SUPPLEMENTAL MATERIAL

Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting

Supplementary Tables

- 2-4 **Supplementary Table 1.** DNA sequence variants comprising polygenic risk score for coronary heart disease
- 5 **Supplementary Table 2.** Baseline characteristics in WOSCOPS participants by treatment group
- 6 **Supplementary Table 3.** Predicted PCE ASCVD 10-year event rates by polygenic risk score
- 7 **Supplementary Table 4.** Multivariable association of high genetic risk with CHD events in placebo-treated WOSCOPS participants
- 8 **Supplementary Table 5.** Association of high genetic risk with atherosclerosis traits stratified by self-reported family history of CHD
- 9 Supplementary Table 6. Baseline characteristics for BioImage and CARDIA participants
- 10 **Supplementary Table 7.** Carotid artery plaque burden by polygenic risk score group in BioImage
- 11 **Supplementary Table 8.** Carotid artery plaque burden by polygenic risk score quintile in BioImage
- 12 **Supplementary Table 9.** Comparison of 27-SNP and 57-SNP score association with carotid artery plaque burden in BioImage

Supplementary Figures and Figure Legends

- 13-14 Supplementary Figure 1. Distributions of normalized polygenic risk scores
- 15 Supplementary Figure 2. Risk of incident coronary events in in WOSCOPS by polygenic risk score group
- 16 Supplementary References

Supplementary Table 1. DNA sequence variants comprising polygenic risk score for coronary heart disease.

					V	VOSCOF	PS		BioImage			CARDIA	
Locus	Implicated Gene(s)	Lead SNP	Lead Risk Allele	CHD OR	SNP	Risk Allele	Frequency	SNP	Risk Allele	Frequency	SNP	Risk Allele	Frequency
1p13.3	SORT1	rs602633	С	1.12	rs602633	С	0.793	rs602633	С	0.793	rs583104	Т	0.777
1p32.2	PPAP2B	rs17114036	А	1.11	rs17114036	А	0.879	rs17114036	А	0.879	rs6588635	Т	0.866
1p32.3	PCSK9	rs11206510	Т	1.06	rs11206510	Т	0.828	rs11206510	Т	0.828			
1q21.3	IL6R	rs4845625	Т	1.06	rs4845625	Т	0.451	rs4845625	Т	0.451	rs6689393	Α	0.452
1q41	MIA3	rs17464857	Т	1.05	rs17464857	Т	0.866	rs17464857	Т	0.866			
21q22.11	KCNE2	rs9982601	Т	1.13	rs9982601	Т	0.122	rs9982601	Т	0.122			
22q11.23	POM121L9P- ADORA22B VAMB5 VAMB8	rs180803	G	1.02									
2p11.2	GGCX	rs1561198	А	1.06	rs1561198	А	0.476	rs1561198	А	0.476	rs1561198	А	0.476
2p21	ABCG5-ABCG8	rs6544713	Т	1.06	rs6544713	Т	0.309	rs6544713	Т	0.309			
2p24.1	APOB	rs515135	G	1.07	rs515135	G	0.796	rs515135	G	0.796	rs562338	G	0.795
2q22.3	ZEB2- AC074093.1	rs2252641	G	1.06	rs2252641	G	0.46	rs2252641	G	0.46	rs2252641	G	0.46
2q33.2	WDR12	rs6725887	С	1.12	rs6725887	С	0.13	rs2351524	Т	0.13	rs6725887	С	0.13
2q37.1	KCNJ13- GIGYF2	rs1801251	А	1.05				rs1801251	А	0.287	rs283475	Т	0.276
3q22.3	MRAS	rs9818870	Т	1.07	rs9818870	Т	0.143	rs9818870	Т	0.143	rs9818870	Т	0.143
4q12	REST-NOA1	rs17087335	Т	1.06	rs17087335	Т	0.186	rs17087335	Т	0.186	rs7687767	G	0.185
4q31.22	EDNRA	rs1878406	Т	1.1	rs1878406	Т	0.146				rs6841581	Т	0.146
4q32.1	GUCY1A3	rs7692387	G	1.08	rs7692387	G	0.795	rs7692387	G	0.795	rs3796587	С	0.795
5q31.1	SLC22A4- SLC22A5	rs273909	С	1.07	rs273909	С	0.134	rs273909	С	0.134			
6p21.2	KCNK5	rs10947789	Т	1.07	rs10947789	Т	0.736	rs10947789	Т	0.736	rs6918122	С	0.746
6p21.31	ANKS1A	rs12205331	С	1.04	rs12205331	С	0.81	rs12205331	С	0.81	rs17609940	G	0.811
6p21.33	<i>C</i> 2	rs3130683	Т	1.09				rs3130683	Т	0.968			
6p24.1	PHACTR1	rs9369640	А	1.09	rs9369640	А	0.62	rs9369640	А	0.62	rs9369640	А	0.62
6q23.2	TCF21	rs12190287	С	1.07	rs12190287	С	0.612						
6q25.3	LPA	rs3798220	С	1.28	rs3798220	С	0.01	rs3798220	С	0.01			
6q25.3	LPA	rs2048327	G	1.06	rs2048327	G	0.352	rs2048327	G	0.352	rs2048327	G	0.352

6q26	PLG	rs4252120	Т	1.07	rs4252120	Т	0.704	rs4252120	Т	0.704	rs4252120	Т	0.704
7p21.1	HDAC9	rs2023938	G	1.08	rs2023938	G	0.095	rs2023938	G	0.095	rs10245779	С	0.1
7q22.3	NA	rs12539895	А	1.08	rs12539895	А	0.188	rs3815148	С	0.203	rs34084719	С	0.188
7q32.2	ZC3HC1	rs11556924	С	1.09	rs11556924	С	0.623	rs11556924	С	0.623			
7q36.1	NOS3	rs3918226	Т	1.14	rs3918226	Т	0.014						
8p21.3	LPL	rs264	G	1.11	rs264	G	0.851	rs264	G	0.851	rs271	G	0.847
8q24.13	TRIB1	rs2954029	А	1.06	rs2954029	А	0.552	rs2954029	А	0.552	rs2980875	Α	0.548
9p21.3	CDKN2A	rs1333049	С	1.21	rs1333049	С	0.472	rs1333049	С	0.472	rs1333049	С	0.472
9p21.3	CDKN2A	rs3217992	А	1.16	rs3217992	А	0.402	rs3217992	А	0.402	rs3217992	А	0.402
9q31.3	SVEP1	rs111245230	С	1.14				rs111245230	С	0.032	rs11791314	С	0.029
9q34.2	ABO	rs579459	С	1.07	rs579459	С	0.214	rs579459	С	0.214			
10p11.23	KIAA1462	rs2505083	С	1.06	rs2505083	С	0.428	rs2505083	С	0.428			
10q11.21	CXCL12	rs501120	А	1.07	rs501120	А	0.854	rs501120	А	0.854	rs671765	Α	0.854
10q11.21	CXCL12	rs2047009	С	1.05	rs2047009	С	0.49				rs2047009	С	0.49
10q23.31	LIPA	rs2246833	Т	1.06	rs2246833	Т	0.358	rs2246942	G	0.361			
10q23.31	LIPA	rs11203042	Т	1.04	rs11203042	Т	0.457	rs11203042	Т	0.457	rs11203041	Т	0.455
10q24.32	CYP17A1	rs12413409	G	1.1	rs12413409	G	0.911	rs12413409	G	0.911	rs12052058	G	0.746
11p15.3	NA	rs11042937	Т	1.04				rs11042937	Т	0.518	rs11042937	Т	0.518
11p15.4	SWAP70	rs10840293	А	1.06									
11q22.3	PDGF	rs974819	А	1.07	rs974819	А	0.279	rs974819	А	0.279	rs2128739	Α	0.272
11q23.3	APOA5-APOA1	rs9326246	С	1.09	rs9326246	С	0.093	rs9326246	С	0.093	rs6589566	G	0.091
12p13.3	LRP1	rs11172113	С	1.06	rs11172113	С	0.388	rs11172113	С	0.388			
12p24.31	SCARB1	rs11057830	А	1.08	rs11057830	А	0.165	rs11057830	А	0.165			
12q24.12	SH2B3	rs3184504	Т	1.07	rs3184504	Т	0.464	rs3184504	Т	0.464			
13q12.3	FLT1	rs9319428	А	1.06	rs9319428	А	0.309	rs9319428	А	0.309			
13q34	COL4A1	rs9515203	Т	1.08	rs9515203	Т	0.766						
13q34	COL4A1	rs4773144	G	1.07	rs4773144	G	0.447	rs4773144	G	0.447			
14q32.2	HHIPL1	rs2895811	С	1.06	rs2895811	С	0.426	rs2895811	С	0.426			
15q22.33	SMAD3	rs17293632	С	1.05				rs17293632	С	0.785	rs2033784	Т	0.719
15q25.1	ADAMTS7	rs7173743	Т	1.07	rs7173743	Т	0.535	rs7173743	Т	0.535	rs7168915	Α	0.533
15q26.1	MFGE8-ABHD2	rs8042271	G	1.1									

15q26.1	FURIN	rs17514846	А	1.07	rs17514846	А	0.461	rs17514846	А	0.461	rs1894401	G	0.469
16q13	CETP	rs247616	С	1.05	rs247616	С	0.708	rs247616	С	0.708			
17p11.2	RASD1	rs12936587	G	1.06	rs12936587	G	0.554	rs12936587	G	0.554			
17p13.3	SMG6	rs2281727	С	1.04	rs2281727	С	0.369	rs2281727	С	0.369	rs9895551	G	0.37
17q21.32	UBE2Z	rs15563	С	1.04	rs15563	С	0.559	rs15563	С	0.559	rs15563	С	0.559
17q23.2	BCAS3	rs8080784	С	1.06				rs8080784	С	0.161	rs7225581	Α	0.161
18q21.32	PMAIP1-MC4R	rs663129	А	1.06	rs663129	А	0.24	rs571312	Т	0.24			
19p13.2	ANGPTL4	rs116843064	G	1.16				rs116843064	G	0.974			
19p13.2	LDLR	rs1122608	G	1.1	rs1122608	G	0.75	rs1122608	G	0.75	rs1122608	G	0.75
19q13.32	APOE-APOC1	rs445925	С	1.13	rs445925	С	0.906	rs445925	С	0.906			
19q13.32	APOE-APOC1	rs2075650	G	1.11	rs2075650	G	0.131	rs2075650	G	0.131			

A set of 67 independent genomic variants associated with coronary heart disease at stringent statistical thresholds have been found.¹⁻³

Directly genotyped variants in WOSCOPS were used for analysis. Directly genotyped and imputed proxy variants $(r^2 > 0.8)^4$ in BioImage and CARDIA were included for analysis. Variants in red and italicized are proxy variants. Risk allele frequencies in 1000G

phase 3 EUR samples are noted.⁴

Supplementary Table 2. Baseline characteristics in WOSCOPS participants by treatment

group.

	Placebo	Statin	Р
	(n = 2,440)	(n = 2,452)	
Age, years	55.1 (5.5)	55.2 (5.5)	0.60
Male, %	100.0	100.0	-
BMI, kg/m ²	26.0 (3.1)	26.0 (3.3)	0.99
Family history of CHD, %	5.3	5.7	0.60
Smoking, %	44.0	43.4	0.70
Diabetes mellitus, %	1.0	1.2	0.60
Systolic blood pressure, mmHg	135.8 (17.0)	135.3 (17.5)	0.30
Antihypertensive therapy, %	13.9	14.5	0.59
Total cholesterol, mg/dl	271.8 (22.4)	271.5 (22.8)	0.68
LDL cholesterol, mg/dl	191.8 (17.2)	191.9 (17.5)	0.95
HDL cholesterol, mg/dl	43.9 (9.5)	43.9 (9.3)	0.84
Triglycerides, mg/dl	161.0 (68.0)	158.2 (66.9)	0.15
High polygenic risk score, %	21.0	19.0	0.11
Follow Up, years	13.5 (2.8)	13.7 (2.7)	0.052
Follow Up within trial, years	4.8 (0.7)	4.8 (0.7)	0.15
Follow Up after trial, years	8.7 (2.6)	8.9 (2.4)	0.08

13 Values are presented as mean (standard deviation) or %. ASCVD = atherosclerotic cardiovascular disease; BMI = body-mass index; HDL = high-density lipoprotein; LDL = low-density lipoprotein.

14 Supplementary Table 3. Predicted PCE ASCVD 10-year event rates risk by polygenic risk

- 15 16 score quintile.

	PCE e	PCE estimated 10-year ASCVD event rate %							
Polygenic risk score Quintile	WOSCOPS	CARDIA	BioImage						
Q1	15.0 (7.6)	1.7 (2.2)	42.1 (18.4)						
Q2	15.3 (7.8)	2.1 (2.9)	43.4 (19.2)						
Q3	15.0 (8.3)	1.7 (2.4)	43.2 (18.3)						
Q4	14.8 (7.9)	1.7 (2.3)	43.0 (18.7)						
O5 (High)	145(74)	18(2.0)	42 1 (18 2)						

17 ASCVD = atherosclerotic cardiovascular disease; PCE = ACC/AHA Pooled Cohort Equations; Q = quintile

18 Supplementary Table 4. Multivariable association of high genetic risk with CHD events in

19 placebo-treated WOSCOPS participants

20

Variable	HR	CI	Р
Age	1.30	1.16-1.45	< 0.001
Family history of CHD	1.42	0.93-2.17	0.11
Smoking	1.55	1.25-1.92	< 0.001
Diabetes mellitus	2.10	0.99-4.46	0.054
Systolic blood pressure	0.99	0.89-1.10	0.81
Antihypertensive therapy	1.37	1.03-1.81	0.029
LDL cholesterol	0.97	0.87-1.07	0.52
HDL cholesterol	0.81	0.73-0.91	< 0.001
High CHD polygenic risk score	1.62	1.27-2.05	< 0.001

Continuous variables are standardized to mean = 0 and standard deviation = 1.

21 22 23 CHD = coronary heart disease; CI = confidence interval; HDL = high-density lipoprotein; HR = hazard ratio; LDL =

low-density lipoprotein.

24 Supplementary Table 5. Association of high genetic risk with atherosclerosis traits

stratified by self-reported family history of CHD 25

26

Self-reported				P for interaction
family history				
WOSCOPS*: In	cident CHD e	events		·
	Ν	HR (95% CI)	Р	
Yes	270	1.99 (1.01-3.92)	0.047	
No	4,622	1.43 (1.18-1.73)	< 0.001	
CARDIA: CAC	> 0 (Age 18-3	<u>0 y)</u>		
	N	OR (95% CI)	Р	
Yes	177	1.44 (0.84-2.44)	0.18	
No	977	1.30 (0.99-1.72)	0.061	
BioImage: Relat	ive Mean car	otid artery plaque (Age 55	-80 y)	·
-	Ν	Estimate (95% CI)	\overline{P}	
Yes	2,531	1.27 (1.01-1.61)	0.04	
No	1,732	1.14 (0.86-1.51)	0.36	

High genetic risk (top quintile of polygenic risk score) was associated with the specified outcome variables for each

study stratified by a self-reported family history of CHD. Adjusted for age, sex, diabetes mellitus status, smoking

27 28 29 30 status, LDL cholesterol, HDL cholesterol, systolic blood pressure, antihypertensive medication status, and family

history of CHD.

31 32 * Placebo-treated participants

CAC = coronary arterial calcification; CHD = coronary heart disease; CI = confidence interval; HR = hazard ratio

33 Supplementary Table 6. Baseline characteristics for BioImage and CARDIA participants.

34		3	4
----	--	---	---

		BioImage (n = 4,329)	(CARDIA (n = 1,154)			
	High Genetic Risk (n = 866)	All Others (n = 3,463)	Р	High Genetic Risk (n = 231)	All Others (n = 923)	Р	
Age, years*	69.1 (5.9)	69.1 (6.1)	0.90	40.7 (3.3)	40.8 (3.3)	0.82	
Male, %	39.1	45.2	0.002	48.9	48.3	0.93	
Family history of CHD, %	60.3	59.1	0.53	16.9	15.0	0.53	
Smoking, %	8.0	9.0	0.37	26.7	28.9	0.70	
Diabetes mellitus, %	15.7	16.9	0.42	6.1	4.8	0.53	
Systolic blood pressure,	139.1 (19.1)	138.8 (18.4)	0.70	110.4 (13.5)	110.2 (15.5)	0.85	
mmHg							
Antihypertensive therapy,	28.8	27.8	0.61	4.8	4.0	0.74	
%							
Total cholesterol, mg/dl	202.4 (37.9)	202.8 (38.0)	0.74	186.3 (32.2)	186.8 (34.5)	0.85	
LDL cholesterol, mg/dl	114.0 (33.3)	113.2 (33.4)	0.52	115.1 (29.5)	114.4 (31.6)	0.76	
HDL cholesterol, mg/dl	55.4 (15.0)	56.1 (15.7)	0.25	49.0 (15.3)	49.8 (14.4)	0.46	
Triglycerides, mg/dl	166.5 (85.7)	171.6 (101.5)	0.13	114.2 (83.3)	114.3 (105.0)	0.99	
Statin therapy, %	37.3	33.7	0.06	2.6	2.9	0.96	

35 Values are presented as mean (standard deviation) or %. High genetic risk is defined as the highest quintile of CHD PRS. Differences between continuous

36 variables were tested with Student t-tests and categorical variables with chi-square tests.

37 * Age for CARDIA is presented at the time of coronary CT scan for CAC.

38 ASCVD = atherosclerotic cardiovascular disease, CAC = coronary artery calcification, HDL = high-density lipoprotein, LDL = low-density lipoprotein

Supplementary Table 7. Carotid artery plaque burden by polygenic risk score group in BioImage.

- 41

Carotid artery plaque burden	High Genetic Risk N = 866			All Others N = 3,463	Relative %
(mm ²)	Ν	%	Ν	%	
= 0	153	17.9	689	19.8	-9.8
> 0	710	82.1	2,777	80.2	2.4
> 150	510	59.0	1,973	56.9	3.6
> 300	380	44.0	1,440	41.6	5.9
> 450	293	33.9	1,108	32.0	6.2
> 600	222	25.8	837	24.1	6.7

43 Supplementary Table 8. Carotid artery plaque burden by polygenic risk score quintile in

- 44 **BioImage**
- 45

Polygenic risk score quintile	Carotid artery plaque Median mm ² [IQR]	Carotid artery plaque burden Estimate (95% CI, <i>P</i>) *
Q1	184 [24, 509]	1
Q2	216 [48, 649]	1.34 (1.07-1.67, <i>P</i> =0.01)
Q3	210 [43, 568]	1.32 (1.06 - 1.66, P = 0.01)
Q4	221 [42, 595]	1.29(1.03-1.62, P=0.02)
Q5 (High)	215 [52, 618]	1.52 (1.22-1.91, <i>P</i> < 0.001)

* Relative to Q1. Adjusted for age, sex, diabetes mellitus status, smoking status, LDL cholesterol, HDL cholesterol,
systolic blood pressure, antihypertensive medication status, and family history of CHD

48 CHD = coronary heart disease; CI = confidence interval; HR = hazard ratio; IQR = interquartile range; Q = quintile

49 Supplementary Table 9. Comparison of 27-SNP and 57-SNP score association with carotid

- 50 artery plaque burden in BioImage
- 51

Polygenic Risk Score	Relative Effect per SD	95% CI	Р
27-SNP score	1.019	0.949-1.093	0.61
57-SNP score	1.097	1.022-1.178	0.01

52 SD = standard deviation; CI = confidence interval

Supplementary Figure 1. Distributions of normalized polygenic risk scores.

WOSCOPS

61 CARDIA

64 Supplementary Figure 2. Risk of incident coronary events in WOSCOPS by polygenic risk

65 score group.

- The increased relative risk from high PRS of a first coronary heart disease event in placebo-treated participants of
- 66 67 68 the WOSCOPS is expressed with mean LDL cholesterol values presented. LDL cholesterol is presented as mean
- 69 (standard deviation) in mg/dl.
- 70 CI = confidence interval; HR = hazard ratio, PRS = polygenic risk score; LDL = low-density lipoprotein; SD =
- 71 standard deviation

72 Supplementary References

- 74 CARDIoGRAMplusC4D. A comprehensive 1000 Genomes-based genome-wide 1. 75 association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121-30. 76 2. CARDIoGRAMplusC4D, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, 77 Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, Konig JR, Cazier 78 JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, 79 Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, 80 Lundmark P, Lyytikainen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuvdam N, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth 81 82 AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R, Consortium D, Consortium C, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-83 84 Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang 85 HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, 86 87 Maouche S, Morris AD, Muller-Nurasvid M, Mu TC, Nikus K, Peden JF, Rayner NW, Rasheed 88 A, Rosinger S, Rubin D, Rumpf MP, Schafer A, Sivananthan M, Song C, Stewart AF, Tan ST, 89 Thorgeirsson G, van der Schoot CE, Wagner PJ, Wellcome Trust Case Control C, Wells GA, 90 Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, 91 Cambien F, Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario 92 MM, Ferrieres J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, Iribarren C, 93 Jang Y, Kahonen M, Kee F, Kim HS, Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, 94 Laaksonen R, Lee JY, Lind L, Ouwehand WH, Parish S, Park JE, Pedersen NL, Peters A, 95 Quertermous T, Rader DJ, Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, 96 Tregouet DA, Virtamo J, Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, 97 Hengstenberg C, Sandhu MS, Pastinen T, Syvanen AC, Hovingh GK, Dedoussis G, Franks PW, 98 Lehtimaki T, Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, 99 Perola M, Clarke R, Boehm BO, O'Donnell C, Reilly MP, Marz W, Collins R, Kathiresan S, 100 Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, Watkins H, 101 Schunkert H and Samani NJ. Large-scale association analysis identifies new risk loci for 102 coronary artery disease. Nat Genet. 2013;45:25-33. 103 Stitziel NO, Stirrups K, Masca NGD, Erdmann J, Ferrario PG, Konig IR, Weeke PE, 3. 104 Webb TR, Auer PL, Schick UM, Lu Y, Zhang H, Dube MP, Goel A, Farrall M, Peloso GM, Won 105 HH, Do R, Van Iperen E, Kanoni S, Kruppa J, Mahajan A, Scott RA, Willenborg C, Braund PS, 106 J.C. VC, Doney AS, Donnelly LA, Asselta R, Merlini PA, Duga S, Marziliano N, Denny JC, 107 Shaffer CM, El Mokhtari NE, Franke A, Gottesman O, Heilmann S, Hengstenberg C, Hoffmann 108 P. Holmen OL, Hveem K. Jansson IH, Jockel KH, Kessler T, Kriebel J, Laugwitz KL, Marouli E. 109 Martinelli N, McCarthy MI, Van Zuydam NR, Meisinger C, Esko T, Mihailov E, Escher SA, 110 Alver M, Moebus S, Morris AD, Muller-Nurasyid M, Nikpay M, Olivieri O, Perreault LPL, 111 AlQarawi A, Robertson NR, Akinsaya KO, Reilly DF, Vogt TF, Yin W, Asselbergs FW, 112 Kooperberg C, Jackson RD, Stahl E, Strauch K, Varga TV, Waldenberger M, Zeng L, Kraja AT, 113 Liu C, Ehret GB, Newton-Cheh C, Chasman DI, Chowdhury R, Ferrario M, Ford I, Jukema JW, 114 Kee F, Kuulasmaa K, Nordestgaard BG, Perola M, Saleheen D, Sattar N, Surendran P, Tregouet DA, Young R, Howson JMM, Butterworth AS, Danesh J, Ardissino D, Bottinger EP, 115 116 Erbel R, Franks PW, Girelli D, Hall AS, Hovingh GK, Kastrati A, Lieb W, Meitinger T, Kraus
- 117 WE, Shah SH, McPherson R, Orho-Melander M, Melander O, Metspalu A, Palmer CNA, Peters

- A, Rader DJ, Reilly MP, Loos RJ, Reiner AP, Roden DM, Tardif JC, Thompson JR, Wareham NJ,
- 119 Watkins H, Willer CJ, Kathiresan S, Deloukas P, Samani NJ and Schunkert H. Coding
- 120 Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease. *N Engl J Med*.
- 121 2016;374:1134-44.
- 122 4. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel
- 123 JO, Marchini JL, McCarthy S, McVean GA and Abecasis GR. A global reference for human
- 124 genetic variation. *Nature*. 2015;526:68-74.
- 125