
 

 
 
 
 
 

Anisimov, V. V. (2016) Discussion on the paper “Real-Time Prediction of Clinical Trial 

Enrollment and Event Counts: A Review”, by DF Heitjan, Z Ge, and GS Ying. 

Contemporary Clinical Trials, 46, pp. 7-10. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/137911/ 
     

 
 
 
 
 

 
Deposited on: 7 March 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/137911/
http://eprints.gla.ac.uk/137911/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1 
 

Discussion on the paper  
“Real-Time Prediction of Clinical Trial Enrollment and Event Counts:  
A Review”, by DF Heitjan, Z Ge, and GS Ying 
 
Vladimir V. Anisimov 
 

The paper by Heitjan et al [11] provides very interesting and useful review of the 
methods for predicting patient enrollment and event counts in clinical trials. The aim of this 
letter is to raise an additional discussion on some points and to provide readers with more 
comprehensive information and clarification of particular methods/techniques.  

First, it would be useful to specify that there are two basic stages in predicting patient 
enrollment and various events:  
1. Start-up (baseline) prediction before trials starts and therefore there is no real trial data 

available yet, and  
2. Interim prediction where it is possible to use real trial data and update (re-project) trial 

behaviour for the remaining period. 
At both stages, good predictive techniques potentially can use similar models, only 

input parameters will be evaluated differently.  
Since the trial start-up stage is not reflected in detail in [11], it seems expedient to 

devote some time to this.  
 

1 Trial start-up stage 
 

This stage may also include an early stage of the trial where not many centers are 
initiated and not many patients have been recruited yet. Typically during this stage, the basic 
input information that is provided by clinical teams for enrollment predicting includes the 
following key elements:  

(a) total number of randomized patients (sample size); (b) expected number of 
screened patients and screening duration; (c) list of regions and countries to be involved into 
the study: (d) planned number of centers to be initiated in each country and some information 
about the expected schedule of initiation; (e) expected enrollment rates in centers or countries 
(this may include screening/enrollment rates and dropout probabilities).  

This information has many uncertainties. In particular, at the start-up stage we may not 
know the exact schedule of center’s initiation and we especially cannot predict the exact 
screening/enrollment rates and dropout probabilities. 

Therefore, one of the main problems at this stage is how to account for these 
uncertainties and evaluate trial enrollment feasibility. There is no universal approach since the 
solution may depend on data availability. If we have a similar historical study (similar 
therapeutic indication, inclusion/exclusion criteria, etc.) conducted in the same regions, then 
this information can be used to create the initial trial enrollment design. Specifically, the 
enrollment rates for a new trial can be treated as random variables with some prior distribution 
where parameters can be evaluated using historical data in these regions and some prior 
information. As the rates are positive, it is natural to use a gamma distribution.    

For a new trial, we can also assume that the centers in the regions can be initiated in 
time according to some distributions where parameters are estimated using historical data. As 
usually teams for each country/region may provide some time intervals where a given number 
of centers is planned to be initiated, then at the first instance we can assume that the times of 
initiation are distributed uniformly in these intervals [3,4]. If some historical information about 
initiation dates is available, other types of distributions can be also used.     

Note that during the start-up stage there can be a rather long transient period until 
most of the centers will be initiated. Thus, the total number of patients and centers may not be 
too large. Therefore, during this period it is important to account for the process of centers 
initiation and the methods based on modeling enrollment in the individual centers are more 
preferable compared to models based on global prediction.  
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1.1 Poisson-gamma enrollment model 
 

On this way we are naturally coming to using a so-called Poisson-gamma enrollment 
model (P-G model) developed in [1-5]. This model assumes that the patients arrive at clinical 
centers according to delayed doubly stochastic Poisson processes where the variation in rates 
between different centers is modelled using a gamma distribution. The delays in center’s 
initiation also can be random.  

This model is very flexible as it provides the opportunity to model the enrollment on 
different levels (center, country, region, trial) and has many additional features, e.g. predicting 
with credibility bounds, predicting probability to complete in time, evaluate effects of changing 
the number of centers, etc. One of the additional advantages of P-G model is that most of 
these characteristics can be calculated using closed-form expressions, thus, there is no need 
to use Monte Carlo simulation.     

Note that Carter et al. [10] also modelled variation in rates of corresponding Poisson 
processes but using a uniform distribution. However, this approach has some limitations as it 
assumes that the rates are bounded in some interval. Moreover, the analysis of many real 
trials shows that the empirical distributions of the rates are rather far from uniform distribution 
and heavy tailed. 

In the framework of P-G model, at the start-up stage as input data it should be provided 
the expected means and standard deviations of the enrollment rates (on center or country 
level) to estimate the prior parameters of the rates used in prediction. These values can be 
evaluated using historical data from similar trials and information provided by clinical teams.   

If there is no information from similar trials, then we can use the planned/expected 
rates provided by clinical teams weighted with some expert estimators. This data can be used 
as sample statistics for evaluating the prior parameters of P-G model (on country or regional 
level). Some discussion on using baseline estimates of rates at the trial start-up was provided 
in [3,5]. Bakhshi et al. [9] investigated P-G model further and suggested the empirical way to 
set the prior parameters by using the results of the meta-analysis.     

As a separate set of input data for P-G model, the information about the process of the 
center’s initiation should be provided. The case where the times of initiation have uniform 
distribution was considered in [3,4]. In this case, the closed-form expressions for predictive 
characteristics were derived. 

Note that at start-up and early stages other approaches based on models for global 
enrollment, e.g. using Poisson models with global gamma distributed rate [13,17], and 
Brownian (Lai et al [13]) or fractional Brownian (Zhang & Lai [17]) motions may not be 
appropriate as in general at these stages there is a small number of active centers and patients 
recruited. 

Therefore, on my opinion, P-G model is rather flexible and can be applied to the vast 
majority of trials at start-up and early stages. 
 

2 Interim stage 
 

At this stage, it is natural to use real data and re-estimate parameters of the model with 
the purpose to adjust to real data and improve accuracy of prediction of the remaining 
enrollment. Thus, it is typically assumed that there is already some number of active centers 
that enrolled a reasonable number of patients (enough to use statistical estimations). 
Therefore, the methods and results may depend on trial goals and data availability.  

There can be other tasks at the interim stage including evaluating enrollment 
performance and other operational characteristics, detecting outliers, etc. However, this 
interesting direction may lead us outside the current discussion.  

Most papers by other authors are mainly dealing with prediction of global enrollment 
and there are two basic directions. One is using mixed Poisson processes where the global 
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rate is modelled using different approaches [12,13,16,17]. Another one uses Brownian or 
fractional Brownian motions [14,18]. 

A brief review of the papers related to these directions is provided by the authors [11] 
in Sec. 3 “Predicting Accrual”. However, I would argue with the classification of the models (or 
two streams) proposed in Sec. 3.1. It seems rather artificial as actually the first stream should 
also involve modeling of enrolment. The second stream potentially can use modeling for 
predicting future trends and therefore time to reach targets, as well. In addition, the description 
of the papers related to using random-effect models in Sec. 3.3 is done rather schematically. 
As the use of P-G model is receiving further attention and development in papers of different 
authors, it seems expedient to provide more details here.  
 

2.1 Use of a Poisson-gamma enrollment model 
 

In the framework of P-G model [1-5], the enrollment processes at different levels are 
modelled as non-homogeneous Poisson processes with time-dependent and in general 
random rates, which are governed by the processes of center’s opening and closing as well 
as individual center’s data. Together with modeling enrollment at the start-up stage, P-G model 
can be efficiently applied to an interim prediction. The input is enrollment data (for each center, 
the duration of active enrollment and the number of patients recruited). Using this data, the 
parameters of a gamma distribution of the enrollment rates are estimated using ML procedure 
(on global or regional level). Then in each center the posterior rate is re-estimated using 
individual data and the Bayesian procedure. The posterior rates also have gamma 
distributions with different parameters depending on interim data due to the property of 
conjugate distributions (Poisson and gamma). These rates can be used to create the 
predictions of the remaining enrollment on different levels and evaluate other characteristics.  

The technique based on using P-G model has several advantages compared to other 
approaches:  it accounts for multiple center’s effects, different times for opening and closing 
centers, allows predicting in a closed form the mean number of recruited patients with 
credibility bounds (on different levels), predicting credibility bounds for time to complete 
enrollment and probability to complete in time. One of the essential features is the opportunity 
to evaluate the interim adaptive adjustment (if enrollment is going slower as expected, 
evaluate the number of new centers needed to be added with the purpose to complete 
enrollment in time with a given confidence). In addition, this technique has several other 
features that are available only in this framework, e.g., predicting center/country performance, 
number of “empty” centers, creating optimal enrollment design [1-5]. 

It also seems expedient to raise some discussion on using formulae compared to 
Monte Carlo simulation. As for rather general scenarios the most of characteristics can be 
calculated using closed-form expressions (explicit formulae), then there is no need to use 
Monte Carlo simulation. The availability of formulae has advantages as it allows to investigate 
the functional dependence on different parameters (number of sites, vector of rates, center’s 
delays, etc.) and, thus, analyse in real time the impact of various factors, perform sensitivity 
analysis and find the optimal solutions, which would be hard to archive using simulation. In 
addition, simulation may not work well for evaluating small tail and risk probabilities, P-values 
and also may lead to large errors in small regions.  

Note also that in some cases of special restrictions on enrollment and more 
complicated assumptions, it may be difficult to derive formulae. In these cases Monte Carlo 
simulation can be the natural choice.  

I would also like to correct the author’s statement in Sec. 3.3 [11] that “Mijoule et al. 
[15] proposed replacing the gamma with a Pareto mixture.” Actually in [15] the authors 
investigated further properties of P-G model, compared them with the Pareto-Poisson model 
using real datasets from [2], and also investigated the feasibility of the model. In final 
conclusions the authors “recommend the use of the Poisson-Gamma, which is easier to 
handle”, and also recommend using a uniform distribution for centers initiation when the 
opening dates of the centers are not known precisely, which is proposed in [3,4].  
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It would also be interesting to provide some parallel between Williford et al [17], 
Gajewski et al [13] and P-G model. In both papers the authors use a Poisson process with 
gamma distributed rate to model the global enrollment and also a Bayesian interim adjustment. 
Note that in the framework of P-G model the global enrollment in general is not described by 
a Poisson-gamma process as the sum of gamma distributed variables in general does not 
follow a gamma distribution. Nevertheless, this sum for a large number of summands can be 
well approximated by a gamma distributed variable [5]. Thus, P-G model can also serve as a 
justification of model [13,17] on a global level.  

It is also worth noting that in the framework of P-G model, the interim prediction can 
account for the opportunity in the future to open or close some centers [5]. Thus, the predictive 
processes at different levels are in general non-homogeneous doubly stochastic Poisson 
processes where the global and individual rates depend on the processes of initiation, closing 
centers and individual rates. This feature of P-G model profitably differentiates it from the other 
models for global prediction based on using Poisson models [12,13,17] and Brownian and  
fractional Brownian motions [14,18], as in these papers it is assumed that the predictive 
process is time-homogeneous with constant parameters estimated at interim time.  

 

2.2 Modeling trends 
 
Here I would like to add some discussion to Sec. 3.4 [11] “Modeling trends in the 

Poisson rate“. Actually the author’s statement “The models described thus far all assume a 
constant mean enrollment rate per center, allowing the overall enrollment rate to change only 
as centers enter or leave the trial” related to cited papers on Poisson models with random 
effects does not reflect the state-of-art.  

While using P-G model, the parameters of enrollment rates are re-estimated at any 
interim time using real data without regard to whether the number of centers is changed or 
not. Therefore, the posterior rates are actually time dependent as depend on interim data. In 
fact the idea of interim estimation for P-G model is in some sense similar to estimating the 
enrollment rates in [12] by using spline models and interim data, however the procedure of 
estimation is different as in P-G model data is used to re-estimate the parameters of gamma 
distributions of the rates (on global or regional levels), but in [12] data is used to re-estimate 
the spline parameters of the rates.  

Therefore, P-G model can be naturally interpreted compared to spline models, and in 
addition it has many other features that cannot be directly incorporated by using global 
enrollment models, e.g. predicting individual center performance, adaptive adjustment of 
enrollment, evaluating the optimal number of centers, etc.  

It is also worth to note that P-G model allows to consider time-dependent rates λi= λi(t) 
as it is noted in [5]. The only question is - how to introduce the dependence on time.  

In Sec. 3.4 [11] the authors reviewed a few papers devoted to this topic where 
researchers considered special types of dependence of enrollment rate on time, in particular 
Tang et al [16]. However, some types of dependence may essentially depend on the type of 
the trial (therapeutic area, region, seasonable variation, etc.). The verification of such models 
will require data from many similar trials with a specific type of dependence, which is not 
realistic to achieve. Moreover, at the trial start-up due to lack of data it would not be possible 
to estimate the additional parameters related to time dependence.  

One more restriction of the model proposed in [16] is related to the assumption that 
the trial has a rather long stable period where the global rate is some unknown constant. 
However, for not so long trials the stable period may be reached only closer to the end or may 
never be reached. Thus, some additional discussion related to models in [16] is provided in 
[7]. Of course the notes above should not prevent researchers from further investigation of 
time-dependent models; however, the use of these models may be restricted to special types 
of trials having similar behaviour in the past.  
 

2.3 Brownian motion models 
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Here I would like to raise some additional discussion related to Sec. 3.5 [11]. Actually 

the models based on using Brownian (Lai et al [14]) or fractional Brownian (Zhang & Lai [18]) 
motions potentially can behave well for predicting global enrollment in large trials during rather 
stable period where there are many centers and most of them are already initiated.   

While using P-G model, the global enrollment process can be also approximated by a 
Brownian motion. Thus, both techniques should provide similar results for modeling the global 
trend. However, Brownian and fractional Brownian motions are not oriented to model 
enrollment in individual centers. Thus, these models are not appropriate at start-up and early 
stages (for small number of centers) and also may not work well at transient periods where a 
large proportion of centers is in the process of opening or closing.  However, P-G model can 
handle these cases and has many other features described above in Sec. 2.1.  

Also note that an interesting discussion on the argumentation of using Brownian and 
fractional Brownian motion in comparison with P-G model and approximations of the global 
enrollment [1] is given in (Zhang & Lai [18]). 
 

2.4 Critique 
 

Here I would like to add some additional discussion related to Sec. 3.6 [11] – “Critique”. 
I fully agree with the author’s statement “A key point in modeling accrual is the inclusion of 
information on centers.” However, in large trials we should not expect that “adding a new 
center will have a detectable effect on accrual”. For example, for a trial with 100 centers adding 
one center increases on average the global rate on 1% and thus reduces the remaining 
enrollment time only on a few days for one year enrollment duration.  

Let me also comment on the applicability of techniques based on using P-G model (the 
authors call it “hierarchic models”). Actually it would be enough to have at least 10-20 centers 
for a reasonably good estimation of parameters of P-G model to be used for prediction. 
Practically all Phase III and the vast majority of Phase II trials satisfy this condition. For less 
number of centers P-G model can also be used where the variation in rates can be evaluated 
by using historical data or expert estimates for similar trials. 

Here is some clarification to the last paragraph in Sec. 3.6 [11]. Actually the author’s 
statement about the “prediction method” is true only if the prediction is based on the interim 
data without any knowledge about the future. However, in real trials clinical teams may know 
the schedule of future opening/closing of some centers and some information about enrollment 
rates in the new centers. As soon as this information is available, P-G model can be used for 
predicting future enrollment and the time to complete [5].  

It would also be useful to distinguish between models for evaluating the expected 
enrollment rates for new centers (it can be regression models, weighted models using 
historical and current information, etc.) and the models for predicting enrollment where the 
rates estimated using other models are used as input data.  

Consider also the comparison of some predictive methods. Actually during the stable 
period the basic models for the mean trend of global enrollment should behave similar. This 
includes Poisson type models [13,17], models with spline approximation [12], Brownian  and 
fractional Brownian motions [14,18], and P-G model. However, these techniques except P-G 
model may not be suitable at the trial start-up and during the transient period and also for other 
types of analysis (enrollment performance, adaptive adjustment, etc.).  

I also fully support the author’s statement “Our sense is that prediction methods should 
actively discount older information.” Thus, potentially the techniques at interim prediction 
should use some moving window for estimating parameters. This window should be rather 
long to have enough data for good estimators but realistically not longer than several months 
(say, up to 6 months) to use the latest information about the trial.  
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3 Predicting Event Counts 
 

Sec. 4 of [11] is devoted to the review of the methods for predicting event counts. The 
authors provide a rather detailed survey and focus mainly on the results for predicting the 
number of clinical events (such as death or disease progression) in so-called event-driven 
trials using as example REMATCH study.  

To provide readers with a wider picture of current state-of-art, it would be expedient to 
mention the results of paper [6] which is not reflected there. In this paper an analytic technique 
for predicting the number of events together with ongoing enrollment in event-driven trials is 
developed. The technique accounts for the events that may happen for patients already at risk 
in the trial and for events that may happen for patients that will be recruited in the future. The 
enrollment is modelled using P-G model [1-5], and the process of events is modelled on the 
top of enrollment. For multiple events (recurrence, death and lost-to-follow-up) the event 
process is described by finite Markov models. The predictive characteristics are derived in a 
closed form, thus, Monte Carlo simulation is not required. Some applications to interim 
prediction of events together with ongoing enrollment in oncology trials are considered.  

Note that a couple of plots for real data in [6] show essentially non-linear curves for a 
long-term interim event prediction. Thus, it would be interesting to understand the nature of a 
linear trend for the mean number of events in Fig. 1,2 [11].  

In addition, it would be useful to distinguish between different types of events in clinical 
trials as there can be many other events related either to patient reactions, e.g. adverse 
events, or other types like screen failures, different visits, dropout, consent withdrawn, etc. 
These events are associated to various trial operational characteristics.  

Potentially this area is rather wide and is outside the current review, however as this 
is organically related to predicting events, it is worth to mention paper [8] where a new 
methodology for predictive modeling of various operational characteristics based on using so-
called evolving hierarchic processes is proposed. This approach combines modeling 
enrollment and associated events. Some applications to modeling the number of follow-up 
patients, multiple visits, dropout and other operational events are also considered there. 
 

4 General Discussion  
 

I also would like to contribute to Sec 6 “Discussion” in [11], specifically, to Sec. 6.2. I 
agree with the authors that if we are talking only about a global prediction, then the global 
enrollment can be approximated by a Poisson process with some global rate, and this rate is 
the main factor that drives the future enrollment. Thus, on the global level potentially different 
models can work well as noted above. The global rate (or mean trend) can be evaluated using 
some global statistics and should behave similar for different models (during the stable period). 
The point is mainly about estimating the variation, where Bayesian re-estimation should work 
better as it uses shrinkage estimators.  

However, in general the aim of clinical operation teams is not only to create global 
predictions but also evaluate predictions on different levels (country, region), predict 
enrollment performance of centers/countries and provide analysis of different operational 
characteristics associated with enrollment. For these tasks the models oriented to predicting 
global enrollment may not be appropriate. 

From another side, P-G model [1-5] is created with the purpose to model enrollment in 
individual centers like starting building blocks using the nature of real processes, and then 
combine these blocks at different levels and use them to evaluate predictive characteristics. 
Therefore, this model can be used as the universal and adequate tool for predictive modeling 
of various enrollment characteristics at different levels. As the next level of hierarchy, it can 
also be extended to model different events and operational processes on the top of enrollment 
[8].  
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I trust these comments and discussion points add potentially useful information for the 
readers of the interesting review [11] and provide more food to think which models can be 
used in practical situations.  
 
References  
 
1. Anisimov VV., Fedorov VV. Design of multicentre clinical trials with random enrolment, in book 

“Advances in Statistical Methods for the Health Sciences. …”, Series: Statistics for Industry and 
Technology, Balakrishnan, N.; Auget, J.-L.; Mesbah, M.; Molenberghs, G. Eds. Birkhäuser, 2006, 
Ch. 25, 393-406. 

2. Anisimov VV, Fedorov VV. Modelling, prediction and adaptive adjustment of recruitment in 
multicentre trials. Statistics in Medicine 2007; 26: 4958–4975. 

3. Anisimov VV. Downing D, Fedorov VV, Recruitment in multicentre trials: prediction and adjustment, 
In: mODa 8 – Advances in Model-Oriented Design and Analysis, Lopez-Fidalgo J, Rodriguez-Diaz 
JM, Torsney B (Eds), Physica-Verlag, 2007; 1–8. 

4. Anisimov, VV. Predictive modelling of recruitment and drug supply in multicenter clinical trials, Proc. 
of the Joint Statistical Meeting, Washington, USA, August, 2009, 1248-1259. 

5. Anisimov VV. Statistical modeling of clinical trials (recruitment and randomization). 
Communications in Statistics — Theory & Methods 2011; 40:3684–3699. 

6. Anisimov VV. Predictive event modelling in multicenter clinical trials with waiting time to response. 
Pharmaceutical Statistics 2011; 10: 517–522. 

7. Anisimov VV. Discussion on the paper ’Prediction of accrual closure date in multi-center clinical 
trials with discrete-time Poisson process models’. Pharmaceutical Statistics 2012; 11: 357–358. 

8. Anisimov V. Predictive hierarchic modelling of operational characteristics in clinical trials, 
Communications in Statistics - Simulation and Computation (Dec 2014, online). 

9. Bakhshi A, Senn S, Phillips A. Some issues in predicting patient recruitment in multi-centre clinical 
trials. Statistics in Medicine, 2013; 32: 5458–5468. 

10. Carter RE, Sonne SC, Brady KT. Practical considerations for estimating clinical trial accrual periods: 
application to a multi-center effectiveness study. BMC Med. Res. Methodol. 2005: 5:11.  

11. Heitjan DF, Ge Z, Ying GS. Real-Time Prediction of Clinical Trial Enrollment and Event Counts: A 
Review, Contemporary Clinical Trials 2015 (online) 

12. Deng Y, Zhang X, Long Q. Bayesian modeling and prediction of accrual in multi-regional clinical 
trials. Statistical Methods in Medical Research 2014 (online);  

13. Gajewski BJ, Simon SD, Carlson SE. Predicting accrual in clinical trials with Bayesian posterior 
predictive distributions. Statistics in Medicine 2008; 27: 2328–2340. 

14. Lai D, Moy LA, Davis BR, Brown LE, Sacks FM. Brownian motion and long-term clinical trial 
recruitment. Journal of Statistical Planning & Inference 2001; 93: 239–246. 

15. Mijoule G, Savy S, Savy N. Models for patients’ recruitment in clinical trials and sensitivity analysis. 
Statistics in Medicine, 2012; 31: 1655–1674. 

16. Tang G, Kong Y, Chang CCH, Kong L, Costantino JP. Prediction of accrual closure date in multi-
center clinical trials with discrete-time Poisson process models. Pharmaceutical Statistics 2012; 11: 
351–356. 

17. Williford WO, Bingham SF, Weiss DG, Collins JF, Rains KT, Krol WF. The ”constant intake rate” 
assumption in interim recruitment goal methodology for multicenter clinical trials. Journal of Chronic 
Diseases 1987; 40: 297–307. 

18. Zhang Q, Lai D. Fractional Brownian motion and long-term clinical trial recruitment. Journal of 
Statistical Planning & Inference 2011; 141: 1783–1788. 

 
 

Vladimir Anisimov 
Quintiles & University of Glasgow, UK 
E-mail: Vladimir.V.Anisimov@gmail.com 

mailto:Vladimir.V.Anisimov@gmail.com

