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Abstract

The over-replicating wMelPop strain of the endosymbiont Wolbachia pipientis has recently been shown to be capable of
inducing immune upregulation and inhibition of pathogen transmission in Aedes aegypti mosquitoes. In order to examine
whether comparable effects would be seen in the malaria vector Anopheles gambiae, transient somatic infections of
wMelPop were created by intrathoracic inoculation. Upregulation of six selected immune genes was observed compared to
controls, at least two of which (LRIM1 and TEP1) influence the development of malaria parasites. A stably infected An.
gambiae cell line also showed increased expression of malaria-related immune genes. Highly significant reductions in
Plasmodium infection intensity were observed in the wMelPop-infected cohort, and using gene knockdown, evidence for
the role of TEP1 in this phenotype was obtained. Comparing the levels of upregulation in somatic and stably inherited
wMelPop infections in Ae. aegypti revealed that levels of upregulation were lower in the somatic infections than in the stably
transinfected line; inhibition of development of Brugia filarial nematodes was nevertheless observed in the somatic
wMelPop infected females. Thus we consider that the effects observed in An. gambiae are also likely to be more pronounced
if stably inherited wMelPop transinfections can be created, and that somatic infections of Wolbachia provide a useful model
for examining effects on pathogen development or dissemination. The data are discussed with respect to the comparative
effects on malaria vectorial capacity of life shortening and direct inhibition of Plasmodium development that can be
produced by Wolbachia.
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Introduction

Wolbachia pipientis is an intracellular maternally inherited

bacterial symbiont of invertebrates that is very common in insects,

including a number of mosquito species [1,2]. It can manipulate

host reproduction in several ways, including cytoplasmic incom-

patibility (CI), whereby certain crosses are rendered effectively

sterile. Females that are uninfected produce infertile eggs when

they mate with males that carry Wolbachia, while there is a ‘rescue’

effect in Wolbachia-infected embryos such that infected females can

reproduce successfully with any males. Therefore uninfected

females suffer a frequency-dependent reproductive disadvantage.

Wolbachia is able to rapidly invade populations using this powerful

mechanism [3–5].

A strain of Wolbachia called wMelPop has been identified that

over-replicates in somatic tissues and roughly halves the lifespan of

laboratory Drosophila melanogaster [6]. A transinfection of wMelPop

from Drosophila into the mosquito Aedes aegypti also leads to a

similarly shortened lifespan in the lab, as well as inducing strong

CI, which has made it a very promising candidate for the

development of new strategies for controlling mosquito-borne

diseases [7]. All mosquito-borne pathogens require an extrinsic

incubation period before they can be transmitted that is relatively

long (,9 days for malaria) compared to mean mosquito lifespan in

the field; therefore, a reduction in the number of old individuals in

the population will reduce disease transmission [8–11].

We recently found that the presence of wMelPop also produces

a major upregulation of a large number of immune genes in Ae.

aegypti and inhibits the development of filarial nematode worm

parasites [12]. We hypothesized that the two effects are

functionally related – higher levels of immune effectors in

wMelPop-infected mosquitoes render them better able to kill

parasites [12]. Homologs of some of the Ae. aegypti genes that are

upregulated in the presence of wMelPop have been previously

shown to have the ability to regulate development of Plasmodium

parasites in Anopheles, for example a transgene encoding cecropin-

A/a synthetic cecropin-B of Hyalophora cecropia; the NF-kB-like

transcription factor Rel2 controlling the Imd pathway; and TEP

(Thioester containing) opsonization proteins [13–20]. It has

recently been shown that the wMelPop-infected Ae. aegypti line
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has impaired ability to transmit an avian malaria, Plasmodium

gallinaceum [21]. It is possible that these effects of wMelPop could

be particular to the Ae. aegypti transinfection; however, if

comparable upregulation of orthologous immune genes, and

inhibition of Plasmodium development are also seen in the

important Anopheles vectors of human malaria, it may provide a

stimulus to the development of new Wolbachia-based malaria

control strategies.

To address this question we used Anopheles gambiae, the most

important vector of malaria in Africa, which like Ae. aegypti is not

naturally infected with Wolbachia. The creation of stably inherited

lines of An. gambiae is likely to require a long period of

microinjection and selection, as had to be performed for Ae.

aegypti [7]. However, in advance of the successful creation of an An.

gambiae stable transinfection, the effects of the presence of

wMelPop on immunity and malaria transmission can be tested

using an established wMelPop-infected An. gambiae cell line [22]

and the ability to create somatic lifetime infections of Wolbachia in

adult female mosquitoes by intrathoracic inoculation [23,24]. The

wMelPop strain forms disseminated somatic infections in its

natural Drosophila host [6], in common with some but not all

Wolbachia strains [25]. Given that a) Plasmodium parasites will travel

solely through somatic tissues on their journey to the salivary

glands, and b) that many of the known antimalarial immune

effectors are humoral/systemic, we consider that the creation of

somatic infections of Wolbachia via adult inoculation represents a

useful model for stably inherited germline-associated infections. To

examine this hypothesis further, we also created somatic wMelPop

infections in Ae. aegypti, in order to compare the magnitude of the

effects on mosquito immunity and filarial nematode parasite

development with those observed in the stably wMelPop-

transinfected line.

Results

Immune gene expression in An. gambiae
Given that a stable wMelPop infection of An. gambiae does not

yet exist, it was necessary to create transient somatic infections by

intrathoracic innoculation with purified Wolbachia. RNA from

these transinfected females was then tested for expression levels of

six immune genes, and upregulation of all these genes was

observed compared to buffer injected and E. coli - injected controls

(Figure 1). Of these genes, LRIM1 and TEP1 (whose products have

been shown to interact in the opsonisation response) have

previously been shown to have an important inhibitory or

antagonistic effect on Plasmodium development [18–20]. Impor-

tantly, injected mosquitoes were left for eight days before

Plasmodium challenge or qRT-PCR, and therefore the pulse of

immune gene upregulation caused by the injury itself or by the E.

coli challenge would be expected to have already passed [15].

The wMelPop infected cell line MOS55 [22] showed upregula-

tion of all six selected immune genes compared to an uninfected

cell line created by tetracycline curing of infected MOS55

(Figure 2). These data add confidence to the hypothesis that it is

the presence of wMelPop itself that is inducing immune gene

upregulation, and by extension Plasmodium inhibition, and that

these effects are not artefacts of the intrathoracic injection process.

The degree of upregulation was different for some genes in the cell

line than observed for the somatic in vivo transinfection. However

these differences would be expected given that many immune

genes are primarily expressed in particular cell types/organs in

adult mosquitoes, such as the fat body cells or in the case of TEP1,

Figure 1. Immune gene expression in An. gambiae somatically infected with wMelPop. The expression of six immune genes were analyzed
by qRT-PCR: leucine-rich repeat immune protein, LRIM1; thioester-containing protein, TEP1; cecropin, CEC1; defensin, DEF1; C-type lectin, CTL4; and
clip-domain serine protease, CLIPB3. Adult An. gambiae females were injected with E. coli, wMelPop or the buffer alone, 2–3 days post-eclosion, and
RNA was extracted from these adults eight days after injection. Expression was normalized to non-injected adult females of the same age from the
same colony. Error bars show the SEM of three biological replicates, each containing eight adult females (total of 24 mosquitoes per condition).
doi:10.1371/journal.ppat.1001143.g001

Author Summary

Malaria is one of the world’s most devastating diseases,
particularly in Africa, and new control strategies are
desperately needed. Here we show that the presence of
Wolbachia bacteria inhibits the development of a malaria
parasite in the most important Anopheles mosquito
species of Africa. In addition we show that the presence
of Wolbachia results in the switching on of immune genes
that are known to affect development of many species of
malaria parasite. When added to the lifespan-shortening
effects of this particular strain of Wolbachia, and the
general ability of Wolbachia to spread through insect
populations, our study provides a stimulus for the
development of Wolbachia-based malaria control meth-
ods. It also provides new insights into the wide range of
effects of Wolbachia in insects.

Wolbachia and Malaria
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the haemocytes [18], and the cellular composition of this larval-

derived cell line is unknown.

Effects on the development of Plasmodium berghei
Three Plasmodium berghei challenge experiments were conducted

on transiently Wolbachia-infected A. gambiae females compared to

buffer injected, uninjected, and in one case E. coli-injected controls

(Figure 3a–c). In all three experiments highly significant reductions

in intensity of oocyst infection in the wMelPop transinfected

females were observed compared to the other treatments, while

there were no significant differences between any of the control

treatments within each experiment. Mean P. berghei intensities were

reduced in the wMelPop-infected mosquitoes by between 75% and

84% compared to the corresponding buffer injected control

groups. A further experiment confirmed the lack of any significant

differences in intensity between the E. coli-injected, buffer injected

and uninjected controls (data not shown).

In order to obtain evidence for a causal link between the

immune upregulation and the Plasmodium inhibition phenotypes,

TEP1 knockdown was undertaken by injection of dsRNA at the

same time as Wolbachia injection. Significantly higher oocyst

numbers were observed compared to the control where dsLacZ

was injected at the same time as Wolbachia (Figure 3d). This

experiment provides evidence for a significant contribution of

Wolbachia-induced TEP1 upregulation to the Plasmodium inhibition

phenotype.

Utility of transient somatic wMelPop infections
We assessed the utility of the transient wMelPop somatic

infection model by comparing the effects on host immunity and

pathogen development with those observed in stable inherited

infections of wMelPop. To do this we utilized a filarial nematode-

susceptible line of another mosquito species, Ae. aegypti, in which

we have previously carried out Brugia pahangi challenges on a stable

wMelPop-transinfected line [7,12]. We created somatic wMelPop

infections using exactly the same methodology as carried out for

An. gambiae, and after eight days challenged them with B. pahangi or

carried out qRT-PCR.

The somatic Wolbachia infection also induced upregulation of

selected immune genes (PGRPS1, CECD, CLIPB37, CTL) (Figure 4a).

The scale of upregulation was considerably lower than observed in the

comparable Ae. aegypti stable transinfection as previously reported [12].

Likewise, challenge of the somatically wMelPop infected females with

B. pahangi did produce a significant reduction in the numbers

developing to the L3 (infectious) stage compared to the controls

(Figure 4b), as was previously observed in the stable inherited wMelPop

infected line, which showed .50% reduction in mean numbers of L3

compared to the Wolbachia-uninfected control at the same microfilarial

challenge density [12]. Using quantitative PCR comparing three

groups of two mosquitoes with the single copy genes ftsZ (Wolbachia)

and Actin5C (Ae. aegypti) for normalization, we estimated that there were

approximately 176670 times more wMelPop cells in the stably

infected line compared to the somatic infections. This may explain this

reduced effect on gene upregulation. Therefore we conclude that

intrathoracic inoculation can be a valuable way to test the effects of

Wolbachia on host immunity and pathogen transmission. Although

extrapolations to different mosquito species and parasites must be

made with care, it does seem likely that the effects observed for somatic

Wolbachia infections using the methodology reported here are likely to

be smaller than for a stable inherited infection, and thus that the

estimations made may be conservative.

An experiment to test whether the immune upregulation

observed in wMelPop-infected mosquitoes affects the density of

the Wolbachia itself was conducted using the stable inherited

infection of wMelPop in an Ae. aegypti Refm background [7,12].

Wolbachia ftsZ gene expression (used as a proxy for Wolbachia

density) was found to be higher in dsRel2-injected than in dsLacZ-

injected mosquitoes at both day six and day ten post-injection

(Figure 4c). These data suggest that the immune effectors

controlled by the Imd (Rel2-controlled) pathway can influence

Wolbachia densities. The very high rate of maternal transmission

observed in wMelPop-infected Ae. aegypti [7], despite chronic

immune upregulation, means that the biological significance of

this density difference is unknown, although potentially it could act

to limit wMelPop pathogenicity to some degree. More compre-

hensive experiments addressing this question will make use of

transgenic immune knockdown lines infected with wMelPop,

which are currently being produced, and are expected to enable

the effects of stronger and more long lasting immune pathway

knockdown to be investigated.

Discussion

The data reported strongly support the hypothesis that

wMelPop can inhibit the development of Plasmodium in Anopheles

Figure 2. Immune gene expression in the An. gambiae wMelPop-infected MOS55 cell line. The expression of six immune genes as
described for Figure 1 were analyzed by qRT-PCR, for the An. gambiae MOS55 cell culture infected with wMelPop, normalized to expression of these
genes in a tetracycline treated, wMelPop free, genetically identical, MOS55 cell culture. Three samples of cells were taken from the cultures at
different times; error bars show the SEM of these three samples.
doi:10.1371/journal.ppat.1001143.g002
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malaria vector mosquitoes. The An. gambiae/P. berghei combination,

although not one that occurs in nature, does represent a tractable

and well studied model for which considerable information is

already available about Plasmodium killing mechanisms; however

we recognize the challenge experiments will ultimately need to be

repeated with the far less tractable human parasite P. falciparum

once a stably inherited Wolbachia transinfected line of An. gambiae

has been created. The densities of P. berghei used in laboratory

challenges such as these can be high compared to those of P.

falciparum that would occur in nature, although the mean

intensities recorded in these studies lie within the range recorded

for P. falciparum in the field. The significant reductions in intensity

we recorded in laboratory experiments are considered likely to

translate to significant reductions in oocyst prevalence/transmis-

sion in a real-life setting.

The knockdown experiment provided evidence for a major role

of TEP1, and by extension LRIM1 whose products interact as part

of the same opsonization pathway [20], in the inhibition of P.

berghei development. This is the first time a direct link between the

Wolbachia pathogen inhibition and immune upregulation pheno-

types has been made. A more detailed and exhaustive investigation

of the relative contributions of different components of the

Anopheles immune system to Plasmodium killing can be made once

stable inherited Wolbachia infections have been established.

Taken together with the recent report of reduction in P.

gallinaceum development in wMelPop-infected Ae. aegypti [21], the

Figure 3. An. gambiae somatically infected with wMelPop: challenges with Plasmodium berghei. Each panel represents an independent
experiment showing mean numbers of oocysts per midgut (parasite intensities), comparing An. gambiae challenged with P. berghei eight (A–C) or five
(D) days after intrathoracic innoculation with, in A–C, Wolbachia wMelPop compared to buffer (BI) and non-injected (NI) controls plus in C E. coli (EI);
and in (D) Wolbachia+dsLacZ (WLI), Wolbachia+dsTEP1 (WTI) and NI. Parasite survival was determined by oocyst counting on day 10 post infection. In
A–C significant reductions in intensity were observed in WI females compared to the NI, BI and EI controls: ***P,0.001; ** P,0.01. P. berghei
prevalence was also significantly reduced (P,0.05) in WI compared to one or more of the controls: expt. A. NI = 78.5% (33/42); BI = 81.8% (27/33),
WI = 60.0% (27/45); expt. B NI = 88.4% (23/26), BI = 92.3% (12/13), WI = 57.1% (12/21; expt. C NI = 90.3% (28/31), BI = 96.0% (24/25), WI = 63.1% (12/19),
EI = 81.2% (13/16). In experiment D intensity was significantly lower in the WLI group compared to WTI and NI, *P,0.05. Prevalence was 81% (39/48)
for NI, 81% (13/16) for WTI and 50% (6/12) for WLI.
doi:10.1371/journal.ppat.1001143.g003
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Figure 4. Immune gene expression and challenges with Brugia pahangi in Ae. aegypti somatically infected with wMelPop, and effects
of immune knockdown on Wolbachia density. A) The expression of four immune genes were analyzed by qRT-PCR: a peptidoglycan recognition

Wolbachia and Malaria
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data increase the desirability of creating stably inherited wMelPop

transinfections in important malaria vectors. The potential

combination of lifespan shortening and direct inhibition of

Plasmodium development in the mosquito would represent a very

attractive control strategy, since both of these phenotypes are

critical components of malaria vectorial capacity. A simple model

exploring relative contributions of these two parameters to

vectorial capacity is shown in Figure 5. Though lifespan reduction

and Plasmodium inhibition can each substantially reduce the

vectorial capacity of a mosquito population, together they act

synergistically to reduce transmission. Depending on the scale of

lifespan reduction that would be observed under field conditions,

which is as yet unknown, the Plasmodium inhibition effect could

dramatically increase the efficacy of the wMelPop infection in

reducing malaria transmission.

Other Wolbachia strains might also show malaria inhibition

effects, particularly if they reach high somatic densities and/or

induce large-scale immune stimulation. Here we show that the use

of transient somatic infections of Wolbachia by adult female

inoculation followed by pathogen challenge is a valuable means to

test likely effects on immunity and transmission. This is significant

as it allows comparison and selection of strains for the most

desirable properties prior to the lengthy, and technically very

challenging, process of creating stably inherited Anopheles transin-

fections. If other Wolbachia strains can be identified which also

inhibit Plasmodium transmission, they would represent an attractive

alternative to wMelPop if they do not shorten lifespan to the same

extent, since they are therefore likely to have much lower fitness

costs. Only the wMelPop strain has to date been found to produce

a strong life-shortening phenotype.

Laboratory estimates suggest that transinfection of wMelPop in

Aedes aegypti can reduce fitness by around 50% [7]. This would appear

to make it difficult for this strain of Wolbachia to spread by means of CI

through natural populations [26], particularly where populations are

fragmented. However, fitness estimates made in relatively benign

laboratory conditions, where a comparatively large fraction of the

population become old, can overestimate the relative costs of infection.

In the field most mosquitoes die early and few live long enough to

experience higher Wolbachia-induced mortality (although those that do

are significant to disease control, if they would otherwise have lived

long enough to transmit the infection). As shown in Figure 5

reductions in longevity and Plasmodium inhibition together determine

vectorial capacity and it will also be important to understand the joint

effects of the two phenotypes on mosquito fitness in the field. Detailed

knowledge of the demographics of the target species is also important

[27]. Selective pressures acting on the host would likely modulate the

life-shortening phenotype over time, but this may not occur rapidly

enough to prevent a sustained period of disease control.

Wolbachia is now known to inhibit the dissemination or

development of a variety of insect pathogens and insect-borne

pathogens – various Drosophila pathogenic viruses, dengue and

chikungunya viruses of humans, and filarial nematode parasites in

addition to Plasmodium [12,21,28–31]. Some of these pathogen-

inhibition phenotypes have been reported in Drosophila species that

naturally harbour Wolbachia, in other words they are not restricted

to species such as Ae. aegypti or An. gambiae in which Wolbachia forms

a novel transinfection. On a broader level these Wolbachia cases

can be added to various other examples where bacterial symbionts

have been shown to provide protective effects against one or more

pathogens [32,33], although the mechanisms involved are likely to

be diverse. Parallels can also be drawn with the effects of

entomopathogenic fungi, which can both reduce Anopheles lifespan

and directly inhibit Plasmodium development [34–36]. Pathogen

inhibition represents a new and increasingly significant component

of our understanding of the effects of Wolbachia in insects, and

provides excellent prospects for the development of novel malaria

control strategies.

Materials and Methods

Ethics statement
All procedures involving animals were approved by the ethical

review committee of Imperial College and by the United Kingdom

Figure 5. Model of possible effects of wMelPop on malaria
vectorial capacity. Vectorial capacity is a measure that describes the
transmission potential of a mosquito population and is independent of
Plasmodium prevalence. It can be thought of as proportional to the
number of infectious bites that occur per day after a single infectious
human arrives in a previously malaria-free area. If we assume
recruitment to the adult mosquito stage is constant then vectorial
capacity can be written (A b (12m)t)/m where b is the ability of the
mosquito to transmit Plasmodium, m is adult daily survival, t is the
length of the intrinsic incubation period of the Plasmodium and all
other parameters are combined in A [42]. The figure plots vectorial
capacity as transmission (b) and daily survival (m) are each reduced
because of the presence of Wolbachia by a multiplicative factor (12x)
where x varies in the range 0 to 1 (parameters: b = 1; m = 0.1; t = 1; A = 1).
A more advanced analysis tailored to a specific system might want to
include age-specific adult mortality, the effect of Wolbachia on
mosquito population dynamics and seasonality.
doi:10.1371/journal.ppat.1001143.g005

protein, PGRPS1; cecropin D, CECD; CLIP-domain serine protease, CLIPB37; and a C-type galactose-specific lectin. Adult females were injected with
wMelPop or the buffer alone, approximately seven days post-eclosion. RNA was extracted from these adults eight days after injection. Expression was
normalized to non-injected adult females of the same age from the same colony. Error bars show the SEM of three biological replicates, each
containing eight adult females (total of 24 mosquitoes per condition). B) The mean numbers of L3 stage (infective) larvae per mosquito are shown
following B. pahangi challenge in Ae. aegypti Refm strain previously injected with wMelPop or buffer; * P,0.05. Numbers above bars show the
prevalence of filarial infection as a proportion of mosquitoes that contained at least one L3 Brugia larva over the total number of mosquitoes
dissected in each category. C) We measured the levels Wolbachia ftsZ gene expression as a proxy for Wolbachia density and normalized the qRT-PCR
data to the mosquito Actin5C gene. Two sets of three females per time point injected with either dsLacZ or dsRel2 were assayed. ftsZ gene expression
was found to be higher in dsRel2-injected mosquitoes than in dsLacZ-injected mosquitoes at both six and ten days post injection. The mean level of
Rel2 transcript in dsRel2-injected mosquitoes was confirmed to be approximately 40% of that in dsLacZ injected mosquitoes at both time points.
These data suggest that the immune effectors controlled by the Imd pathway (Rel2-controlled) can influence Wolbachia densities.
doi:10.1371/journal.ppat.1001143.g004
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Government (Home Office), and were performed in accordance

with United Kingdom Government (Home Office) and EC

regulations.

Somatic wMelPop infections
Wolbachia wMelPop was purified from the infected An. gambiae

cell line MOS55 [22,37] as previously described [23,24]. This

protocol has previously been shown to allow Wolbachia replication

in the recipient An. gambiae [24]. Cells obtained from one 75 CM2

flask were re-suspended in 100 mL of Schneider medium without

antibiotics (optical density, OD = 0.09). 69 nL of this Wolbachia

suspension (or 69 nL Schneider for the controls) were microin-

jected into the thorax of young An. gambiae females of the G3 strain

or Ae. aegypti females of the Refm strain [38] using an Nanoject

microinjector (Drummond). The mosquitoes were supplied with

10% sucrose ad libitum and left to recover for at least eight days

prior to qRT-PCR or challenge experiments. A similar OD of 0.1

for E. coli was used to inject another set of controls.

qRT-PCR and qPCR
Gene expression levels were monitored using qRT-PCR. Total

RNA was extracted with Trizol reagent from groups of ten An.

gambiae or Ae. aegypti females maintained at 26uC and 70% relative

humidity, and cDNAs were synthesised from 1 mg of total RNA

using SuperScript II enzyme (Invitrogen). qRT-PCR was

performed on a 1 to 20 dilution of the cDNAs using dsDNA dye

SYBR Green I. Reactions were run on a DNA Engine

thermocycler (MJ Research) with Chromo4 real-time PCR

detection system (Bio-Rad) using the following cycling conditions:

95uC for 15 minutes, then 45 cycles of 95uC for 10s, 59uC for 10s,

72uC for 20s, with fluorescence acquisition at the end of each

cycle, then a melting curve analysis after the final one. The cycle

threshold (Ct) values were determined and background fluores-

cence was subtracted. Gene expression levels of target genes were

calculated, relative to the internal reference gene Actin5C or RS17

for Ae. aegypti and RS7R for An. gambiae. Primers were designed

using Vectorbase (www.vectorbase.org) mosquito gene sequences/

orthology criteria, and the wMel genome sequence [39], since

wMel and wMelPop are closely related [40]. Primer pairs used to

detect target gene transcripts are listed in Table 1.

The density of Wolbachia in somatic and stable infections of Ae.

aegypti was estimated using both qPCR and qRT-PCR. DNA was

extracted using the Livak method and qRT-PCR or qPCR

equipment and protocols were the same as those described above.

The single copy genes ftsZ (Wolbachia) and Actin5C and S7 (Ae.

aegypti) were used to estimate relative numbers of Wolbachia

normalized against the mosquito genome.

Plasmodium berghei challenge experiments
General parasite maintenance was carried out as previously

described [41]. P. berghei ANKA 2.34 parasites were maintained in

4–10-week-old female Theiler’s Original (TO) mice by serial

mechanical passage (up to a maximum of eight passages). Hyper-

reticulocytosis was induced 2–3 days before infection by treating

mice with 200mL i.p. phenylhydrazinium chloride (6mg/ml in

PBS; ProLabo UK). Mice were infected by intraperitoneal (i.p.)

injection and infections were monitored on Giemsa-stained tail

blood smears.

Table 1. Oligonucleotide primers used in quantitative PCR experiments and dsRNA synthesis.

Gene Name Accession no. Forward Primer Reverse Primer

An. gambiae

CEC1 AGAP000693 CCAGAGACCAACCAACCACCAA GCACTGCCAGCACGACAAAGA

DEF1 AGAP011294 CATGCCGCGCTGGAGAACTA GATAGCGGCGAGCGATACAGTGA

LRIM1 AGAP006348 CATCCGCGATTGGGATATGT CTTCTTGAGCCGTGCATTTTC

TEP1 AGAP010815 CGCCCAGGAGCGTACGTTGG CCTGGCGAACAGACCCAAGCTG

CTL4 AGAP005335 ATCGGAATGTCGATCGCTAC CTGTCCGGCGATCAAACTAT

CLIPB3 AGAP003249 CAGATTGTCGTCCACACTGG GCTCAGGGGCAGACAGATAG

RS7R AGAP010592 AGAACCAGCAGACCACCATC GCTGCAAACTTCGGCTATTC

dsRNA-Tep1 [17] AGAP010815 TAATACGACTCACTATAGGGTTTGTGGGCCTTAAAGCGCTG TAATACGACTCACTATAGGGACCACGTAACCGCTCGGTAAG

Ae. aegypti

PGRPS1 AAEL009474 TGGAGCGACATTGGTTACAA GCGATGCCAATCGACTTACT

CECD AAEL000598 GCTAGGTCAAACCGAAGCAG TCCTACAACAACCGGGAGAG

CLIPB37 AAEL005093 TTGGGGGAAAACAGAAACAG GATCTGCTTCCCAGAGAACG

Galactose-specific CTL AAEL005641 GTCTCCGGGTGCAATACACT CCCTATCGTTCCACTTCCAA

Actin5C AAEL011197 ATCGTACGAACTTCCCGATG ACAGATCCTTTCGGATGTCG

RpS17 AAEL004175 CAGGTCCGTGGTATCTCCAT CAGGACATCATCGAAGTCGA

Rel2 [43] AAEL007624 GGACGAGGCAGCGGCGCAGTTTGAGC TCCAGAGGGCCGAGATAAGTTCC

dsRNA-Rel2 [43] AAEL007624 TAATACGACTCACTATAGGGACCGGTGGAAGTGCTC TAATACGACTCACTATAGGGCCCCGATCTCCGTTAT

Wolbachia wMel

ftsZ WD_0723 TGATGCTGCAGCCAATAGAG TCAATGCCAGTTGCAAGAAC

E. coli

dsRNA-LacZ EG10527 TAATACGACTCACTATAGGGAGAATCCGACGGGTTGTTACT TAATACGACTCACTATAGGGCACCACGCTCATCGATAATTT

Previously published oligonucleotides are indicated by the reference number following the gene name.
doi:10.1371/journal.ppat.1001143.t001
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In four independent experiments, individual 4–10 week old

Theiler’s Original (TO) mice were treated with 200mL i.p.

phenylhydraziuium chloride (PH; 6mg/ml in PBS; ProLabo

UK) to induce hyper-reticulocytosis. Three days later mice were

injected by intraperitoneal (i.p.) injection with 106 parasites of P.

berghei ANKA 2.34 as described previously [41]. Three days post

mouse infection, batches of 100 starved Anopheles gambiae strain G3

females, eight days post injection with Wolbachia, buffer, E. coli or

uninjected controls, were allowed to feed on the infected mice. 24h

after feeding, mosquitoes were briefly anesthetized with CO2, and

unfeds removed. Mosquitoes were then maintained on fructose

[8% (w/v) fructose, 0.05% (w/v) p-aminobenzoic acid] at 19–

22uC and 50–80% relative humidity. At day 10 post-feeding,

mosquito midguts were dissected, and oocyst numbers (intensity)

and prevalence recorded. The Kruskal-Wallis test was used to

compare oocyst counts (intensity of infection) and Fisher’s exact

test for prevalence (percentage of mosquitoes containing at least

one oocyst).

Gene knockdown experiments
T7-tailed primers (see Table 1) were used to amplify fragments

of the TEP1 and REL2 gene from female cDNA template or the

LacZ gene from E. coli total DNA. dsRNA was synthesized using

the T7 Megascript kit (Ambion) and adjusted to a concentration of

3 or 4 mg/ml in RNAse free water for dsREL2 and dsTEP1

respectively. For REL2 KD 69nl of dsRNA were injected per

female mosquito, For TEP1-wolbachia KD 69 nl of a mix of 2

parts dsRNA to 1 part of purified wMelPop in Schneider’s

medium (OD 0.3) were injected into the thorax of CO2

anesthetized female An. gambiae mosquitoes (total ,200 per group).

Five days after injection (in order to still fall within the gene

knockdown period), mosquitoes were fed on a Plasmodium infected

mouse.

Brugia pahangi filarial nematode challenge
Ae. aegypti mosquitoes of the filaria-susceptible Refm strain were

fed on sheep blood containing 23 B. pahangi microfilaria per mL

eight days post Wolbachia innoculation, plus buffer-injected

controls of the same age; any females that did not feed properly

were removed. Dissections were carried out 10 days after the

infective blood meal under a dissecting stereomicroscope. Kruskal-

Wallis tests were used to compare counts of B. pahangi L3 (infective

stage larvae).
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