m³.68 Recent studies indicate the 
persistence of adverse health eff ects at concentrations 
below those recommended by WHO.69 In our impact 
analysis, we estimate that reducing median daily PM₂.₅ 
concentrations by a mean of 3·9 μg/m³ would prevent 
roughly 8000 heart failure hospitalisations in the USA, 
with an associated saving of nearly a third of a billion 
dollars per annum. Smaller reductions in PM2·5 would 
prevent fewer hospitalisations, but could still confer 
signifi cant public health benefi ts.

Urban cities in developing countries are likely to have 
PM2·5 concentrations up to 10-fold higher than the US 
National Ambient Air Quality Standards.70,71 So-called 
megacities, with populations well above 10 million people 
such as New Delhi in India and Beijing in China, have 
daily PM2·5 concentrations of 100–300 μg/m³ compared 
with a median PM2·5 concentration of 15 μg/m³ in the 
cities included in our meta-analysis.70,72 However, 
assessment of the eff ect of air pollution in developing 
countries is diffi  cult because of a lack of cohesive air 
quality policies in combination with poor environmental 
monitoring and a paucity of disease surveillance data.73

The lack of data from developing countries is con cerning 
because these regions are likely to be aff ected most and 
have the greatest potential to improve health. The problem 
is highlighted in our meta-analysis where only one of the 
35 studies was done in a developing country.53 In areas 
with high levels of air pollution there are likely to be more 
frequent and more marked changes in air pollution 
exposure on a daily basis.72 Whether actual or relative 
increases in exposure would determine outcomes in these 
regions is uncertain.

In our additional analysis stratifying studies by 
location, we found risk estimates were almost twice as 
high in countries outside the USA where ambient 
concentrations are generally higher. As such, caution is 
necessary when extrapolating overall risk estimates 

from our meta-analysis to regions with higher air 
pollution concentrations.

Most hospitalisations in patients with heart failure are 
due to acute decompensated heart failure and dys-
rhythmias,74 with fewer patients hospitalised because of 
coexisting coronary heart disease and pulmonary 
disease.16 The biological mechanisms precipitating acute 
decompensation in patients with heart failure are likely to 
diff er substantially from those involved in triggering 
acute myocardial infarction.19 Acute decompensated heart 
failure can be caused by increasing demand on the heart, 
such as increased heart rate, blood pressure, and fi lling 
pressures, or further impairment of cardiac performance, 
such as reduced contractility and increased myocardial 
injury. Exposure to particulate matter air pollution has 
been associated with increased systemic blood pressure 
and vasoconstriction.75–77 Both pulmonary and right 
ventricular diastolic fi lling pressures are increased by 
exposure to ambient particulate matter, suggesting 
a pulmonary vasoconstrictor eff ect of air pollution.78 
Together with arrhythmias,79 these eff ects of air pollution 
will markedly increase the demands on the failing heart 
and thereby potentially precipitate acute decompensation. 
In addition to loss of contractile capacity through 
myocardial infarction,80 inhalation of particulate matter is 
associated with adverse ventricular remodelling and 
a worsening of myocardial fi brosis.81 These factors could 
have synergistic detrimental eff ects on cardiac function.

Although particulate matter is considered to be 
responsible for most adverse cardiovascular outcomes,82 
we cannot exclude an eff ect of non-particulate air 
pollutants either in isolation or combination. We noted 
an adverse relation between exposure to all gaseous 
pollutants except for ozone and heart failure outcomes. 
The acute eff ects of carbon monoxide exposure on cardiac 
function are well known,83 but most of these studies have 
assessed the eff ects of exposure to more than 1000 parts 
per million of carbon monoxide as a model of cigarette 
smoking.84,85 Ambient carbon monoxide or nitrogen 
dioxide con centrations might simply refl ect exposure to 
road traffi  c or combustion derived particles. Chamber 
studies also show that exposure to gaseous pollutants 
alone at high ambient concentrations does not cause 
acute cardiovascular dysfunction.86,87

Several limitations of our study should be considered. 
First, we found signifi cant heterogeneity across all 
pollutants, which could indicate diff erences in population 
demographics, sample size, patient characteristics, and 
exposure misclassifi cation due to variation in the accuracy 
of regional air pollution monitoring. However, pooled 
risk estimates showed consistency across all pollutants 
and the eff ect direction was not changed in our additional 
analyses. Second, we report estimates for single pollu-
tants, which do not take into consideration potential 
additive eff ects of multiple pollutants or adjustments for 
collinearity.88 Third, meta-analysis of observational studies 
has limitations with inherent biases. We noticed 
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signifi cant publication bias across all pollutants, except 
ozone. However, after adjustment for asymmetry, the 
overall eff ect direction remained unchanged. Fourth, 
most studies pooled in our meta-analysis used data 
from routine administrative sources. There was limited 
validation of outcomes, with coding error and misclassifi -
cation potentially giving rise to non-diff erential bias. 
However, nine of the 35 studies in our meta-analysis, 
encompassing almost 2 million events, used Medicare’s 
hospital claims database. Coding for heart failure has 
been validated by case note review and found to have 84% 
agreement with the principal diagnosis.89 Finally, we did 
not have access to primary data and were unable to 
establish whether multiple hospitalisations might have 
occurred in the same patient. This point is important, 
since patients with recurrent hospitalisations could be 
more susceptible to the eff ects of air pollution.

Acute decompensated heart failure is a common, 
costly, and often fatal condition. Change in gaseous and 
particulate air pollutant concentrations have a marked 
and close temporal association with adverse outcomes in 
heart failure. More high-quality studies are urgently 
needed to establish the eff ect of air pollution on heart 
failure outcomes in middle-income and low-income 
countries. Although the causality and biological mechan-
isms need further exploration, air pollution is a pervasive 
public health issue with major cardiovascular and health-
care economic consequences presenting a key target for 
national and international intervention.
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