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Abstract 

OBJECTIVES/BACKGROUND: Modeling combinations of multiple circulating markers could 

potentially identify heart failure (HF) patients at particularly high risk and aid in the selection of 

individualized therapy. We evaluated if a panel of biomarkers improved prognostication in patients 

with HF with reduced ejection fraction of ischemic origin using a systematized approach according to 

suggested requirements for validation of new biomarkers  

METHODS:  From a panel of 20 inflammatory and ECM biomarkers two different biomarker panels 

were created and added to the Seattle heart failure score, and the prognostic model from the CORONA 

study (n=1497) which included conventional clinical characteristics and C-reactive protein and N-

terminal pro B-type Natriuretic Peptide. Interactions with statin treatment were also assessed.  

RESULTS: The two models, which were composed of (Model 1) endostatin, interleukin (IL)-8, sST2, 

TnT, galectin-3 and CCL21 and (Model 2) Troponin T, sST2, galectin-3, pentraxin 3, and sTNFR2 

significantly improved the CORONA and Seattle HF models, but added only modestly to their 

Harrell’s C statistic and NRI. In addition, there was no effect of rosuvastatin on the levels of a wide 

range of inflammatory and ECM markers, but there was a tendency of patients with lower level of 

biomarkers in the two panels to have a positive effect of statin treatment.  

CONCLUSIONS: A multi-marker approach using the particular panel of biomarkers measured, in the 

specific HF patient population studied, was of limited clinical value for identifying future risk of 

adverse outcomes.  
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Abbreviations 
 
CORONA - The Controlled Rosuvastatin Multinational Trial in Heart Failure  
CV – cardiovascular 
ECM – extracellular matrix 
HF – Heart failure 
LVEF – left ventricular ejection fraction 
NRI – net reclassification index 
PS – Prognostic score 
SHFS – Seattle heart failure score 
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Introduction 

The prognosis in heart failure (HF) remains poor despite improvements in disease management. 

Persistent inflammation and extracellular matrix (ECM) remodeling are considered central pathogenic 

elements in HF progression.(1) As a result of their role in the pathogenesis of HF, circulating 

inflammatory and ECM markers may also be convenient, noninvasive, tools for risk stratification and 

prognostication in these patients.(2)  

We have previously evaluated a range of biomarkers in The Controlled Rosuvastatin 

Multinational Trial in Heart Failure (CORONA) trial, comprising elderly patients with moderate to 

severe, ischemic HF.(3-16) Classifying these markers according to categories proposed by Braunwald, 

revealed a good coverage of the different pathological pathways activated in HF (Figure 1), with a 

focus on inflammation and matrix remodeling.(2) When assessed separately, several of these markers 

provided independent prognostic information or identified subgroups of patients who seemed to 

benefit from rosuvastatin therapy. However, the improvement in prognostic discrimination as 

evaluated by net reclassification index (NRI) and Harrell’s C-statistics (C), beyond established clinical 

risk factors and in particular N-terminal pro B-type Natriuretic Peptide (NT-proBNP), was relatively 

modest and their clinical usefulness unclear. 

While measurements of individual markers of inflammation and the EMC so far have not 

improve risk stratification of patients with HF in a clinically meaningful way, combinations of 

multiple markers might help identify subjects with a clinically significantly increased risk. The 

combination of multiple markers might also help select patients for individualized therapy. The idea of 

a multimarker approach has been around for several years, but few studies have tested the power of 

such models, and most of these trials included few biomarkers or examined small populations. 

Moreover, the lack of optimal adjustment for existing tests and the lack of internal or external 

validation may have biased results.(17-19)  

In the present study, we used a systematized approach to assess the prognostic value of a 

combination of biomarkers from the CORONA trial.(20)  

 
Methods 
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For full description of methods, see supplementary data. A flowchart showing the statistical approach 

is shown in Figure 2. Briefly, the CORONA population was divided into three sub-groups. Subgroup 

one had no biomarker data and was used for fitting a Cox model including routine clinical and 

biochemical variables as previously reported (history of diabetes, LVEF, BMI, NYHA class, 

ApoB/ApoA-1 ratio, history of intermittent claudication, gender, age, heart rate and eGFR, CRP and 

NT-proBNP).(21) The Cox model was then used to calculate a prognostic score (PS) by multiplication 

of estimated coefficients with corresponding variables for each individual subject in the biomarker 

population. Seattle HF score (SHFS) was calculated based on the available data.(22) As sodium levels, 

lymphocyte count, as well as hemoglobin levels and uric acid were not available in the CORONA 

dataset, these where excluded from our SHFS.  

 

Results 

Model building 

Demographics of the CORONA inflammatory sub-study and the training and validation set are 

provided in Table S1. No significant differences between the training and validation sets were 

observed. All previously measured biomarkers in the CORONA database were entered as potential 

variables for the multimarker approach, i.e. biglycan, mimecan, endostatin, YKL40, galectin 3, IL8, 

MCP1, CxCL16, CCL21, sST2, troponin T, SFRP3, OPG, NGAL, pentraxin 3, sTNFR1, sTNFR2, 

IL6, sGP130 and TNF. The three different approaches to building a model from available biomarkers 

yielded three slightly different results. By keeping all variables as proposed by at least two methods, 

six variables remained in Model 1 (i.e. endostatin, IL-8, sST2, TnT, galectin-3 and CCL21; Table 1). 

Testing the variable selection by bootstrapped model selection showed that all biomarkers chosen by 

an approach were selected in at least 50% of the repetitions, and no other biomarkers were selected by 

multiple approaches in more than 50% of the repetitions (Table S2). For Model 2, we included more 

established HF risk markers from the literature (i.e. TnT, sST2, galectin 3, pentraxin 3, and sTNFR2; 

Table 1). (7,23-27) 

Performance of the multimarker models 

The prognostic scores (PS) based on only the variables included in Model 1 and Model 2, respectively, 
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were significantly associated with outcome in the validation set. However, the scores from each model 

performed worse than the original CORONA PS (table 1). When the combined biomarker scores from 

each of the two models were added to the CORONA PS, the models showed reasonable calibration by 

a Groennesby and Borgan test score (Figure 3 and table S4), as well as on visual inspection of Arjas-

like plots in tertiles of PS. However, there was a tendency in Model 1 to overestimate events in the 

low risk group, but both were well calibrated in the other tertiles (Figure 4). Model coefficients for 

both models are given in Table S3. 

The addition of each biomarker model to the CORONA PS provided better results than the 

CORONA PS alone as judged by a likelihood ratio test, but there was no significant improvement in 

Harrell’s C statistics or Gönen and Heller’s K-statistics for any endpoint (Figure 3 and table S4). 

However, the addition of each biomarker model lead to a small, but significant improvement in NRI 

for all endpoints, except for cardiovascular (CV) mortality in Model 1 (Figure 3). This was mainly due 

to patients without event getting a lower risk score (Table S4).  

Comparison with the Seattle Heart Failure Score 

When we used the SHFS as the base model instead of the original CORONA PS, the addition of either 

biomarker model markedly improved discrimination for all endpoints (Table S6). When adding NT-

proBNP to the SHFS as a base model, this was no longer the case. However, NRI remained significant 

for all outcomes, and there was a significant change in C-statistics for the primary endpoint in 

CORONA for both models (Figure 3 and table S5).  

Effect of statin treatment on markers of inflammation 

In the CORONA trial, patients were randomly assigned to treatment with rosuvastatin or placebo. We 

were therefore able to investigate if three months of statin treatment influenced biomarker levels in 

patients with HF. As shown in table S7, the relative change in biomarker levels differed between the 

treatment arms only for biglycan, YKL40, CXCL16 and PTX3. Biglycan and PTX3 increased more in 

the rosuvastatin group, while CXCL16 and YKL40 increased more in the placebo group. Since 

patients with low level of biomarkers may have a limited potential for benefitting from the anti-

inflammatory effect of statins, we also assessed treatment effects in the top two tertiles for each 

marker. In these patients, the result remained similar for PTX3, YKL40 and CXCL16 with a 
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significant relative change in the same direction as previously (Table S8).  

Effect of statin treatment in different risk groups. 

Finally, we evaluated the interaction between the PS of Model 1 and 2, and effect of rosuvastatin, 

treatment on outcome.  For all-cause mortality, there was a borderline significant interaction between 

rosuvastatin treatment and Model 1 PS. Patients in the lowest tertile PS had a significant effect of 

statin treatment, while this was not the case for any of the other patients. We got similar results when 

testing interaction for Model 2 PS, suggesting that patients with little inflammatory activity at the 

baseline of study had some effect of rosuvastatin treatment, compared with those with more 

inflammation (Figure 5). Similar patterns were found for CV mortality and the primary endpoint, but 

only Model 2 had a significant interaction with treatment for the primary endpoint. 

 

Discussion 

Previous studies have suggested that panels of multiple biomarkers may add prognostic information to 

established predictive metrics in chronic HF(18,28-30). In this study, we were only partly able to 

confirm this hypothesis. While two slightly different panels of biomarkers added information to the 

SHFS and improved NRI, even when NT-proBNP was added to the model, the clinical relevance of 

these markers are uncertain. Furthermore, when comparing the two models to the previously published 

CORONA model, there was only a small, but significant NRI. Thus, whereas these data suggest that 

NT-proBNP is a useful prognostic biomarker in elderly patients with HF of ischemic origin, the added 

value of inflammatory and ECM related biomarkers seems to be limited. Finally, our study does not 

support a direct anti-inflammatory effect of statin therapy in elderly patients with ischemic HF, but 

suggests that patients with a lower inflammatory burden may benefit from statin therapy.  

We used two models to test the prognostic potential of a multimarker approach in our patients. 

Our selection of biomarkers from the literature (i.e. Model 2) was based on the authors’ judgement of 

biomarkers that have repeatedly been suggested, or have been shown to be associated with outcome in 

several previous studies, and was available in this study. (7,23-27) However, few publications 

advocating these biomarkers fulfill suggested requirements for validation of new biomarkers.(17) 

Most studies reporting prognostic abilities of new biomarkers, including our studies in CORONA, 
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include the marker in regression analysis adjusted for known prognostic variables and scores. 

However, this approach is known to give overly optimistic estimates of the model’s performance.(31) 

While internal validation is done in a few studies, external validation of suggested biomarkers in new 

populations is lacking, making it difficult to choose biomarkers likely to perform well in a new 

population. Our selection of biomarkers in Model 2, however, performed better than a model created 

by automatic variable selection (Model 1), suggesting that the aggregation of published data may give 

useful information for selection of candidate biomarkers.  

Measures like the NRI and C-statistics may be used for the quantification of the usefulness of 

a new biomarker, but what may be considered clinically significant changes of these measurements is 

still an open question.(32) Furthermore, the lack of statistical significance of these measures, and in 

particular the C-statistics, could be due to limited power of the study. However as suggested by the 

narrow confidence intervals of the change in C-statistics, our study had enough power to detect very 

slight changes in the order of 0.02, and we think that smaller changes would give little clinical 

meaning. In addition, NRI and C-statistics are overly optimistic when applied to the same population 

as the model is developed in. We compensated for this by internally validating our models. However, 

even with this, performance may still be worse when applied to a different population with different 

characteristics.  

The choice of implementing a new biomarker in clinical use depends on many factors, among 

which is cost. If available biomarkers such as CRP and NT-proBNP, give the same prognostic 

information as new biomarkers, this substantially reduces their usefulness. Thus, candidate biomarkers 

should provide added information not only on top of established risk scores such as SHFS, but also to 

available and widely measured prognostic markers such as NT-proBNP and CRP.(33) In our study, 

while both biomarker panels added significant information to SHFS, the added information was 

significantly attenuated when NT-proBNP was included in the model. Ky et al. implemented a 

jackknife approach for creation of a risk score with multiple biomarkers in a multicenter cohort of 

1513 patients with chronic HF and evaluated its ability to classify risk compared to SHFS, following 

in principle an internal validation approach.(28) The biomarker score increased the predictive power 

of their model and significantly improve discrimination. However, since their biomarker model 
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included BNP and CRP, it is difficult to establish the impact of other biomarkers on model 

performance. In addition, while they internally validated their model, they performed their variable 

selection and model estimation on the same population, potentially arriving at overly optimistic 

estimates.  

Many of the parameters included in current prognostic models of HF reflect the symptoms and 

results of disease deterioration, rather than the causes. This is the case for among other EF, NYHA-

class, and to some extent may also be the case for NT-proBNP and troponins. While independence 

from these variables is important when considering the potential usefulness of a new clinical 

prognostic biomarker, this is not as evident when using biomarker studies as an approach to further 

understand the development of the disease. Thus, a multi-marker approach to study HF patients could 

be useful even if it does not improve on current prognostic models. It could still lead to new ways to 

categorize HF patients, and potentially aid in therapy selection. Although the present study was not 

designed to show this, subgroups of patients with a particular inflammatory and fibrotic phenotype 

could potentially benefit from a particular, targeted therapy (i.e., personalized therapy). After all, 

choice of therapy is not only a question of how likely a patient is to die, but also about how that patient 

is likely to respond to treatment. In other words, markers identifying a therapeutic target may not 

necessarily be markers independently predicting prognosis e.g. if a marker identified a cause of 

symptoms as opposed to disease progression.  

Anti-inflammatory and anti-fibrotic effects are frequently referred to as some of the beneficial 

pleiotropic influences statins may exert on progression of cardiovascular disease including HF. While 

both the CORONA and GISSI-HF trials revealed a 20-30% reduction in CRP with rosuvastatin (9), we 

found very modest anti-inflammatory effects when evaluating a range of more specific markers of 

inflammation and ECM remodeling, including upstream inducers of CRP (e.g. IL-6).(5)  However, 

many of the beneficial effects of statins on inflammatory markers in the literature are derived from 

populations with atherosclerotic disease and the inflammatory mechanisms that promote plaque 

progression and progression of myocardial failure may be somewhat different. A meta-analysis 

including 10 RCT’s (also including CORONA and GISSI-HF) with varying etiologies support the 

effect of statins on more “atherogenic markers” such as CRP and VCAM-1, while no effect was found 
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on IL-6 and TNF.(34) Our findings suggest that the anti-inflammatory effect of statins may play a 

limited role in systolic ischemic HF. Furthermore, in contrast to CRP, where a beneficial statin effect 

was observed in patients with high levels, statin therapy improved certain outcomes in patients with 

low levels of several of these markers including mediators involved in fibrosis and ECM remodeling 

such as galectin-3 and biglycan as well as markers reflecting vascular inflammation such as OPG and 

PTX3. A similar treatment pattern has been observed for NT-proBNP.(35) Thus, the benefit of 

rosuvastatin in the lower tertiles of our models’ PS may suggest that a low inflammatory burden 

reflects patients with lesser degree of maladaptive remodeling and fibrosis with a modifiable disease 

course and greater gain of statins for their underlying ischemic heart disease. Conversely, a higher 

score may reflect patients with irreversible tissue remodeling 

 There are several important limitations to our study. First, our findings may not apply to 

populations with different demographics, in particular HF patients with other etiologies, or HF with 

preserved ejection fraction. In fact, our group of patients reflects a rather homogenous and selected 

group of HF patients and it is possible that a multimarker approach that includes inflammatory and 

ECM markers could be more relevant in heterogeneous real-life HF population. Second, we have tried 

to avoid “over optimism” in our estimates. However, our findings are not externally validated, and 

investigations in similar populations may give other results In general, external validation help avoid 

too optimistic evaluation of models by assuring that the model is not dependent on the specific 

composition of the study’s population to perform well.(36)This is especially the case with a rather 

homogenous population as in this study. However, as our main findings are negative, further 

decreasing the power of our models would not have changed our main conclusions. Third, we have 

used two approaches to model building in this paper, and both have some important drawbacks. For 

Model 1, all the methods applied have limitations, and the final model might not be the “perfect” 

model. For Model 2, variables selected are only based on the experience of the authors, and other 

biomarkers could have been chosen as well. We have attempted to make a model reflecting current 

knowledge on biomarkers in HF including what we thought was the most promising biomarkers. 

However, other biomarkers not measured in CORONA could increase the predictive powers of the 

models, as our studies have focused in inflammatory and ECM related proteins. Especially markers 
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such as GDF-15 and Copeptin have shown promising results, and could have improved our model 

further.(37,38) Fourth, not all variables used for SHFS were available in our dataset. Several of these 

markers (e.g., hemoglobin, lymphocyte count and uric acid) have an inflammatory component 

(lymphocyte counts and uric acid) or may be modified by inflammation (hemoglobin) and may partly 

interact with our inflammatory biomarkers (39-41) and sodium could partly be reflected by natriuretic 

peptides.(42) However, uric acid may also reflect mechanisms important in HF progression that are 

lacking in our panels such oxidative stress.(43) Still, the improvement in the model’s performance 

when adding NT-proBNP and biomarkers to the SHFS could partially be explained by the lack of 

these variables  and the full SHFS would probably do better compared to the CORONA score than our 

findings suggest.   

 In this study, we have investigated whether two panels of biomarkers improved prognostic 

abilities of a risk score built on the CORONA population, and the SHFS. We found that, while there 

was some improvement in discriminatory power of the models, the gains were modest and clinical 

relevance doubtful. Our findings do not support the notion that adding biomarkers representing 

different aspects of HF pathology improves the prognostic abilities of existing risk scores. We cannot, 

however, exclude that other panels of biomarkers or similar panels of biomarkers in other more 

heterogeneous HF population would give different results. We also found no correlation between 

changes in inflammatory and ECM-related biomarkers and treatment with rosuvastatin, suggesting that 

statin treatment in this population has limited anti-inflammatory effects. There was, however, a 

tendency for patients with lower biomarkers scores at baseline to have beneficial effects of 

rosuvastatin treatment.  

 

Clinical perspectives 

Previous studies have suggested that panels of multiple biomarkers may add prognostic information to 

established predictive metrics in CHF. However, we were not able to do this using several biomarkers 

previously suggested in literature, reflecting different aspects of inflammation and remodeling in HF. 
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Our finding suggests that beside NT-proBNP, very few biomarkers are able to add significantly to 

already existing risk models, even when putting them together into biomarker panels.   
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Figure legends 

Figure 1. Categories of biomarkers in heart failure. 

Biomarkers available in the CORONA cohort sorted by categories suggested by Braunwald et. al. 

Since the functions of some markers are multiple, single biomarkers may appear in several categories.  

 

Figure 2. The CORONA cohort (n=5011) is divided into a biomarker population (n=1497) and no 

marker population (n=3514). 2. The biomarker population is randomly divided into a validation cohort 

(n=744) and a training set (n=753). 3. From the no marker population, a CORONA predictions score 

(PS) is calculated from existing variables based on an established prediction model from this cohort 

(see methods). A Seattle Heart Failure Score PS (SHFS PS) is also calculated. 4. In the training set 2 

models are established to identify multimarker. Model 1 is selected by statistical methods in this 

population, while Model 2 PS is composed of variables select from the literature. 5. A Model 1 PS and 

Model 2 PS is calculated based on Model 1 and Model 2 in additions to the CORONA PS. A Model 1 

PS and Model 2 PS score is also calculated using the SHFS PS as a base. 6. Model 1 PS and Model 2 

PS are evaluated in the validation set by calibration and discrimination of the models. 

 

Figure 3. Prognostic power of Model 1 or 2 with the CORONA PS or SHFS with NT-proBNP (full 

models) compared with only CORONA PS or SHFS with NT-proBNP respectively (limited models). 

Discrimination tests of difference between full and limited models, coefficients of regression model in 

validation sample.  CV: cardiovascular, N: Number of patients, Coef: coefficient, CI: 95% confidence 

interval, G&B GOF test: Groennesby and Borgan goodness of fit test. K: Gönen and Heller’s K, NRI: 

Net reclassification Index, C: Harrell’s C. 

Figure 4.  Observed versus expected number of events by tertile of prognostic score of model 1 and 2 

Number of observed events vs. estimated number of events by time for each tertile of the prognostic 

risk scores of model 1 and 2 for all-cause mortality.  
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Figure 5.  Forest plot of treatment effect for rosuvastaint by tertile (T1-T3) of prognostic score of each 

model for each endpoint. Interaction p-values for Model 1 (M1) and Model 2 (M2) are given in italic 

on the right side of the table 



Supplementary data  
 

Supplementary methods 

Patients 

The design and principal findings of CORONA have been reported elsewhere in detail.(1) In brief, 

patients ≥60 years with chronic HF-REF of ischemic cause, in New York Heart Association (NYHA) 

class II–IV and with left ventricular ejection fraction (LVEF) ≤40% (≤35% if NYHA II), were eligible, 

provided the investigator determined that they did not need treatment with a cholesterol-lowering drug. 

Criteria for exclusion included recent cardiovascular (CV) events, current or planned procedures or 

surgery; acute or chronic liver disease or alanine aminotransferase ≥2× the upper limit of normal 

(ULN); serum creatinine ≥2.5 mg/dL; chronic muscle disease, contraindication to statin therapy or an 

unexplained creatine kinase ≥2.5× ULN; thyroid stimulating hormone ≥2× ULN; and any condition 

substantially reducing life expectancy. 

Study outcome and definition 

Definition and adjudication of all outcomes have been described in detail previously.(1) The primary 

outcome was a composite of CV mortality, non-fatal myocardial infarction and stroke. In addition, 

secondary endpoints included in the present study were all-cause mortality and CV mortality.  

Biochemical sampling and analysis 

All blood samples were non-fasting and all reported measurements, except for the cytokines, were 

made using fresh samples at a central laboratory (Medical Research Laboratories, Zaventem, Belgium). 

The eGFR was calculated according to the Modified Diet in Renal Disease formula.(2) Blood samples 

for the measurement of the cytokines were collected in pyrogen-free tubes without any additives, and 

serum was stored at –80ºC until analyses. All samples were thawed ≤ 3 times. NT-proBNP was 

analyzed using commercially available assay (Roche Diagnostics, Basel, Switzerland). An 

immunonephelometric method was used to measure C-reactive protein (Dade Behring, Atterbury, UK; 

sensitivity, 0.04 mg/L). Methods and details on the biomarkers including analytical performance are 

described elsewhere .(3-11) In brief, interleukin (IL)-8, IL-6, tumor necrosis factor (TNF) and 



monocyte chemotractant protein (MCP1) were measured using a multiplex cytokine high-sensitivity 

assay (Randox Laboratories Ltd, Crumlin, Co. Antrim, UK), CCL21, YKL40, CXCL16, secreted 

frizzled related protein (SFRP)-3, neutrophil gelatinase-associated lipocalin (NGAL), osteoprotegerin 

(OPG), soluble TNF receptor type 1 (sTNFR1) and sTNFR2, and sGP130 were measured using 

enzyme immunoassays (EIA) from R&D systems (Wiesbaden, Germany). Biglycan, mimecan, and 

endostatin were measured by EIA (Roche Diagnostics, Penzberg, Germany). Galectin 3 and ST2 

(Presage ST2 Assay, Critical Diagnostics, San Diego, CA, USA) were measured at BG Medicine 

(Waltham, MA, USA). Pentraxin 3 (PTX3) was measured by EIA (Perseus Proteomics, Tokyo, Japan). 

Intra- and inter-assay coefficients of variation were <10% for all assays except IL-8, TNF and MCP-1 

which were < 20%. 

Statistical analysis 

Difference in distribution of variables between the training and validation data set were tested with 

Student t test for normally distributed baseline variables, Fisher exact test for categorical data, and 

Wilcoxon rank-sum test for non-normally distributed variables. Wilcoxon rank-sum test were also 

used for analysis of change in biomarkers according to treatment.  

We used multiple imputation to avoid problems with missing values for several of the 

biomarkers, doing 20 imputations with a chained regression method for estimation of missing values. 

All prognostic scores were computed using the imputed dataset (See table S2). The CORONA 

population was divided into three sub-groups. Subgroup one had no biomarker data and was used for 

fitting a Cox model using routine clinical and biochemical variables as previously reported (history of 

diabetes, LVEF, BMI, NYHA class, ApoB/ApoA-1 ratio, history of intermittent claudication, gender, 

age, heart rate and eGFR, CRP and NT-proBNP).(1) The model was then used to calculate a PS by 

multiplication of estimated coefficients with corresponding variables for each individual subject in the 

biomarker population. Seattle HF score (SHFS) was calculated based on the available data by 

multiplication of the natural log of published hazard ratios with corresponding variables.(12) As 

sodium levels, lymphocyte count, as well as hemoglobin levels and uric acid were not available in the 

CORONA dataset, these where excluded from our SHFS.  

The remaining 1497 patients were randomly divided into two subgroups; one training set and 



one validation set (See table S1 for demographics and differences between these two populations). All 

subsequent model building and calculation of PSs based on these were done in the training data set, 

while testing of models’ discrimination and calibration was done in the validation dataset.   

To compensate for weaknesses of automatic variable selection procedures, three different 

approaches for were used; a stepwise selection based on minimizing Akaike information criterion 

(AIC), a stepwise selection procedure setting the p-value limit for inclusion to 0.2, and exclusion to 

0.15, and finally using the algorithm suggested by Hosmer et al, coined purposeful variable selection 

(PVS).(13) For this approach p-value for inclusion was set to 0.2, for exclusion to 015, and variables 

were kept in the model if exclusion lead to a larger than 0.25 relative change in any of the remaining 

coefficients. For model selection, all biomarkers measured were separated into groups based on 

function as judged by authors to keep the number of events to variable ratio of the models high (Table 

S2). The selection algorithms where first run for each group, and finally on variables selected from 

each group, all models controlling for the CORONA PS. The model using selected variables were then 

built by examining the three models from the different variable selection algorithms, and including all 

common variables in the final model. In addition, all variables selected by two approaches were also 

added to the final model (Model 1).  

The stability of the selected models was examined using a bootstrapping method randomly 

selecting patients from the training set and doing all three selection methods on the bootstrapped 

population. Frequencies of inclusion of all variables by each method were recorded and analyzed to 

assure no variables where frequently selected by several methods but not included in the final model. 

For each marker included in the model, the proportional hazards assumption was visually judged using 

plot of Schnell residuals, for fit using martingale residuals plotted against time, and finally checked for 

effect of outliers by plotting standardized difference of beta (DF-beta) values vs. time. In addition, one 

model was based on variables suggested in recent literature, consisting mainly of variables that have 

consistently been suggested to give prognostic information for patients with chronic HF. (7,14-19) A 

PS was finally calculated by fitting these variables using a Cox proportional hazard model in the 

training set, and predicting the PS for patients in the validation dataset controlling for the CORONA 

PS.  



To evaluate the different models, the discrimination of the PS from each model was compared 

to PSs from only the CORONA risk model, or SHFS with and without NT-proBNP using Harrell’s C-

statistics, Gönen and Heller’s K statistics. Calibration was tested by examining the coefficient of the 

PS in a regression model in the validation population, which should be close to one if the risk slope is 

approximately equal as in the training population. Formal tests of calibration as a Groennesby and 

Borgan test of calibration and visual inspection of Arjas like plots of observed versus predicted risk in 

tertiles of PSs were also done.  

To test interaction between models and effect of statin treatment, a PS of only biomarkers 

included in model 1 and 2 was calculated, and a formal interaction test with rosuvastatin treatment was 

conducted adjusting for the CORONA PS. The p-value of the interaction is reported. In addition, the 

effect of treatment in each tertile of this PS was evaluated by testing treatment in each tertile of model 

1 and 2 PS, adjusted for the full model 1 and 2, including the CORONA PS. All calculations were 

done using STATA 14.0 (StataCorp LP, College Station, TX, USA). P-values <0.05 were considered 

significant, except for interaction tests where <0.1 was considered significant.   
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Table S1. Patient characteristics of participants in the CORONA sub-study 

 
Non-biomarker 

population 
(n=3514) 

Biomarker 
population 
(n=1497) 

Training 
population  

(n=753) 

Verification 
population 

(n=744) 

P-value 
Training vs 
verification 

P-value 
biomarkers vs 

non-biomarkers 
Age, y 73±7 72±7 72±7 72±7 0.625 <0.001 
Female sex, n (%) 832 (23) 348 (23) 180 (24) 168 (23) 0582 0.771 
NYHA class, n II/III/IV 1379/2079/56 478/1002/17 245/501/7 233/501/10 0.670 <0.001 
Ejection fraction 0.31±0.06 0.32±0.07 0.32±0.07 0.32±0.07 0.893 <0.001 
BMI kg/m2 27.18±4.5 27.3±4.6 27.1±4.5 27.4±4.7 0.323 0.630 
Systolic BP, mm Hg 129±16 130±16 130±16 129±16 0.084 0.383 
Diastolic BP, mm Hg 76±9 77±9 77±9 77±9 0.109 <0.001 
Hear rate, beats/min 72± 11 71±11 71±11 71±11 0.608 0.002 
Current smoker, n (%) 348 (10) 180 (12) 87 (12) 93 (13) 0.579 0.027 
Medical history, n (%)       
    Myocardial infarction 2061 (59) 945 (63) 476 (63) 469 (63) 0.957 0.003 
    CABG or PCI 912 (26) 317 (21) 157 (21) 160 (22) 0.800 <0.001 
    Hypertension 2140 (61) 1035 (69) 521 (69) 514 (69) 1.000 <0.001 
    Diabetes mellitus 1089 (31) 388 (26) 194 (26) 194 (26) 0.906 <0.001 
    Atrial fibrillation 865 (24) 329 (22) 172 (23) 157 (21) 0.418 0.046 
    Stroke 443 (13) 181 (12) 91 (12. 90 (12) 1.000 0.640 
    Intermittent claudication 475 (14) 162 (11) 82 (11) 80 (11) 0.934 0.009 
    COPD 80 (3) 29 (2) 15 (2) 14 (2) 1.000 0.526 
Laboratory measurements       
    Total cholesterol, mM 5.15±1.07 5.23±1.09 5.22±1.12 5.25±1.06 0.637 0.010 
    LDL_ cholesterol, mM 3.51±0.92 3.65±0.98) 3.65±1.06 3.65±0.90 0.949 <0.001 
    HDL_ cholesterol, mM 1.23±0.35 1.23±0.34 1.23±0.35 1.24±0.34 0.663 0.935 



    Triglycerides, mM 2.00±1.23 2.01±1.39 2.03±1.53 1.99±1.22 0.660 0.780 
    ApoA-1/ApoB ratio 0.87±0.25 0.89±0.25 0.89±0.26 0.89±0.24 0.864 0.007 
    eGFR, (mL/min/1.732 BSA) 56±14 57±14 58±14 57±14 0.556 0.293 
    NT-proBNP, pM 177 (79-377) 160 (60-343) 177 (73-345) 143 (53-343) 0.066 0.003 
    CRP, mg/L 3.4 (1.5-7.3) 3.7 (1.6-7.8) 3.7 (1.6-8.0) 3.7 (1.6-7.6) 0.966 0.044 
Current medication, n (%)       
    Loop or tiazide 2844 (81) 1133 (76) 560 (74) 573 (77) 0.456 <0.001 
    Aldosterone antagonist 1364 (39) 542 (36) 271 (36) 271 (36) 0.872 0.086 
    ACE inhibitor 2773 (79) 1208 (81) 607 (81) 601 (81) 0.948 0.158 
    ARB 486 (14) 151 (10) 79 (11) 72 (10) 0.608 <0.001 
    β-blocker 2586 (74) 1136 (76) 586 (78) 550 (74) 0.080 0.090 
    Digitalis glycoside 1187 (34) 431 (29) 226 (30) 205 (28) 0.304 0.001 
Number of deaths 1050  437 205 232 0.062 0.636 
Categorical data are reported as n (percentages) and continuous data as mean±SD or for CRP and NT-proBNP as median and 25th and 75th percentile. 
Conversion factor for NT-proBNP: 1 pmol/L=8.457 pg/mL. ACE indicates angiotensin-converting enzyme; ApoA-I, apolipoprotein I; ApoB, apolipoprotein B; 
ARB, angiotensin receptor blocker; BMI, body mass index; CABG, coronary artery bypass grafting; ; CRP, C-reactive protein; eGFR, estimated glomerular 
filtration rate; HDL, high-density lipoproteinLDL, low-density lipoprotein; NT-proBNP, amino-terminal pro-brain natriuretic peptide; NYHA, New York Heart 
Association; PCI, percutaneous coronary intervention. 

 

 

 

 



Table S2 Groups of biomarkers measured with missing observations.  

ECM/Fibrosis Chemokines Cardiac 
stress 

Vascular 
inflammation 

Cytokines  

Biglycan (96) IL 8 (17) ST2 (48) OPG (36) sTNFR1 (73)  
Mimecan (204) MCP1(17) TnT ( 252) NGAL (82) sTNFR2 (94)  
Endostatin (106) CxCL16 (32) SFRP3 (53) PTX3 (40) IL 6 (17)  
YKL40 (158) CCL21 (41)   sGP130 (45)  
Galectin 3 (35)    TNF (17)  
Number of missing observation in parenthesis. ECM: Extra-cellular matrix,  IL: Interleukin, MCP1: Monocyte 
chemotactic protein 1, CxCL16: Chemokine ligand 16,  CCL21: Chemokine ligand 21, sST2: Soluble ST2, TnT: 
Troponin T, SFRP3: secreted  frizzled-related protein 3, OPG: Osteoprtegerin, NGAL: Neutrophil gelatinase-
associated lipocalin,  PTX 3: Pentraxin 3, sTNFR: soluble tumor necrosis factor receptor, sGP130: soluble 
glycoprotein 130 

 

  



Table S3. Model coefficients 

 Model 1   Model 2   

Variables Coef (95% CI) p-value t Coef (95% CI) p-value t 

IL 8 (log) 0.22 (0.06‒0.37) 0.01 2.73    

Galectin 3 (log) -0.05 (-0.49‒0.40) 0.83 -0.21 0.08 (-0.36‒0.53) 0.72 0.36 

TnT (log) 0.22 (0.00‒0.44) 0.05 1.98 0.25 (0.03‒0.46) 0.02 2.36 

sST2 (log) 0.27 (-0.02‒0.55) 0.06 1.85 0.22 (-0.06‒0.51) 0.12 1.5 

CCL21 (log) 0.20 (-0.04‒0.44) 0.10 1.65    

Endostatin (log) 0.20 (-0.21‒0.61) 0.33 0.97    

PTX3 (log)    -0.09 (-0.33‒0.16) 0.49 -0.68 

sTNFR2 (log)    0.05 (-0.19,0.29) 0.68 0.42 

CORONA PS* 0.80 (0.55‒1.04) <0.001 6.47 0.86 (0.61-1.10) <0.001 6.95 

N 753   753   

Events 205   205   
IL: Interleukin, CCL21: Chemokine ligand 21, sST2: Soluble ST2, TnT: Troponin T, PTX3: Pentraxin 3, 
sTNFR2: soluble tumor necrosis factor receptor 2, log: Natural log transformed.  

 



Table S4. Prognostic power of model 1 and 2 vs. the CORONA PS 

 N/Events Coef (CI) t G&B GOF 
test: K limited/full Delta K (CI) NRI(NRIe/NRIne) C limited/full Delta C (CI) 

All-cause mortality        

Model 1 744/232 1.13 (0.97 - 1.29) 13.94  0.725/0.731 0.006 (-0.027–0.038) 0.23 (0.01/0.22) 0.747/0.754 0.007 (-0.007-0.021) 
p-value  <0.001 0.842  0.842 0.014  0.303 

Model 2 744/232 1.22 (1.05–1.387) 14.02  0.725/0.733 0.008 (-0.025–0.040) 0.27 (0.08/0.19) 0.747/0.755 0.008 (-0.003-0.019) 

p-value  <0.001 0.753  0.642 0.004  0.163 

CV mortality        
Model 1 744/196 1.16 (0.99–1.34) 12.87  0.730/0.735 0.005 (-0.029–0.039) 0.16 (-0.02/0.18) 0.756/0.761 0.005 (-0.010-0.020) 

p-value  <0.001 0.324  0.781 0.159  0.513 

Model 2 744/196 1.245 (1.06–1.43) 13.20  0.730/0.736 0.006 (-0.028–0.040) 0.26 (0.09/0.17) 0.756/0.760 0.005 (-0.007-0.017) 
p-value  <0.001 0.301  0.731 0.012  0.437 

Primary Endpoint        
Model 1 744/233 1.04 (0.89–1.20) 13.01  0.713 /0.719 0.006 (-0.029–0.040) 0.23 (0.03/0.20) 0.728/0.736 0.008 (-0.007-0.022) 
p-value  <0.001 0.736  0.740 0.023  0.303 

Model 2 744/233 1.14 (0.97–1.31) 13.18  0.713 /0.723 0.010 (-0.024–0.045) 0.34 (0.12/0.23) 0.728/0.739 0.010 (-0.001-0.022) 

p-value  <0.001 0.778  0.557 <0.001  0.073 
Prognostic power of Model 1 or 2 with the CORONA PS compared with only CORONA PS. N: Number of patients, Coef: Coefficients, CI: 95% confidence interval, G&B 

GOF test: Groennesby and Borgan goodness of fit test, lim. Only CORONA PS, full: CORONA PS and model 1 or model 2. K: Gönen and Heller’s K, NRI: Net 

reclassification Index, NRIe: Component NRI for events, NRIne: Component NRI for non-events, C: Harrell’s C. Statistically significant results in bold.  

  



Table S5. Prognostic power of Model 1 and 2 vs. the SHFS and NT-proBNP 

   Coef (CI) t G&B GOF 
test: K limited/full Delta K (CI) NRI 

(NRIe/NRIne) C limited/full Delta C 

All-cause mortality        

Model 1 744/232 1.11 (0.95 - 1.26) 13.80  0.713/0.722 0.009 (-0.025–0.042) 0.35 (0.10/0.25) 0.726/0.744 0.018 (-0.003-0.037) 
p-value  <0.001 0.440  0.602 <0.001  0.066 

Model 2 744/232 1.19 (1.02–1.354) 13.09  0.713/0.723 0.010 (-0.024–0.043) 0.34 (0.12/0.22) 0.726/0.742 0.015 (-0.002-0.033) 

p-value  <0.001 0.276  0.564 <0.001  0.066 

CV mortality        
Model 1 744/196 1.15 (0.98–1.32) 13.14  0.721/0.727 0.006 (-0.029–0.041) 0.30 (0.08/0.22) 0.738/0.752 0.013 (-0.009-0.034) 

p-value  <0.001 0.689  0.733 0.006  0.217 

Model 2 744/196 1.22 (1.04–1.40) 13.20  0.721/0.727 0.007 (-0.028–0.041) 0.32 (0.12/0.20) 0.738/0.749 0.010 (-0.008-0.029 
p-value  <0.001 0.687  0.715 0.001  0.256 

Primary Endpoint        
Model 1 744/233 1.01 (0.85–1.16) 12.63  0.694 /0.707 0.013 (-0.023–0.049) 0.34 (0.10/0.24) 0.701/0.723 0.022 (0.002-0.043) 
p-value  <0.001 0.287  0.472 0.001  0.031 

Model 2 744/233 1.09 (0.93–1.26) 12.82  0.694 /0.710 0.016 (-0.020–0.052) 0.42 (0.17/0.25) 0.701/0.724 0.023 (0.007-0.043) 
p-value  <0.001 0.356  0.373 <0.001  0.009 
Prognostic power of Model 1 or 2 with SHFS and NT-proBNP compared with only SHFS and NT-proBNP. SHFS: Seattle heart failure score, NT-proBNP: N-terminal pro 

brain natriuretic peptide.  N: Number of patients, Coef: Coefficient, CI: 95% confidence interval, G&B GOF test: Groennesby and Borgan goodness of fit test, K: Gönen and 

Heller’s K, NRI: Net reclassification Index, NRIe: Component NRI for events, NRIne: Component NRI for non-events, C: Harrell’s C. Statistically significant results in bold. 

  



Table S6. Model 1 and 2 vs. the SHFS risk score excluding NT-proBNP 

 N/Events Coef (CI) t G&B GOF 
test: K limited/full Delta K (CI) NRI 

(NRIe/NRIne) 
C 

limited/full Delta C 

All-cause mortality        

Model 1 726/228 1.04 (0.87 - 1.22) 11.85  0.570/0.692 0.122 (0.079–0.165) 0.69 (0.27/0.42) 0.578/0.714 0.137 (0.080-0.164) 
p-value  <0.001 0.190  <0.001 <0.001  <0.001 

Model 2 726/228 1.20 (1.00–1.40) 11.80  0.570/0.693 0.123 (0.080–0.166) 0.66 (0.28/0.38) 0.578/0.709 0.131 (0.091-0.175) 
p-value  <0.001 0.878  <0.001 <0.001  <0.001 

CV mortality        
Model 1 726/192 1.06 (0.87–1.25) 11.07  0.571/0.694 0.124 (0.077–0.170) 0.69 (0.27/0.42) 0.576/0.718 0.142 (0.091-0.181) 
p-value  <0.001 0.245  <0.001 <0.001  <0.001 

Model 2 726/192 1.22 (1.01–1.44) 11.07  0.571/0.696 0.125 (0.079–0.172) 0.68 (0.32/0.35) 0.576/0.713 0.137 (0.072-0.162 
p-value  <0.001 0.729  <0.001 <0.001  <0.001 

Primary Endpoint        
Model 1 726/228 0.98 (0.81–1.15) 11.16  0.549 /0.683 0.134 (0.090–0.179) 0.65 (0.27/0.38) 0.554/0.700 0.146 (0.104-0-188) 
p-value  <0.001 0.033  <0.001 <0.001  <0.001 

Model 2 726/228 1.18 (0.97–1.37) 13.18  0.549 /0.690 0.141 (0.097–0.186) 0.65 (0.29/0.36) 0.554/0.700 0.146 (0.105-0.189) 
p-value  <0.001 0.850  <0.001 <0.001  <0.001 
SHFS: Seattle heart failure score. Limited: Only SHFS, full: SHFS and model 1 or 2. N: Number of patients, Coef: Coefficients, CI: 95% confidence interval, G&B GOF test: 
Groennesby and Borgan goodness of fit test, K: Gönen and Heller’s K, NRI: Net reclassification Index, NRIe: Component NRI for events, NRIne: Component NRI for non-
events, C: Harrell’s C. Statistically significant results in bold.



Table S7. Change in biomarkers after 3 months of rosuvastatin or placebo treatment 
 Baseline 3 Months Relative Change  

Variable Ros. Placebo Ros. Placebo Ros. Placebo p-value 

Biglycan, ng/mL 18 17 19 18 0.528 0.429 0.046 

Mimecan, ng/mL 62 63 64 64 0.521 0.065 0.648 

Endostatin, ng/mL 169 171 170 172 0.039 0.028 0.801 

YKL40, ng/mL 216 214 208 222 0.041 0.147 0.001 

Galectin 3, ng/mL 21 20 20 20 0.029 0.013 0.591 

IL-8, pg/mL 7.8 12.1 8.0 12.3 0.628 0.648 0.902 

MCP1, pg/mL 209 208 208 208 0.066 0.057 0.811 

CXCL16, pg/mL 1110 1100 1059 1090 -0.012 0.027 0.002 

CCL21, pg/mL 692 699 731 675 0.096 0.178 0.657 

sST2, ng/mL 21.1 20.7 22.2 21.9 0.093 0.112 0.802 

TnT µg/mL 18.9 19.2 19.8 19.0 0.196 0.117 0.400 

SFRP3, ng/mL 1.67 1.69 1.67 1.62 0.147 0.096 0.413 

OPG, ng/mL 4.98 4.97 5.00 5.00 0.030 0.025 0.999 

NGAL, ng/mL 345 348 347 352 0.087 0.096 0.345 

PTX3, ng/mL 7.04 6.71 7.58 6.96 0.162 0.121 0.000 

sTNFR1, ng/mL 2.25 2.27 2.30 2.34 0.108 0.172 0.230 

sTNFR2, ng/mL 0.26 0.26 0.26 0.27 0.200 0.133 0.109 

IL-6, pg/mL 6.06 5.63 5.97 7.55 0.358 0.966 0.887 

sGP130, ng/mL 362 362 358 362 0.004 0.018 0.296 
P-value for difference in change between placebo and rosuvastatin treatment. IL: Interleukin, MCP1: Monocyte 
chemotactic protein 1, CXCL16: Chemokine ligand 16,  CCL21: Chemokine ligand 21, sST2: Soluble ST2, TnT: 
Troponin T, SFRP3: secreted  frizzled-related protein 3, OPG: Osteoprtegerin, NGAL: Neutrophil gelatinase-
associated lipocalin,  PTX 3: Pentraxin 3, Ros.: Rosuvastatin; sTNFR: soluble tumor necrosis factor receptor, 
sGP130: soluble glycoprotein 130  



Table S8. Change in markers according to 3 month statin treatment in the top 2 tertiles. 

Ros: Rosuvastatin,  IL: Interleukin, MCP1: Monocyte chemotactic protein 1, CXCL16: Chemokine ligand 16,  
CCL21: Chemokine ligand 21, sST2: Soluble ST2, TnT: Troponin T, SFRP3: secreted  frizzled-related protein 3, 
OPG: Osteoprtegerin, NGAL: Neutrophil gelatinase-associated lipocalin,  PTX 3: Pentraxin 3, sTNFR: soluble 
tumor necrosis factor receptor, sGP130: soluble glycoprotein 130.  

 Baseline 3 Months Relative Change  

Variable Ros. Placebo Ros. Placebo Ros. Placebo p-value 

Biglycan 24.8 23.5 25.0 23.6 0.083 0.048 0.135 

Mimecan 77 79 77 78 0.010 0.000 0.810 

Endostatin, ng/mL 200 199 195 196 -0.007 -0.006 0.935 

YKL40, ng/mL 274 286 256 282 -0.032 0.038 0.007 

Galectin 3, ng/mL 24.0 23.3 23.2 22.8 -0.021 -0.010 0.621 

IL 8, pg/mL 10.8 17.3 9.8 16.3 0.395 0.451 0.887 

MCP1, pg/mL 250 252 236 242 -0.034 -0.006 0.506 

CXCL16, pg/mL 1283 1283 1174 1210 -0.074 -0.044 0.038 

CCL21, pg/mL 895 894 925 818 0.015 -0.015 0.941 

ST2, ng/mL 26.5 25.8 27.0 27.0 0.021 0.078 0.686 

TnT 26.4 26.7 26.5 25.9 0.048 0.051 0.913 

SFRP3, ng/mL 2.15 2.16 2.07 2.01 0.001 -0.050 0.503 

OPG, ng/mL 5.92 5.93 5.79 5.84 -0.015 -0.011 0.880 

NGAL, ng/mL 422 443 404 424 -0.006 -0.022 0.188 

PTX3, ng/mL 8.90 8.23 9.12 8.26 0.071 0.053 0.001 

sTNFR1, ng/mL 2.77 2.87 2.69 2.64 0.019 -0.014 0.797 

sTNFR2, ng/mL 0.33 0.34 0.32 0.33 -0.018 -0.002 0.781 

IL 6, pg/mL 8.69 7.95 8.00 10.42 0.202 1.134 0.969 

sGP130, ng/mL 416 413 400 403 -0.034 -0.018 0.120 


