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ABSTRACT 

We present a novel authentication method to identify users 
as  they  pick up a mobile  device.  We  use  a combination 
of back-of-device capacitive sensing and accelerometer mea- 
surements to perform classification, and obtain increased 
performance compared to  previous  accelerometer-only  ap- 
proaches. Our initial results suggest that users can be reli- 
ably identified during the pick-up movement before interac- 
tion commences. 

 

CCS Concepts 

•Computing methodologies → Support  vector ma- 
chines; •Human-centered computing  → Gestural in- 
put;   •Hardware  →  Sensors  and actuators;   •Security 
and privacy  → Authentication; 
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1.   INTRODUCTION 
Reliable and unobtrusive measures for identifiying and au- 

thenticating  users on mobile  devices are of increasing  im- 
portant as such devices become pervasive  in everyday life. 
The main goal of user authentication in smartphones is to 
ensure that only the rightful owner is granted access. Tradi- 
tional authentication mechanisms such as personal identifi- 
cation numbers (PIN)  and password have been widely used 
to protect from adversaries such as thieves and impostors. 
There are a number of reasons why securing personal data is 
of paramount importance on mobile devices.  For instance, 
users are now able to read and send emails,  take pictures, 
record videos, do on-line  shopping,  perform bank transac- 
tions and access cloud services using their device. 

However, users are notoriously bad at producing and us- 
ing secure passwords  and guessing common combinations 

 

such as year of birth, car registration  number is an effec- 
tive strategy to break them.  This effect is compounded on 
mobile devices, where the tendency for simple passwords is 
reinforced by the difficulty in entering text using a small 
keyboard or keypad.  For example, even though some smart- 
phones offer re-authentication facility after recovering from 
stand-by, users tend to disable this feature because the time 
taken  to  re-authenticate  is  very large in proportion to  the 
time  the  task  they  are trying  to  do takes  (e.g.  to  check 
email). 

There  are also cases where simple  identification  is  more 
important that secure authentication, and heavyweight mech- 
anisms such as passwords are inappropriate.  For example, in 
a family where there is a single ebook reader shared among 
members of the family, if the user can be reliably identified, 
then the appropriate library of texts and current reading 
state can be restored. Requiring users to enter a password 
to  identify  themselves  on each  use would seriously impair 
the usability of the device. 

Many new authentication mechanisms have been proposed 
to overcome the problems of the traditional PIN and pass- 
word. On mobile devices, the use of onboard sensors for au- 
thentication has been of central interest; commercial devices 
now come with an array of rich sensors  as standard (iner- 
tial sensors, microphones,  cameras, touch sensors, pressure 
sensors, proximity sensors).  Transparent biometric authen- 
tication use aspects of a user’s physical make-up and charac- 
teristic features of a user’s behaviour are used as identifiers. 
These identification methods identify users  as they engage 
in their primary  task, without requiring specific actions di- 
rected at authentication. 

In this paper we present a preliminary study on the use of 
touch and inertial sensing data for authentication techniques 
that can be used as a device is picked up; identification 
occurs before a user begins  the  first  interaction  with  the 
device, so that  it becomes a truly transparent process. We 
show that a combination of accelerometer and back-of-device 
capacitive  touch  sensors can reliably identify  users before 
they have finished picking up the device. 
 

2.   RELATED WORK 
The use of gestural motion in building identification sys- 

tem has been widely studied over the past decade. This 
approach is especially  applicable  to  mobile  devices due to 
their small size and limited interaction capabilities and the 
wide  availability  of standard sensing  hardware in  mobile 
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platforms.  Gesture based identification in mobile device has 
a long history in HCI [5, 8, 1]. 

Previous work has specifically shown that a user can be 
authenticated while performing a specific action such as when 
placing or answering a call [4]. This approach suggests that 
every user has a unique motion  signature  when placing  or 
answering phone call.  [4] used  a Dynamic  Time  Warping 
similarity algorithm comparing accelerometer timeseries of 
users’ hand movement  data while placing  or answering a 
call, and achieved False Acceptance Rates (FA)  of 2.5% and 

False Rejection Rates (FR) of 8%. 
Other studies demonstrated that valuable context infor- 

mation can be obtained from the grip pattern of a mobile de- 
vices. Kim et al. [10] demonstrated a technique to recognise 
grip patterns associated with several common mobile tasks 
such as making a call,  text  messaging and playing games. 
These techniques  used a capacitive  sensor  film attach  un- 
derneath the mobile phone housing to capture the grip data. 
Besides the capacitive sensor, they also investigated whether 
movement data acquired using a 3-axis accelerometer, is use- 
ful in the recognition process. They used Naive Bayes, Min- 
imum Distance  Classifier  (MDC)  and Support Vector  Ma- 
chines (SVM) classifier to perform the recognition.  Their 
technique yielded promising results with classification accu- 
racy of above 90% in classifying  intended  task  using both 
capacitive  and accelerometer data.   The  use  of capacitive 
sensor also been successful in recognising grasp in tangible 
interfaces by measuring the way people hold and manipulate 
the object rather than discriminating the way people grasp 
an object [15, 16]. 

Besides capacitive sensors, previous work has also shown 
that users can be identified using the pressure applied while 
holding or gripping an object. The Smart Gun project, for 
instance, has used a piezo-resistive sensor sheet embedded in 
the grip of a prototype gun to measure the static pressure of 
the hand-grip when the gun is being held in order to identify 
its owner [13]. They used Support Vector Machines (SVM) 
and Likelihood-Ratio Classifier (LRC),  and reported their 
technique  to  have an Equal  Error  Rate  (ERR)  average of 
3.5% using LRC and 5.7% using SVM. While this result may 

not  be sufficient  for guns, which  are only ever used in life 
threatening situations, this technique could be adapted to 
work with mobile devices where performance is less critical. 
In [3], the use of grip pressure sensor has shown to be able 
to differentiate between car drivers from the way they grasp 
and grip the steering wheel. 

 
 

3.   EXPERIMENT 
We are interested in investigating whether dynamic sens- 

ing of grip contact can aid in the identification of users dur- 
ing the call answering process. To do so, we recreated Conti 
et.  al. [4]’s experiment [4] by adding back-of-device (BoD) 
hand grip information.   In particular, we are interested  in 
investigating  whether  dynamic sensing of grip contact  can 
aid in the  identification  of users during the  call  answering 
process. Furthermore, this also allows us to compare perfor- 
mance between hand grip and hand movement methods as 
well as to investigate if performance gain can be achieved if 
both inputs are used to build the identity predictor. 

In order to capture hand grip contact we developed a pro- 

SK7 sensor pack (see Figure 3)1  that interfaces an external 
array of 24 capacitive sensors that detect proximity of the 
hand to the rear and sides of the case. Apart from BoD sen- 
sors, the  SK7 is also  equipped  with various  other  sensors, 
including accelerometer, gyroscope and magnetometer. The 
total size of this prototype is 25 mm (H) x 150 mm (L) x 65 
mm (W).  The prototype is shown in Figure 1. 

The 24 capacitive sensor values (with 8 bit dynamic range) 
and 3 accelerometer values (in the ±2g range, with 12 bit 

dynamic range) were transmitted from the SK7 to the phone 
via Bluetooth with  a sample rate of 50 Hz. An application 
was developed on the phone to perform the experiment and 
record the data for subsequent offline analysis. 
 

3.1   User study 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Sony Xperia Mini Pro (b) Logging application 

 
Figure 2: (a) Sony Xperia Mini Pro (b) Screenshot of data 
logging application. 
 

 
 

 
 

Figure 3: SHAKE SK7 sensor pack 
 

 
For this  study, 12 participants  consisted of 6 males  and 

6 females, aged between 25 and 35 years old (mean=26.91, 

sd=2.15) were recruited locally after formal ethical approval 

been granted.  Each participant recorded data over 6 sepa- 

rate sessions, 3 with  their left hand and 3 with their right. 
Each left/right session was separated  by a 3-minute break 

to minimise repetition effects – a condition where users be- 
coming skilled after making similar action repetitively [11]. 

Therefore  by separating  the  task  into  sessions, we are not 
capturing only a single hand grip/movement pattern but a 

range of plausible hand grip patterns. 
totype  system  which  consists  of  a  Sony  Xperia  Mini  Pro    
(SK7i)  smartphone  connected  via Bluetooth  to  a SHAKE 1 http://code.google.com/p/shake-drivers/ 

http://code.google.com/p/shake-drivers/


 
(a)  (b) 

 
Figure 1:  Individual component  of the  prototype  (b)  when fully-assembled  (SHAKE  SK7 is hidden  underneath  the  front 
cover). 

 
 

To acquire sensor data, we developed an Android applica- 
tion on the Sony Xperia Mini Pro smartphone (see Figure 2). 
The application communicates with another application that 
we wrote on a PC to trigger a phone call on the smartphone. 
This allows us to coordinate the data acquisition process 
without  the  need to rely on the  real  GSM network.   The 
BoD sensors were calibrated prior to every data acquisition 
session. This was done using simple two-point calibration of 
the capacitive sensors, that is by measuring untouched and 
touched each sensor’s capacitance values. 

Each session required the participants to perform 10 an- 
swering actions while seated in front of a desk. Each action 
started  with  the  phone ringing.  On hearing this,  the  user 
picked up the phone (with  whichever hand they were using 
in this session) and lifted the phone to the same ear (i.e. if 
a right-hand session, the phone was lifted to the right ear). 
They were then asked to hold the phone there for at least 
3 seconds.  Data logging started when the phone rang and 
finished when the phone vibrated.  From each call answering 
action, we recorded timestamps, acceleration along x, y and 
z-axis and 24 BoD capacitive sensor values.  All data were 

stored in the external storage of the phone for subsequent 
offline  analysis.   Examples of recorded signals  for one call 
answering action can be seen in Figure 4. 

 

3.2   Analysis methods 
Similar to the approach proposed by Conti et. al. [4], we 

used classifiers to identify to which group (authorised/non- 
authorised)  the  observation  (phone  answering action)  be- 
longs to.  This represents a standard setting where some 
training data from a particular user would be compared with 
a pooled set of training data from other users. 

We began by pre-processing our data by converting the 
time series into fixed length feature vectors. This was done 
by first  removing the  empty  signal  at  the  beginning  (data 
logged between the phone ringing and the users’ first touch) 
by deleting all data until the total output from the capacitive 
sensors reached 150 which is approximately 3 seconds after 
the trial starts (flat section of the timeseries in Figure 4). 

The  remaining data for each sensor  was then  split  into 

 

 
 
 
 
 
 
 
 
 
 
 

(a) Accelerometer 

 

 
(b) BoD 

 
Figure 4: Signals from accelerometer and BoD for one phone 
answering action  using right  hand selected randomly from 
one user. 
 

 
K equal  length  blocks and the  mean value  of the  sensor 

within this block was extracted as a feature.  For example, 
for K = 6, each sensor time series would be converted into 
K = 6 mean values,  resulting  in a total  of 24 × 6 = 144 
capacitive  features  and 3 × 6 = 18 accelerometer features. 

All features were normalised to have mean zero and standard 
deviation one prior to the next step of analysis. 
 

3.3   Classification 



Participants 
 

Metrics 1 2 3 4 5 6 7 8 9 10 11 12 Mean 

AUC              
Rightcap 0.96 1.00 0.88 1.00 0.96 0.96 1.00 1.00 0.94 1.00 1.00 1.00 0.97 
Lef tcap 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.91 0.95 1.00 1.00 1.00 0.98 
Rightacc 0.95 1.00 0.96 1.00 1.00 0.95 1.00 0.87 0.89 1.00 0.98 0.99 0.97 
Lef tacc 0.71 1.00 1.00 0.83 1.00 0.95 0.99 0.90 0.94 0.95 1.00 1.00 0.94 

Accuracy              
Rightcap 0.97 1.00 0.93 0.97 0.99 0.93 0.98 1.00 0.90 1.00 1.00 1.00 0.97 
Lef tcap 1.00 1.00 0.97 0.99 1.00 0.92 1.00 0.99 0.93 0.98 1.00 1.00 0.98 
Rightacc 0.94 0.88 0.98 0.99 0.99 0.84 0.99 0.83 0.83 1.00 0.96 0.91 0.93 
Lef tacc 0.66 1.00 0.97 0.84 1.00 0.89 0.98 0.87 0.88 0.89 1.00 1.00 0.91 

FRR              
Rightcap 0.30 0.00 0.20 0.00 0.10 0.10 0.00 0.40 0.30 0.00 0.10 0.00 0.11 
Lef tcap 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.10 0.00 0.20 0.00 0.00 0.04 
Rightacc 0.10 0.00 0.20 0.00 0.10 0.10 0.00 0.40 0.30 0.00 0.10 0.00 0.93 
Lef tacc 0.30 0.00 0.00 0.70 0.00 0.00 0.10 0.10 0.10 0.50 0.00 0.00 0.15 

FAR              
Rightcap 0.00 0.00 0.05 0.04 0.00 0.07 0.00 0.00 0.11 0.00 0.00 0.00 0.02 
Lef tcap 0.00 0.00 0.01 0.01 0.00 0.09 0.00 0.00 0.07 0.00 0.00 0.00 0.02 
Rightacc 0.05 0.14 0.00 0.01 0.00 0.16 0.01 0.14 0.15 0.00 0.04 0.10 0.07 
Lef tacc 0.35 0.00 0.04 0.09 0.00 0.12 0.01 0.14 0.12 0.06 0.00 0.00 0.08 

 

Table 1: Comparison of performance for left and right hands with capacitive sensors alone, and accelerometer alone.  The 
performance metrics are AUC, accuracy, false reject rate (FRR),  false accept rate (FAR). 

 
 

The goal of authentication in this study is to classify user 
of interest from the rest of users in our dataset.  This is essen- 
tially a binary classification problem where we define data 
from user of interest as positive class and the rest of the user 
as negative class.  To perform classification, we have used 
SVM classifier  provided by MATLAB libSVM  toolbox  [2]. 
In all experiments, the data are split into independent train- 
ing and test sets. Here we use both first and second session 
as training set and the third session as test set. 

Support Vector Machine (SVM)  is a discriminative clas- 
sifier formally defined by a separating  hyperplane  that  is, 
given labeled training data, SVM outputs an optimal hy- 
perplane that categorises new unseen data [14] The use of 
SVM in solving user identification problem is prevalent and 
this is justified by their previous use in [6, 12, 10] and their 
general  state-of-the-art  performance for data classification 
(in  particular for large  numbers of features, as is the  case 
here). Gaussian (rbf ) kernel functions was used throughout 
this study with the following form: 

 

 
D 

 
γ        2

 

 

 
K = aKaccelerometer + (1 − a)KBoD 

 

where 0 ≤ a ≤ 1 with 0 represents only BoD capacitive 

kernel  and 1 represents  only accelerometer kernel.  This  is 
guaranteed to produce a correct  (i.e.  symmetric, positive, 
semi-definite) kernel, K . 

In all SVM models, 2 kernel parameters C and γ need to 
be optimised with  an additional kernel weight parameter a 

when using  multiple  kernel  learning.   Here all parameters 
were selected via k-fold cross-validation on the respective 

training data set using logrithmic grid-search. The param- 
eters are then chosen based on the highest classification ac- 
curacy given by C and γ combination.  Similarly, parameter 
a is selected based on the best C and a combination, where 
a ranging from 0 to 1. It is worth mentioning that prior to 

all experiments,  all features were centered to have mean 0 
and scaled to have standard deviation 1 to avoid numerical 
instability. 

 
4. RESULT 

K (x1 , x2 ) = exp − 
D  

d=1 

(x1d − x2d )  
Classification task in the context of this study is a binary 

classification  problem  where the  goal is  to  identify  user of 

where xnd is the d-th feature of the n-th object (the data 

derived from the n-th pick-up action) and D is the total 
number of features. 

Because of the large discrepancy in number of features 
between the capacitive and acceleration features, separate 

kernels were built for each.  Putting  them  into  the  same 
kernel would make it difficult to assess the relative contri- 

bution to performance from each data type, and would also 
possibly result in the influence of the acceleration features 

being drowned out by the larger number of capacitance val- 
ues.  When using both feature types, the kernels were com- 

bined additively (for a review of multiple kernel learning, see 
e.g. [7]) as follows: 

interest from a pool of users. In all experiments, we compare 
the results for both accelerometer and back-of-device from 
both  tasks.   We  use  Area Under the  Curve  (AUC)  along 
its respective False Accept, False Reject and Error Equal 
rates to estimate the performance of classifiers.  Baseline is 
computed  by randomising the  test  data  labels  and we use 
random subsampling method to balance between positive 
and negative classes. 

False Accept Rate (FAR) and False Reject Rate (FRR) are 
two measures widely used in to evaluate performance of au- 
thentication system. False Accept Rate is a fraction of unau- 
thorised  user being misclassified   as rightful  user  whereby 
False Reject Rate  is  a fraction  of rightful  user  being mis- 
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Figure 5: Classification performance (AUC) averaged across users including ± standard error as the kernel weighting parameter 
is varied from just capacitive data (left, a = 0) to just accelerometer data (right,  a = 1). Solid vertical red lines correspond 
to the optimal a value. 
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Figure 6:  Classification  performance (AUC)  averaged across users including ± standard error, as the  number of blocks  is 
varied from static (K = 1) to dynamic (K = 50). Performance plateaus appears at K = 6 for both hands. 

 

 

classified as unauthorised user. Error Equal Rate (EER) on 
the other hand indicates that the proportion of false accep- 
tances is equal to the proportion of false rejections.  Ideally, 
the  lower  of these  values,  the  higher  the  accuracy of the 
authentication system. 

We begin by reporting the performance of the classifier in 
distinguishing between a particular user and data from all 
other users. To identify a user, we used a One-vs-All (OVA) 
classification strategy where we treat data from a particular 
user (user of interest) as belonging to the positive class and 
data  from the  other  11 users  as belonging  to  the  negative 
class. To train the classifiers, we used 20 samples for the user 
of interest taken from the first two sessions and 80 random 
samples from other  users also  from the  first  two  sessions. 
To test, we used 10 samples from the user of interest from 
session  3 and 80 random samples from session 3 of other 
users.   This is to  reflect  the  typical  phone  use case where 
calibration  data  is collected  at  some point  (sessions  1 and 

2) and then the user uses the phone sometime in the future 
(session 3). 

4.0.1 One-vs-All 

In all SVMs, the margin parameter C was set to 103 

(making this a hard-margin SVM [14]). The kernel param- 
eter γ was set through  a Leave-One-Out  Cross Validation 

(LOOCV) procedure on data for each user (from  the  first 
two sessions of a particular hand) and 20 random samples 
drawn from the other eleven users (with the same hand). We 
use area under the  ROC curve  (AUC),  accuracy and false 
accept rate (FAR)  which is the proportion of misclassifying 
a sample from another user as coming from the user of inter- 
est, and false reject rate (FRR)  which is the proportion of 
misclassifying a sample from user of interest as coming from 
another user. To compute statistical significance of results, 
we use the non-parametric Wilcoxon Signed Rank Test with 
threshold of 0.05. In all classifications, K = 6 blocks were 

used. 
Classification results for each user are shown in Table 1. 

From the  table,  we  see that  performance is  typically  high 
(AUC > 0.9). In general the capacitive models slightly out- 

perform those trained on accelerometer data – indicated by 
higher accuracy and a lower number of false rejects and false 



accepts. 
 

4.0.2 Composite input 

To investigate whether combining two sensor inputs could 
improve  the  performance of the  individual sensor  spaces 
we used a composite kernel  as  described previously.   Fig- 
ure 5 shows classification AUC as a function of a, the kernel 
weighting parameter.  Note that a = 0 corresponds to just 
capacitive sensing and a = 1 to just accelerometer sensing. 
For left hand the  curve  decreases gradually as a increases 
up to  a = 0.9 before decreasing as  a approaches 1.   For 
right hand, the AUC curve increases gradually from a = 0 
to  a = 0.1 and gradually increasing  up to a = 0.9 before 

the AUC  drops when the kernel contains only accelerome- 
ter data (a = 1).  Whilst sensor combination for left hand 

shows no performance improvement (highest AUC is given 
by a = 0), the right hand however shows that the gain can 

be achieved through sensor combination, however the gain 
is not statistically significant. 

From the  results,  it suggests that  classifiers constructed 
using combination of capacitive and accelerometer data could 
give better performance, particularly when using right hand 
data (optimal a = 0.9).  This indicates that the capacitive 

and accelerometer data contribute independent information 
about user identity. 

 

4.0.3 Feature dimension 
Finally, in Figure 6 we show how the classification perfor- 

mance varies as we increase the number of blocks (K ) which 

is the fixed length segmentation of the timeseries where the 
feature is extracted, from 1 to 50. This is based on combin- 
ing both data types, with  the optimal value of a from Fig- 

ure 5. The performance increases rapidly and then plateaus 
before dropping slowly as K is increased. This is to be ex- 

pected – simply taking the mean for each sensor over time 
(K = 1) is unlikely to be optimal.  Similarly, increasing K 

above some value is likely to result in different parts of the 
answering action  ending up in different  blocks (and hence 
different features) for examples from the same person, caus- 
ing a slight decrease in performance. 

 

4.1 Discussion 
Although we managed to achieve mean classification AUC 

and accuracy of all above 0.9, it should be noted that the 

sample size here (12 participants) is too small for us to be 
able to make comments as to how this technique might work 
in an actual implicit identification system. Nevertheless, it 
does allow us to compare classification performance between 
accelerometer and capacitive sensors. 

In One-v-All classification setting, it shows that users can 
be identified  with  similar level of performance using hand 
grip and motion data.  This suggests that both sensors can 
be used interchangeably to identify users’ unique hand grip 
and motion  patterns  from the  phone pick-up action.  This 
can be useful  in some phone  answering  scenarios such as 
answering while  walking/on  the  move where hand grip  is 
more consistent  compared to  hand motion.   Moreover the 
results  also show that  the  performance for right  and left 
hands are nearly similar suggesting that this technique may 
generalise for right and left handed users. 

The  phone answering  tasks that  we  used  in  this  study 
were constrained to only two pick-up motions: picking-up 
with  the  right  hand and bringing it  to  the  right  ear and 

picking-up with the left hand and bringing it to the left ear. 
It is therefore interesting to explore how other possible pick- 
up motions (e.g. picking up the phone using left hand and 
bringing it to the right ear) would impact the classification 
performance. 

Despite improving performance when using composite clas- 
sifiers, the mean improvement however was marginal and not 
statistically significant.  This indicates that the addition of 
hand grip or hand motion information to the kernel may not 
necessary lead to an improvement.  Nevertheless, from Fig- 
ure 5, it is clear that single kernel classifiers could already 
produce very high classification AUC using either hand grip 
or hand motion  data  and thus  composite  classifiers might 
not be needed. 
 

5.   CONCLUSION 
In this work, we investigated whether hand grip sensed via 

BoD capacitive sensors can be used to distinguish users. We 
chose user distinguishing methods based on 1) hand move- 
ment [4] as direct comparison. We recreated the experiments 
used by both methods and augmenting them with hand grip 
input. Our results show that hand grip contains valuable in- 
formation that can be used to distinguish users. 

In our experiment, we collected phone pickup action from 
12 participants using a prototype mobile phone. From this, 
we extracted  3 features  from the  accelerometer input  and 
24 features from the BoD input.  We then trained user clas- 
sifiers using Gaussian RBF kernel SVM for each input and 
combination of both. We clearly show that a combination of 
BoD grip sensing and accelerometer motion signatures can 
be used to identify users in the few seconds between making 
contact with a device and lifting it to interact. 

BoD sensors may not yet mainstream presently, however 
some commercial  devices (e.g.  the  Doogee DG800 or the 
Oppo N1) already provide BoD touch sensors to enhance 
touchscreen interaction.  These sensors may have sufficient 
resolution to capture hand grip for identification purposes. 
We anticipate BoD sensors with wider sensing surface to be 
included in commercial devices in the near future to allow 
grip-based interaction  such in [9] which  can be effectively 
used for grip-based implicit authentication. 

In summary, these  results  form a concrete contribution 
to building a rich, multi-sensor mobile phone identification 
system. While hand grip alone may be insufficient to per- 
form  secure  authentication,  it can form  part of an array 
of contributing  virtual  sensors in a hybrid  continuous  au- 
thentication system or as a lightweight identification model. 
The performance obtained in our experiments also suggest 
that these techniques could be readily applied to non-critical 
identification tasks (such as user identification with commu- 
nal devices like remote control) or could feed into a larger 
authentication system as evidence  for user identity. 
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