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Abstract 29 

Deep erosional gullies dissect landscapes around the world. Existing erosion models focus on 30 

predicting where gullies might begin to erode, but identifying where existing gullies were 31 

initiated and under what conditions is difficult, especially when historical records are 32 

unavailable. Here, we outline a new approach for fingerprinting alluvium and tracing it back to 33 

its source by combining bulk sediment optically stimulated luminescence (bulk OSL) and 34 

meteoric 10Be (10Bem) measurements made on gully-derived alluvium samples. In doing so, we 35 

identify where gully erosion was initiated and infer the conditions under which such erosion 36 

occurred. As both 10Bem and bulk OSL data have distinctive depth-profiles in different uneroded 37 

and depositional settings, we are able to identify the likely depths in potential source areas of 38 

alluvium. We demonstrate our technique at Birchams Creek in the southeastern Australian 39 

Tablelands – a well-studied and recent example of gully incision that exemplifies a regional 40 

landscape transition from unchannelled swampy meadow wetlands to gully incision and 41 

subsequent wetland burial by post-European settlement alluvium. We find that such historic 42 

alluvium was derived from shallow erosion of valley fill upstream of former swampy meadows 43 

and was deposited down the center of the valley. Incision likely followed catchment 44 

deforestation and the introduction of livestock, which overgrazed and congregated in valley 45 

bottoms in the early 20th century during a period of drought. As a result, severe gully erosion was 46 

likely initiated in localized, compacted, and oversteepened reaches of the valley bottom. 47 

1.0 Introduction 48 

Gullies are deep erosional features incised into landscapes, too large to be easily filled; 49 

they can be formed by natural and anthropogenic processes, often involving land-use changes 50 

that reduce native vegetation cover [Cox et al., 2010; Eriksson et al., 2006; Eyles, 1977b; Knox, 51 

2006; Nyssen et al., 2004; Reusser and Bierman, 2010; Stankoviansky, 2003]. The consequences 52 

of gully erosion are two-fold: incision and expansion of gullies in up-catchment landscapes 53 

erodes soil [Perroy et al., 2010; Poesen et al., 2003; Reusser and Bierman, 2010], and deposition 54 

of gully-derived sediment fills and buries down-catchment landscapes on both short and long 55 

term timescales [Beach et al., 2006; Coronato and del Valle, 1993; Eyles, 1977b; Garcia-56 

Rodríguez et al., 2002; Luk et al., 1997; Nichols et al., 2014; Valette-Silver et al., 1986]. While 57 

natural gully incision may be unpreventable [Cox et al., 2010; diCenzo and Luk, 1997; Gellis et 58 

al., 2011; Luk et al., 1997], gully incision following changes in human land-use practices is 59 

often, in hindsight, preventable [e.g. Brannstrom and Oliveira, 2000; Eyles, 1977b; Fuchs et al., 60 

2004; Montgomery, 2007; Perroy et al., 2010; Reusser and Bierman, 2010; Richardson et al., 61 

2014; Rosen, 2008; Stankoviansky, 2003; Turkelboom et al., 2008; Valette-Silver et al., 1986]. 62 

Whether initiated by natural or anthropogenic causes, gullies affect landscapes around the world, 63 

and understanding the conditions under which they are likely to form is crucial to preparing for 64 

and possibly mitigating soil and environmental losses resulting from erosion and sediment 65 

deposition. 66 

Topographic threshold models attempt to predict where gully incision might initiate 67 

[Patton and Schumm, 1975; Vandaele et al., 1996]. Other studies show that gully walls and beds 68 

become the source of the majority of sediment produced from gullied landscapes [Krause et al., 69 

2003; Olley et al., 1993]. However, no studies demonstrate, in the absence of recorded 70 

observation, procedures for identifying where in a landscape existing gullies were initiated, 71 
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information that is necessary to understand the causes of gully erosion. In this study, we outline 72 

and test one such procedure. 73 

Retrospectively identifying where sediment eroded from gullies originated within a 74 

landscape requires a means of monitoring sediment from, or tracing sediment back to, its source. 75 

A number of techniques have been used to do this, including radiogenic and cosmogenic 76 

isotopes, sediment luminescence, thermochronology, radio tagging, and remote sensing, amongst 77 

others [Bradley and Tucker, 2012; D’Haen et al., 2012; Lamarre et al., 2005; Muñoz-Salinas et 78 

al., 2014; Nelson et al., 2014; Rengers et al., 2016; Reusser and Bierman, 2010; Stock et al., 79 

2006; Wasson et al., 2002]. When used alone, these techniques can identify detrital sediment 80 

source regions, elevations, or lithologies; however, combining multiple techniques has the 81 

potential to expand our understanding of geomorphological processes and landforms. For 82 

example, multiple geochronometers have been used to independently date landforms such as 83 

fault scarps and alluvial surfaces [Bierman et al., 2014; Blisniuk et al., 2012; Nissen et al., 2009] 84 

and to understand regolith production and mixing on hillslopes [Dosseto et al., 2008; Ma et al., 85 

2013; West et al., 2013; Wilkinson et al., 2005]. Some techniques have been combined to 86 

quantify and monitor sediment transport through fluvial systems, but the number and variety of 87 

examples are fewer [e.g. Dosseto and Schaller, 2016; Wasson et al., 2002]. 88 

Testing ideas about gully incision into landscapes using different sediment tracing 89 

techniques requires preservation of sediment deposits that resulted from gully erosion. To this 90 

end, the presence of post-(European) settlement alluvium (PSA) in landscapes around the world 91 

makes it an ideal such material. Prior to the European colonial era, PSA was often eroded from 92 

gully systems that formed as a result of land-use practices being introduced to a landscape that 93 

had been previously uninhabited such as in the Americas, Iceland, Africa, Europe, and Asia [e.g. 94 

Beach et al., 2006; Coltorti et al., 2010; Dugmore et al., 2000; Kidder et al., 2012; Nyssen et al., 95 

2014; Pope and van Andel, 1984; Rosen, 2008]. More commonly known is landscape erosion 96 

and PSA deposition across regions that were affected by European and American colonial 97 

expansion and industrial intensification in the 17th–19th centuries throughout North America, 98 

South Africa, Europe, Oceania, and South America [e.g. Brannstrom and Oliveira, 2000; Damm 99 

and Hagedorn, 2010; Foulds et al., 2013; Garcia-Rodríguez et al., 2002; Montgomery, 2007; 100 

Richardson et al., 2014; Portenga et al., 2016a, 2016b; Rustomji and Pietsch, 2007]. Not only is 101 

PSA an ideal material for this study because of its connection to gully erosion, but also its 102 

relationship to human land use around the world provides insights into the magnitude of 103 

historical and pre-historical human impacts on global landscapes and environments [Hooke et al., 104 

2012; Montgomery, 2007; Toy, 1982; Wilkinson and McElroy, 2007]. 105 

In this study, we combine the sediment fingerprinting capabilities of bulk optically 106 

stimulated luminescence (bulk OSL) and meteoric cosmogenic 10Be (10Bem) to trace PSA 107 

deposited in Birchams Creek, a small catchment in the southeastern Australian Tablelands, back 108 

to its source. These two techniques have never been applied together in a geomorphological 109 

context and we demonstrate how we are able to infer the most reasonable gully erosion history 110 

for Birchams Creek by comparing depth profiles of bulk OSL and 10Bem in PSA and from 111 

potential source locations. The widespread use of OSL and 10Bem in geomorphological studies 112 

allows our research approach to be adapted elsewhere to form a more complete understanding of 113 

how human land use shapes the landscapes in which people live.   114 
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2.0 Background 115 

2.1 Field Area 116 

Widespread gully incision and PSA deposition occurred in the Tablelands region of 117 

southeastern Australia (Figure 1), where the causes and timing of gullying and the connection 118 

between gullying and PSA deposition have been at the center of research efforts for decades 119 

[Crouch, 1987; Eyles, 1977a; Mould and Fryirs, 2017; Muñoz-Salinas et al., 2011, 2014; Neil 120 

and Fogarty, 1991; Olley et al., 1993; Olley and Wasson, 2003; Portenga et al., 2016b; Prosser 121 

and Slade, 1994; Rustomji and Pietsch, 2007; Starr, 1989; Wasson et al., 1998]. Catchment 122 

conditions and land-use practices leading to initial gully incision are often not considered 123 

[Prosser and Slade, 1994; Prosser and Winchester, 1996], though they are generally understood 124 

to involve vegetation disturbance along valley sides and bottoms, like those imposed by arid 125 

climate conditions or those introduced by European settlers in the 19th and 20th centuries [Eyles, 126 

1977a, 1977b; Portenga et al., 2016b; Prosser, 1991; Rustomji and Pietsch, 2007; Scott, 2001; 127 

Starr, 1989; Zierholz et al., 2001]. 128 

This study focuses on Birchams Creek, a 3.8 km2 headwater tributary of the Yass River 129 

about 15 km northeast of Canberra, Australia (Figure 1). Eyles [1977a] studied a chain of ponds 130 

in Birchams Creek and its evolution into a continuous gully (Figure 1), a process that occurred 131 

regionally soon after European arrival in the early 1800s CE [Eyles, 1977b]. The first surveys of 132 

the creek in 1880 CE show swampy meadow wetlands and chains of ponds [Mactaggart et al., 133 

2008] within the lower reaches of the creek before trees were ring barked (e.g. girdled) and 134 

cleared in the early 20th century; landowners observed a gully present at the mouth of the creek 135 

in 1910 CE [Eyles, 1977a] (Figure 2a). At present, the upper reaches of Birchams Creek are 136 

underlain by light-colored loamy distal hillslope deposits, likely with some alluvial component, 137 

weathered from the Adaminaby Group, which underlies the whole catchment; we term these 138 

sediments valley fill (VF). The lower reaches of the creek had once been characterized by 139 

distinctive clayey, organic-rich swampy meadow (SM) wetlands; SM sediments are now overlain 140 

by thick deposits of PSA, which were deposited between 1914–1932 CE following European-141 

introduced land-use changes [Portenga et al., 2016a, 2016b]. 142 

At present, the lower 1.4 km of the Birchams Creek is a deep erosional gully, up to ~4 m 143 

deep (Figure 2b-e). Progressing headward from the catchment mouth, stratigraphy exposed in the 144 

gully walls are firstly dark clay-rich SM sediment overlain by PSA (site PSA-1; Figure 1), then 145 

SM sediment not covered by PSA (site SM-1), another sequence of SM overlain by PSA (site 146 

PSA-2), and finally VF (site VF-1), which covers the remainder of the upstream valley bottom 147 

(Figure 1). PSA at both sites PSA-1 and PSA-2 is incised by the modern gully – an indication 148 

that PSA deposition occurred prior to headward migration of the gully observed in 1910 CE. 149 

PSA in Birchams Creek is a sandy loam with lenses of gravel exposed stratigraphically above 150 

SM in the lower and middle reaches of Birchams Creek (Figure 1) and can be >1 m thick (Figure 151 

3). Though we were unable to map the lateral extent of PSA, it is seen exposed on both sides of 152 

gully walls; as elsewhere in the Tablelands, we assume that PSA was deposited across the valley 153 

bottoms [Portenga et al., 2016a., 2016b; Rustomji and Pietsch, 2007]. 154 

Increased overland flow is typically cited as the main triggering mechanism driving gully 155 

incision [Poesen et al., 2003; Prosser, 1991; Prosser and Abernethy, 1996], although exactly 156 

where within a given drainage overland flow has the greatest effect is uncertain. Field-based 157 

flume experiments in the Tablelands have shown that clayey SM sediments resist erosion unless 158 

both vegetation is degraded and discharge increased [Prosser and Slade, 1994]; moreover, 159 
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newly-established swampy vegetation in modern gully beds is able to withstand modern floods 160 

[Zierholz et al., 2001]. These findings support the notion that wetlands, though water-saturated, 161 

are not likely to be the site of initial gully incision. Others have instead suggested that PSA is 162 

more likely derived from erosion into previously-deposited VF sediment [Eyles, 1977a; Prosser, 163 

1990; Wasson et al., 1998]. Whether gullies, now regionally common, were more likely to incise 164 

into SM sediment or VF is a focus of this study. 165 

2.2 Gully initiation conceptual models 166 

 The majority of sediment transported out of modern gully systems in the Tablelands 167 

comes from gully bed and gully bank erosion with minimal sediment being derived from 168 

hillslopes [Neil and Fogarty, 1991; Olley et al., 1993]. Assuming, then, that all PSA comes from 169 

valley bottom erosion, and not from hillslopes, there are two possible PSA erosional histories at 170 

Birchams Creek. In the discontinuous gully erosion conceptual model (DGECM), gully initiation 171 

occurs at multiple locations: alluvium at PSA-1 being sourced from incision at SM-1 at the same 172 

time that alluvium at PSA-2 was sourced from incision at VF-1 (Figure 4a). Alternatively, in the 173 

single site erosion conceptual model (SSECM), gully erosion was initiated at VF-1 and supplied 174 

alluvium to PSA-1 and PSA-2 (Figure 4b). In the DGECM, eroded sediment is transported along 175 

the modern stream channel, which was later incised by headward erosion of the 1910 CE gully. 176 

In the SSECM, eroded sediment from VF-1 is deposited along the axis of the valley, after which 177 

the 1910 CE gully must have eroded from PSA-1 into SM sediments at SM-1 and then back into 178 

alluvium at PSA-2. 179 

3.0 Methods 180 

The uniform bedrock underlying Birchams Creek and its single channel are useful for this 181 

study in that measured variations of bulk OSL and 10Bem concentrations of sediment within the 182 

catchment should only result from changes affecting erosion and depositional conditions within 183 

the catchment. Luminescence accumulation in mineral grains is directly proportional to the rate 184 

and duration of the ‘dose’ of ionizing radiation from the surrounding sediment [Aitken, 1998]. 185 

Luminescence can be completely removed by sufficient exposure to sunlight during sediment 186 

transport – a process called bleaching. However, sediment in fluvial systems is often 187 

incompletely bleached [Jain et al., 2004; Rittenour, 2008; Wallinga, 2002], and inherited 188 

luminescence has previously been observed for catchments throughout the Tablelands [Muñoz-189 

Salinas et al., 2011, 2014; Olley et al., 1998; Portenga et al., 2016b]. At Birchams Creek, single-190 

grain quartz OSL equivalent doses for PSA at site PSA-1 are bimodal with a clear upper limit, 191 

which has been inferred as inheritance from the source material that was incompletely bleached 192 

during sediment transport [Portenga et al., 2016b]. Muñoz-Salinas et al. [2014] reached a similar 193 

conclusion, suggesting that the least completely-bleached fraction of fluvial sediment (i.e. that 194 

which is emitted during bulk OSL measurement) is inherited from the sediment’s parent 195 

material, which allows that luminescence to be used to trace sediment through a stream network 196 

to the sediment’s source. By measuring bulk OSL data in PSA sediment and comparing the 197 

results to characteristic bulk OSL profiles of uneroded SM and VF sediments, we are able to 198 

infer the geographical source of PSA and the initial incision depth. 199 
10Bem is produced in the atmosphere through spallogenic interactions between secondary 200 

cosmic ray-derived neutrons and O and N target nuclei [Lal and Peters, 1967]. 10Bem is delivered 201 

via precipitation and dry fallout to the Earth’s surface where it is strongly adsorbed to sediment 202 

grains and accumulates in soil profiles, forming characteristic depth profiles [Fifield et al., 2010; 203 
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Graly et al., 2010; Monaghan et al., 1986; Willenbring and von Blanckenburg, 2010]. Because 204 
10Bem adheres strongly to sediment grains, it has been used as a sediment tracer in a number of 205 

geomorphic settings [Brown et al., 1988; Helz and Valette-Silver, 1992; Reusser and Bierman, 206 

2010]. Characteristic depth profiles of 10Bem therefore provide a secondary and independent 207 

assessment of PSA sediment provenance and initial incision depth.  208 

Sediment samples for both bulk OSL and 10Bem measurements were collected at each of 209 

the four sites in Birchams Creek: PSA-1, PSA-2, SM-1, and VF-1 (Figures 1, 2). Bulk OSL 210 

samples were measured at 3 cm depth intervals to a depth of ~1 m at all sites and sediment 211 

profile descriptions were recorded (Figure 3); deeper sampling at SM-1 continued at 5 cm 212 

intervals. 10Bem samples were collected as point samples at 9 cm depth intervals at PSA-1, PSA-213 

2, and VF-1, to depths of 102 cm, 75 cm, and 81 cm, respectively, and at 12 cm depth intervals at 214 

SM-1 to a depth of 112 cm. 215 

Samples were measured for bulk OSL using a portable OSL reader [Sanderson and 216 

Murphy, 2010]. Each polymineral, poly-grain size sample was stimulated by both infrared and 217 

blue-light LED sources (60 s, each). Dark counts – photon counts detected in the absence of 218 

stimulation – were also measured prior to and after infrared and blue-light stimulation. Photon 219 

counts emitted from bulk OSL sediment following stimulation cycles were summed such that 220 

each bulk OSL measurement reflects the total luminescence emitted from all grain-sizes and 221 

mineral phases in each bulk sediment sample minus the luminescence measured during dark 222 

counts (Figure S1). Bulk sediment OSL samples include a large number of grains, making it 223 

possible for a few rare, highly-sensitive (e.g. bright) grains to overwhelm the bulk OSL 224 

measurement and produce unusually high bulk OSL measurements [Rhodes, 2007]. To counter 225 

this possible effect, we smoothed the bulk OSL depth-profiles using a 3-sample moving average 226 

(Figure 5a). Bulk OSL data from sample replicates measured from well-bleached SM sediments 227 

converge on similar values; bulk OSL data from PSA sediment replicates show variability, 228 

however, likely resulting from measuring the luminescence of incompletely bleached samples or 229 

from the inclusion of a few bright grains (see Figure 4 in [Portenga et al., 2016a]). Although 230 

PSA exhibits more variable luminescence in replicate sampling, the overall depth trends of bulk 231 

OSL data through PSA profiles replicate well, even when measurements are made years apart 232 

[Portenga and Bishop, 2016].  233 
10Bem was measured on the same samples as were used for bulk OSL analyses. Soil pH 234 

for all samples was measured using powdered pH indicators and values range from 5.5–7; thus, 235 

we assume that no 10Bem has been remobilized after being adsorbed to sediment. 10Bem samples 236 

were processed at the University of Vermont Cosmogenic Nuclide Laboratory where they were 237 

milled, and ~0.5 g of powdered sample was mixed with ~0.4 g of 9Be solution (SPEX 1000 238 

ppm). A modification of Stone’s [1998] fusion method was used to extract beryllium, which was 239 

burned to produce beryllium oxide. Each sample was then mixed with Nb powder at a 1:1 molar 240 

ratio before being packed into copper cathodes to be analyzed using accelerator mass 241 

spectrometry (AMS) at the Scottish Universities Environmental Research Centre (SUERC) [Xu 242 

et al., 2015]. Measured 10Be/9Be ratios were normalized to NIST SRM4325 standard material 243 

with a 10Be/9Be ratio of 2.79 × 10-11 and blank-corrected using three process blanks (avg. = 1.71 244 

± 0.83 × 10-14), from which concentrations of 10Bem are derived; blank corrections were <0.1% 245 

of measured 10Be/9Be ratios. AMS measurement uncertainties for 10Bem concentrations are 1σ 246 

and average 2% for all samples, and uncertainties in the samples and blanks were propagated in 247 

quadrature. 10Bem sample material from SM-1 at a depth of 63 cm was split and each half of the 248 

sample was processed, yielding 10Bem concentrations of 18.6 ± 0.44 × 108 atoms/g and 18.8 ± 249 
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0.34 × 108 atoms/g, a difference of 1.4%. The similarity between these replicate samples 250 

demonstrates the reproducibility and consistency of the 10Bem extraction methods used and the 251 
10Bem results presented. 252 

4.0 Results 253 

 The SM-PSA transition at PSA-1 and PSA-2 occurs at the depth at which changes in 254 

sediment texture and color (Figure 3) and changes in bulk OSL depth trends coincide [Portenga 255 

et al., 2016a]. Below the SM-PSA transition, bulk OSL measurements in SM sediment at PSA-1 256 

and PSA-2 systematically decrease up-profile to the SM-PSA transition at 99 and 72 cm, 257 

respectively (Figure 5a). The bulk OSL data at depths below the SM-PSA boundary at PSA-1 258 

appear, in the figure, not to increase with depth but this is only because the magnitude of bulk 259 

OSL data for these samples is small relative to the bulk OSL maximum values measured in the 260 

overlying PSA (Table S1). Luminescence measurements increase above the SM-PSA transition 261 

to a maximum 3-sample average value of 3.4 × 106 photon counts at PSA-1 (54 cm) and 2.4 × 262 

106 photon counts at PSA-2 (57 cm). Bulk OSL data from SM-1 are near zero at the valley 263 

bottom surface and increase with depth to ~65 cm in the SM exposure (Figure 5a); bulk OSL 264 

data at SM-1 exhibit maxima at ~65 cm and ~130 cm. Bulk OSL depth trends at VF-1 show a 265 

small bulge in the uppermost 20 cm, beneath which bulk OSL data increase systematically to a 266 

depth equal to that of the gully bed (Figure 5a); there is perhaps a third bulk OSL increase at a 267 

depth of ~50 cm.  268 
10Bem measurements are similar throughout PSA profiles and average 8.2 ± 0.8 × 108 269 

atoms/g and 8.2 ± 0.3 × 108 atoms/g at PSA-1 and PSA-2, respectively (Figure 5b, Table S2). 270 

The main difference between the profiles is at a depth of 21 cm at PSA-1 where a horizon of 271 

coarse gravel is exposed along with fine sandy clay loam (Figure 3a); no such horizon exists at 272 

PSA-2. At 16 ± 0.3 × 108 atoms/g, the meteoric 10Be content of this horizon at PSA-1 273 

corresponds to an isolated increase in 10Bem well above the average, likely representing the 274 

isotopic content of the finer-grained matrix rather than the gravel. Measurements of 10Bem at SM-275 

1 exhibit an increase in concentration from 8.3 ± 0.16 × 108 atoms/g at the surface to 19 ± 0.39 × 276 

108 atoms/g at 63 cm. Below 63 cm, 10Bem decreases, but increases once more with depth to 21 ± 277 

0.39 × 108 atoms/g at 99 cm depth. Concentrations of 10Bem at VF-1 show a general increase 278 

from 4.3 ± 0.13 × 108 atoms/g at the surface to 20 ± 0.35 × 108 atoms/g at a depth of 63 cm. 279 

5.0 Discussion 280 

 The characteristic depth profiles of measured bulk OSL and 10Bem data through PSA 281 

deposits in Birchams Creek and at potential PSA sources allow us to assess the likelihood of 282 

different erosion histories for the creek in a way that would not be possible with one sediment 283 

tracing technique alone. While the measured bulk OSL and 10Bem data we present are specific to 284 

Birchams Creek, the combined fingerprinting technique and the interpretation we draw from the 285 

two datasets is adaptable elsewhere. 286 

5.1 Reliability of bulk OSL and 10Bem data 287 

The depth trends of bulk OSL data through PSA and SM sediments at Birchams Creek 288 

resemble SM and SM-PSA profiles found elsewhere in the Tablelands [Muñoz-Salinas et al., 289 

2014; Portenga et al., 2016a] (Figure 5a); we note, however, that SM sediments at ~90 cm deep 290 

at site SM-1 show a substantial decrease in bulk OSL that is not observed in SM sediment 291 
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profiles elsewhere in the Tablelands [Portenga and Bishop, 2016]. Without further sampling or 292 

deriving ages throughout the SM-1 profile, we can only speculate that this decrease may 293 

represent a former valley bottom surface. Bulk OSL data previously measured through profiles 294 

of weathered bedrock show relatively little luminescence in the uppermost horizons and in 295 

increase of bulk OSL data with depth [Muñoz-Salinas et al., 2014]. The bulk OSL depth trend at 296 

VF-1 is not similar to bulk OSL depth trends through weathered bedrock profiles, but instead 297 

appears to consist of up to three sequences of sediment deposited with inherited luminescence, 298 

suggested by the increases of bulk OSL in the profile at ~15 cm, ~50 cm, and ~80 cm. Floods 299 

deep enough to rise over the gully wall or fast enough to entrain and deposit the gravels present 300 

in the uppermost 6 cm at VF-1 are unlikely this far up an already small catchment. Thus, we 301 

suggest that the sediment exposed at VF-1 reflects sediment mobilized to the valley bottom by 302 

hillslope processes with some degree of inherited luminescence from the sediment’s source.  303 

Concentrations of 10Bem in soil depth profiles around the world are typically greatest in 304 

the near-surface and decrease with depth [Graly et al., 2010; Willenbring and von Blanckenburg, 305 

2010], though increases of 10Bem at depth have been observed in saprolite horizons of soil 306 

profiles in the nearby Burra Creek catchment [Fifield et al., 2010]. Like 10Bem data from Burra 307 

Creek, the 10Bem increase we observe in the subsurface of the VF-1 profile is at depth; however, 308 

we suggest that the increase we observe in Birchams Creek is due to the greater proportion of 309 

fine grain sizes at depth at VF-1, which provide a greater surface area onto which 10Bem is 310 

adsorbed (Figure 3). 311 

5.2 Identifying PSA source locations and depths 312 

PSA deposits throughout the Tablelands were transported and deposited by floods; the 313 

higher bulk OSL measurements at the base of PSA compared to that in the uppermost SM 314 

sediments indicate that PSA was minimally bleached before deposition and that peak bulk OSL 315 

measurements reflect bulk OSL from the PSA source material [Muñoz-Salinas et al., 2014; 316 

Portenga and Bishop, 2016; Portenga et al., 2016a]. Thus, to be considered as a reasonable 317 

source for PSA, potential sources of PSA (e.g. SM-1, VF-1) must contain sediment with bulk 318 

OSL values greater than or equal to the bulk OSL maxima of PSA deposits (e.g. PSA-1, PSA-2; 319 

Figure 5a). Similarly, the initial incision depth of a gully is given by whatever depth is required 320 

to erode sediment with bulk OSL data greater than or equal to the bulk OSL maxima of PSA 321 

deposits (Figure 5a). Based on the similar and homogeneous inventories of 10Bem in PSA at 322 

PSA-1 and PSA-2 (~8.2 × 108 atoms/g), we suggest that potential PSA source locations and 323 

depths are determined by averaging the 10Bem inventories at SM-1 and VF-1 with depth until the 324 

average exceeds that of the PSA deposits (Figure 5b).  325 

Based on our bulk OSL measurements, the DGECM is only a valid erosion model if SM-326 

1 is incised to a depth between 39–89 cm and VF-1 is incised to a depth of 9–18 cm, thus 327 

providing sediment at PSA-1 and PSA-2, respectively, with sufficiently high levels of inherited 328 

luminescence (Figure 5, Table 3). VF-1 could be incised to a depth of 81 cm before it exceeds 329 

the average 10Bem concentration at PSA-2, but incising SM-1 to any depth greater than 12 cm 330 

results in 10Bem concentrations significantly greater than that observed at PSA-1. Thus, it follows 331 

that because shallow erosion of 9–18 cm at VF-1 adequately explains the 10Bem and bulk OSL 332 

data at PSA-2, it can be considered a source for PSA at PSA-2; however, because there is no 333 

overlap at SM-1 of the depths required to supply PSA-1 with both the measured 10Bem and bulk 334 

OSL data, it is not a likely source. Our data therefore do not support the validity of the DGECM 335 

in explaining the erosion and PSA deposition history at Birchams Creek. Our data show that bulk 336 
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OSL measured at PSA-1 could be derived from at least 15 cm of incision at VF-1 and that 10Bem 337 

measured at PSA-1 would not be exceeded unless VF-1 was eroded to a depth of >45 cm (Table 338 

1); therefore, shallow incision of VF-1 (~15 cm) could also supply adequate amounts of inherited 339 

luminescence and 10Bem to PSA-1 as well as to PSA-2. We therefore conclude that the only 340 

plausible erosion scenario for Birchams Creek is the SSECM, in which only VF is incised, 341 

releasing sediment that is subsequently deposited downstream as PSA at multiple sites. This 342 

conclusion is supported by findings from other studies demonstrating how SM wetlands resist 343 

erosion [Prosser and Slade, 1994; Zierholz et al., 2001]. 344 

 We further support our interpretation by showing that shallow incision (15 cm) at and 345 

upstream of VF-1 can provide the volume of PSA at PSA-1 and PSA-2 and balance the isotopic 346 

budget in the PSA deposits, considering that the valley-bottom ponds from 1880 CE are now also 347 

filled with PSA and the whole valley bottom is blanketed by PSA (Figure 1). The volume of the 348 

ponds in 1880 CE is 2,510 m3, estimated from maps and pond surface area-depth relationships 349 

[Eyles, 1977a]. The remaining volume of PSA deposited across the valley bottom is estimated to 350 

be 290 m3, which is the areal extent of areas with low slope (≤1°, using 30 m-resolution SRTM 351 

elevation data [Jarvis et al., 2008]) and a depth of 21 cm at PSA-1 (indicated by the gravel 352 

horizon deposited over the filled ponds, Figure 3) and a depth of 63 cm at PSA-2. The total 353 

estimated volume of PSA in Birchams Creek is 2,800 m3, and corresponds to a total 10Bem 354 

inventory of 3.2 × 1018 atoms, using the average PSA 10Bem isotopic concentration at PSA-1 and 355 

PSA-2. The sediment volume of the PSA deposits is matched by erosion ~15 cm deep and 11.9 356 

m wide (average b-axis of ponds mapped in 1941 CE) along 3,190 m of the valley bottom at and 357 

upstream of VF-1; such erosion along the valley bottom upstream of VF-1 also supplied 358 

sufficient 10Bem to balance the 10Bem inventory measured from the PSA deposits. Eyles [1977a] 359 

shows that 3,730 m of the valley bottom was eroded by 1941 CE meaning that 86% of the 360 

sediment derived from initial incision along the eroded length of Birchams Creek is preserved on 361 

the landscape as PSA. This result agrees with previous findings showing that the majority of 362 

sediment eroded during gully incision in the Tablelands remains close to its source [Melville and 363 

Erskine, 1986]. 364 

5.3 Triggering mechanism for gully erosion at Birchams Creek 365 

 The timing of PSA deposition at Birchams Creek between 1914–1932 CE is provided 366 

both anecdotally and quantitatively [Eyles, 1977a; Portenga et al., 2016b], and this study 367 

suggests where and how deep gullies first incised within the watershed. We have yet, however, 368 

to identify what triggered erosion in the first place. We explore the likelihood that the shear 369 

stress of stream flow associated with increased rainfall during otherwise arid conditions 370 

overcame the shear resistance of the valley bottom sediment at VF-1 to trigger gully incision 371 

[Melville and Erskine, 1986; Patton and Schumm, 1975; Prosser and Abernethy, 1996; Prosser 372 

and Slade, 1994]. The relationship between the critical slope threshold (Scr, given as % gradient) 373 

and upstream catchment area (A, in hectares) is provided by Scr = aA-b, where a and b are site 374 

specific constants that account for local climate and erodibility [Vandaele et al., 1996]. With the 375 

exception of Birchams Creek, initial gully incision sites are largely unknown in the Tablelands; 376 

thus, Scr and A of gullied creeks are unmeasurable, and a and b cannot be derived empirically. 377 

We therefore substitute a range of values, derived for valley-bottom gullies in Europe that have 378 

soil textures and mean annual rainfall similar to those at Birchams Creek (a = 0.025–0.09; b = -379 

0.25– -0.4) [Vandaele et al., 1996]. The upstream area of Birchams Creek at VF-1 is 306 ha, and 380 

the slope of the Birchams Creek valley bottom at VF-1 is ~1°, which requires Scr > 1.75 for 381 
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incision to occur. Using substituted values of a and b, Scr in Birchams Creek ranges from 0.11–382 

0.89 (or 4.7°–40°); thus, valley bottom slopes at VF-1, where the gully initially incised, would 383 

have to be ~5–40x steeper before incision could occur. Moreover, Eyles [1977a] observed that 384 

scour ponds in Birchams Creek are all found on valley bottom surfaces with the shallowest 385 

gradients – another indication that no topographic thresholds have been crossed. Thus, Birchams 386 

Creek is seemingly not steep enough to erode a gully; yet, erosion still occurred. 387 

Vegetated catchments in the Tablelands have the capacity to withstand erosion from 388 

severe floods [Neil and Fogarty, 1991; Zierholz et al., 2001]; therefore, if high rainfall triggered 389 

gully incision, severe vegetation degradation must have preceded gully initiation. In the early 390 

1900s CE, the Tablelands was in the midst of a severe drought, as indicated by the near-total 391 

evaporation of endorheic Lake George [Jacobson et al., 1991] (Figure 1). Furthermore, land use 392 

changed at this time from open eucalypt woodlands to cleared grazing pastures, which were used 393 

both by livestock and feral pigs [Eyles, 1977a]. In addition to overgrazing, the presence of 394 

livestock likely compacted soils, thereby decreasing soil infiltration and increasing the stream’s 395 

ability to erode [Trimble and Mendel, 1995; Warren et al., 1986]. Elsewhere in the Tablelands, 396 

congregating livestock created wallows, or depressions, in cleared valley bottoms that were 397 

observed to erode into deep gullies during breaks in severe droughts [Eyles, 1977b]. We 398 

therefore argue that livestock wallows in Birchams Creek created highly-localized oversteepened 399 

reaches (≫Scr) of the streambed at VF-1, which were then eroded by regionally high rainfall 400 

events that broke the drought in the early 1900s CE (see Figure 6 in Portenga et al. [2016b]). 401 

Such streamflow could reasonably initiate gully erosion and transport and deposit the PSA now 402 

observed in the lower Birchams Creek watershed.  403 

The landscape history at Birchams Creek is similar to that documented for nearby 404 

Jerrabomberra Creek catchment [Wasson et al., 1998]. Gully incision at both creeks illustrate the 405 

effects that European-introduced grazing practices likely had on erosion in the Tablelands, and 406 

we therefore suggest that the landscape history of Birchams Creek is representative of erosion 407 

histories of small headwater catchments throughout the Tablelands. We recognize, however, that 408 

while our explanation for the conditions leading to gully erosion is a plausible and reasonable 409 

erosion history for the relatively small Birchams Creek, it is uncertain whether larger catchments 410 

behaved similarly. That being said, our techniques and findings suggest that under the right 411 

circumstances, combined sediment tracing allows for reconstructions of gully incision, erosion, 412 

and sediment deposition to be made, whether brought about by land-use changes or natural 413 

thresholds being crossed. 414 

6.0 Conclusions 415 

This study presents a novel dual sediment-fingerprinting technique that combines 416 

measurements of bulk OSL and 10Bem to identify, for the first time, the source location and 417 

source depth of gully-derived sediment. We demonstrate this technique in the southeastern 418 

Australian Tablelands – one of the most gully-affected landscapes in the world – by tracing PSA 419 

sediment deposited in Birchams Creek to its source location and estimating the depth from which 420 

is was eroded. In doing so, we test two conceptual models of gully development for the creek, 421 

and we confirm that all PSA in the catchment originated from shallow incision into valley fill in 422 

the creek’s headwaters that eventually developed into gullies. This finding contrasts with the 423 

notion that gully development originated in reaches of the stream that were occupied by water-424 

saturated swampy meadow wetlands. Sediment volumes, measurements of bulk OSL, and 425 

isotopic inventories of 10Bem between upstream erosional sources and downstream depositional 426 



 11 

locations are balanced, further supporting the notion that erosion of valley fill supplied 427 

downstream reaches of the creek with thick mantles of PSA. Our findings are consistent with 428 

conclusions drawn in nearby studies and with historical documentation. As this study 429 

incorporates a number of assumptions based on available historical documentation and findings 430 

from previous studies, the application of our techniques to assess gully erosion and PSA 431 

deposition in other landscapes around the world may be limited to locations where similar 432 

historical documentation is also available.  433 
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Tables 442 

 443 

Figure Captions 444 

Figure 1. The Birchams Creek watershed (BC, shaded white on inset figure) is a tributary of the 445 

Yass River, in the southeastern Australian Tablelands. C – Canberra, Australian Capital 446 

Territory; W – Wamboin, New South Wales. Main figure shows a time series illustrating gully 447 

development in Birchams Creek. The 1880 CE, 1941 CE, and 1975 CE time-steps are adapted 448 

from Eyles (1977a), and the 2013 CE time-step is drawn from satellite imagery and field site 449 

visits. Gully connectivity decreased during 1975–2013 CE as sediment became trapped behind 450 

farm dams (reservoirs) and sealed roads. Lower-case letters indicate locations where photographs 451 

shown in Figure 2 were taken. 452 

 453 

Figure 2. Photographs of the field area. Photo locations are shown in Figure 1. (a) The contrast 454 

between totally and partially deforested hillslopes on the low-relief west hillslopes of Birchams 455 

Creek. Lower hillslopes grade into the valley bottom. Photograph taken facing south. (b) Modern 456 

gully with PSA and SM sediments exposed at site PSA-1. Gully walls are ~4 m in height. 457 

Photograph previously used in Portenga et al. [2016a], taken facing upstream. (c) Expansive 458 

modern gully eroding through SM sediments at SM-1. Gully walls are 1–3 m in height. SM-1 459 

SSECM

SM-1 VF-1 VF-1

39-89 cm ~15 cm

102-147 cm 69-99 cm

9-18 cm 9-18 cm

63-99 cm 63-99 cm

Table 1. Potential PSA source locations and depths

PSA-2

10
Be m

10
Be m

Bulk OSL

PSA-1

DGECM

Bulk OSL

0-81 cm0-81 cm---

---

0-12 cm

---

--- 0-45 cm



 12 

collected on south exposure. Photograph taken facing west. (d) Modern gully wall with PSA and 460 

SM sediments exposed at site PSA-2. Gully walls are ~3 m in height. Photograph taken facing 461 

downstream. (e) Valley fill sediments and distal hillslope deposits incised by the modern gully at 462 

VF-1. Sample profile extends to the bottom of the gully bed. Photograph taken facing west. (f) 463 

Swampy meadow wetlands and pond (in foreground) filling in the modern valley bottom above 464 

site VF-1. Ponds have migrated upstream since originally mapped in 1880 CE. Photograph taken 465 

facing north. 466 

 467 

Figure 3. Photographic and textural descriptions sediment profiles for (a) PSA-1, (b) PSA-2, (c) 468 

SM-1, and (d) VF-1. Single-grain quartz OSL burial ages of post-European settlement alluvium 469 

and swampy meadow sediments at PSA-1 are from Portenga et al. [2016b]. Dashed white lines at 470 

PSA-1 and PSA-2 indicate the bulk OSL transition depth from swampy meadow to post-471 

European settlement alluvium sediment accumulation [Portenga et al., 2016a]. 472 

 473 

Figure 4. Schematic diagrams of profile locations and initial gully erosion models at Birchams 474 

Creek. (a) The discontinuous gully erosion model (DGECM) shows alluvium at PSA-1 475 

originating in swampy meadow sediments at SM-1 (light blue coloring) and alluvium at PSA-2 476 

originating in valley fill sediments at and upstream of VF-1 (dark blue coloring). (b) The single 477 

site erosion model (SSECM) shows alluvium at PSA-1 and PSA-2 originating in valley fill 478 

sediments at and upstream of VF-1 (orange coloring). Dotted black lines represent areas of 479 

erosion while solid black lines represent deposition. Continuous black line is Birchams Creek 480 

with black arrows indicating flow direction. Thin colored arrows indicate sediment transport and 481 

deposition direction. 482 

 483 

Figure 5. Sediment transport pathways inferred from the DGECM. (a) Total bulk sediment OSL 484 

(black circles) at each profile site and the 3-sample average bulk OSL used for analyses in this 485 

study (black line). Uncertainties are many orders of magnitude less than the data points; thus, 486 

uncertainties are not shown, but can be found in Supplementary Table 1. Dashed black lines are 487 

at the SM-PSA transition, as interpreted from bulk OSL data and sediment texture descriptions. 488 

Solid light and dark blue boxes at PSA-1 and PSA-2, respectively, show the depths of peak 489 

inherited OSL. Dashed light and dark blue boxes at SM-1 and VF-1, respectively, indicate the 490 

depths where bulk OSL data are greater than or equal to bulk OSL maxima at PSA-1 and PSA-2, 491 

and thus represent the potential depths from which PSA at sites PSA-1 and PSA-2, respectively, 492 

could have originated under the DGECM. Bold arrows indicate pathways of sediment 493 

transportation from potential sources to PSA deposits. Note x-axis for SM-1 is not the same as 494 

the others. (b) Concentrations of 10Bem at each profile site (black circles). Uncertainties are many 495 

orders of magnitude less than the data points; thus, uncertainties are not shown, but can be found 496 

in Supplementary Table 2. Solid light and dark blue boxes at PSA-1 and PSA-2 indicate the 497 

depths over which 10Bem concentrations are averaged in PSA deposits. Dashed light and dark 498 

blue boxes at SM-1 and VF-1 indicate the respective source depths from which PSA at sites 499 

PSA-1 and PSA-2 could have originated under the DGECM. Bold arrows indicate pathways of 500 

sediment transport from potential sources to PSA deposits. 501 

 502 

Figure 6. Sediment transport pathways inferred from the SSECM. (a) Total bulk sediment OSL 503 

(black circles) at each profile site and the 3-sample average bulk OSL used for analyses in this 504 

study (black line). Uncertainties are many orders of magnitude less than the data points; thus, 505 
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uncertainties are not shown, but can be found in Supplementary Table 1. Dashed black lines are 506 

at the SM-PSA transition, as interpreted from bulk OSL data and sediment texture descriptions. 507 

Solid orange boxes at PSA-1 and PSA-2, respectively, show the depths of peak inherited OSL. 508 

Dashed orange box at VF-1 indicates the depths where bulk OSL data are greater than or equal to 509 

bulk OSL maxima at PSA-1 and PSA-2, and thus represent the potential depths from which PSA 510 

at sites PSA-1 and PSA-2, respectively, could have originated under the SSECM. Bold arrows 511 

indicate pathways of sediment transportation from potential sources to PSA deposits. (b) 512 

Concentrations of 10Bem at each profile site (black circles). Uncertainties are many orders of 513 

magnitude less than the data points; thus, uncertainties are not shown, but can be found in 514 

Supplementary Table 2. Solid orange boxes at PSA-1 and PSA-2 indicate the depths over which 515 
10Bem concentrations are averaged in PSA deposits. Dashed orange box at VF-1 indicates the 516 

source depths from which PSA at sites PSA-1 and PSA-2 could have originated under the 517 

DGECM. Bold arrows indicate pathways of sediment transport from potential sources to PSA 518 

deposits. 519 
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Figure S1. Graphical description of bulk optically stimulated luminescence (bulk OSL) 

measurements. DC = dark count (luminescence measured in the absence of stimulation); 

IRSL = infrared stimulated luminescence; BLSL = blue-light LED stimulated luminescence. 

Equation shows calculation of bulk OSL measurements, which are used in this study.  
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Table S1. Bulk optically stimulated luminescence (bulk OSL) measurements used in this 

study 
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Table S2. Meteoric 10Be (10Bem) data used in this study 

 

SUERC Depth SUERC Depth SUERC Depth SUERC Depth

BE # a (cm) BE # a (cm) BE # a (cm) BE # a (cm)

b8029 3 5.81 ± 0.15 b8046 3 8.28 ± 0.16 b8070 3 7.97 ± 0.16 b8048 3 4.29 ± 0.13

b8030 12 7.41 ± 0.17 b8047 15 9.95 ± 0.20 b8072 12 7.82 ± 0.15 b8049 12 3.60 ± 0.09

b8031 21 16.25 ± 0.29 b8056 27 9.76 ± 0.23 b8073 21 7.70 ± 0.16 b8050 21 8.90 ± 0.19

b8033 30 6.94 ± 0.13 b8057 39 10.47 ± 0.17 b8074 30 8.62 ± 0.19 b8053 33 12.82 ± 0.23

b8034 39 7.23 ± 0.14 b8059 51 14.91 ± 0.38 b8075 39 8.55 ± 0.14 b8054 45 14.52 ± 0.36

b8035 48 7.15 ± 0.13 b8060 63 18.59 ± 0.44 b8076 48 6.95 ± 0.13 b8055 54 19.32 ± 0.49

b8036 57 6.70 ± 0.13 b8088 63c 18.85 ± 0.34 b8079 57 9.73 ± 0.20 b8082 63 19.72 ± 0.35

b8037 66 7.39 ± 0.12 63d 18.72 ± 0.39 b8080 66 16.46 ± 0.34 b8083 72 17.66 ± 0.30

b8040 75 8.49 ± 0.18 b8061 75 10.95 ± 0.22 b8081 75 16.85 ± 0.30 b8087 81 15.90 ± 0.33

b8069 84 7.66 ± 0.14 b8066 87 13.85 ± 0.25

b8043 93 8.78 ± 0.19 b8067 99 20.86 ± 0.39

b8044 102 14.43 ± 0.28

c Replicate measurement of 10Bem

b Errors presented are 1σ blank-corrected analytical AMS uncertainties.

VF-1PSA-2SM-1PSA-1

(atoms/g) x108b (atoms/g) x108b (atoms/g) x108b

d The average of 10Bem  data from 63 cm and the replicate from 63 cm. Only the average value is used for analyses in this study.

a Original Scottish Universities Environmental Research Centre (SUERC) AMS data report identifying number.

(atoms/g) x108b

Table 2. Meteoric 10Be data

10Bem
10Bem

10Bem
10Bem
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