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Abstract— Coordination between two or more multiple access 

channel (MAC) receivers can enlarge the achievable rate region 

of the whole system. This paper focuses on coordination by 

sharing the codebooks of the users between the receivers of 

MACs. We first define the achievable rate region of the time 

invariant multiple coordinated MAC (MCMAC) and 

subsequently derive its achievable rate region. We later express 

the achievable rate region in terms of the dominating points. We 

base our numerical analysis on the two-user two-receiver 

Gaussian coordinated MAC and make comparison with the 

interference channel, full cooperation and the individual MAC 

performance analysis. It is observed that this approach though 

suboptimal is less complex in comparison with full cooperation 

and that the MCMAC rate region is at least equal to the rate 

region of the uncoordinated approach. Over several channel 

states, the rate region of MCMAC exceeds that of the 

uncoordinated approach. 

Keywords- Coordination, cooperation, multiple access 

channel, achievable rate region. 

I.  INTRODUCTION  

The capacity region for multiple access channel (MAC) is 

well established for various types of services, channel models, 

CSIT availability and nodes antenna configurations (single 

antenna, multiple antennas) such as; time invariant capacity, 

ergodic capacity, outage capacity, delay limited capacity, 

minimum rate capacity [1]-[7] and references therein. The 

MAC represents only a theoretical model for the uplink of a 

single cell wireless cellular system. The typical wireless 

cellular system is made up of several cells which for an uplink 

scenario lead to several MACs interfering with each other. 

Thus, a typical wireless communication system has similarities 

with an interference channel whose capacity region is known 

only for cases with strong interference [8-10] and very strong 

interference [11]. For other cases, an estimate of the capacity 

region to within a constant number of bits is known [12, 13].  

Information theory has revealed that joint decoding of all 

signals at a central processor is the optimal approach for 

dealing with interference in cellular networks [14-17]. We 

refer this approach as joint processing MAC (JPMAC). 

JPMAC requires a high capacity backhaul to gather all the 

received signals at the central processor. It also incurs delay in 

users’ signal decoding due to the signal gathering.   

Multiple coordinated MAC (MCMAC) is introduced in this 

paper as an approach for reducing JPMAC limitations. By 

coordination we mean that all the MAC receivers can 

exchange some information about users including codebooks 

and their decoding outcome. This exhange can be a full or a 

partial exchange of relevant information. The exhanged 

information can be classified into two categories; system  

status which defines the state of the system and decision status 

which defines the encoding and decoding policies. Exchanged 

system status information could include users channel state 

information and their codebooks. Decision status include 

decoding order in the cell, transmit power of users, and 

decoding outcome of the receivers.  

In MCMAC, we assume that each receiving node performs 

a local decoding of a subset of users but the receivers are 

allowed to share a properly chosen subset of control and state 

variables. Such an approach in contrast to JPMAC, which is 

equivalent to a single MAC, will lead to multiple MACs (each 

associated with a receiving node) that can perform some level 

of coordination through the exchange of necessary control and 

state variables. In a typical cellular radio communication 

terminology, sharing of only control and state variables 

implies a common control plane between cells’ access points 

while the data planes are kept separate. Limiting shared 

information only to control plane will considerably reduce the 

backhaul load. It will also allow for fast decoding of users as 

each receiver has its own local decoding. Moreover, in 

contrast to JPMAC, the system does not need to wait to gather 

all the received signals at one central node or to exchange 

decoded data, e.g. through a conferencing approach.  

    The remaining part of this paper is organized as follows: In 

section II, we present the system model for the MCMAC. 

Then in Section III, we introduce theorems and utilize them 

for deriving the achievable rate region of the MCMAC. 

Section IV presents some simulations results which show 

some performance improvement when using MCMAC over 

interference channel and single MAC. Finally, Section V 

summaries our work.  

II. SYSTEM MODEL 

We consider N coordinated MACs consisting of N receiving 

nodes and K users. We denote the set of receiving nodes by 

={1,2,…,N} and the set of users by ={1,2,…,K}. Every 

receiving node is assumed to know all the users’ codebooks 

and will attempt to decode as many users as possible. The  
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Fig. 1:Schematic diagram of a two-user coordinated MAC 

 

receivers are allowed to share some control information 

mainly related to users’ CSI through backhaul. Also a central 

processor (CP) is assumed to decide about users’ transmission 

rate and the transmission format, i.e. users’ codebooks. The 

decision outcome is then made available to all the receivers.  

 

Definition 2.1: We define MCMAC by: 

o Multi-point to multi-point channel (kk, p(y|x), 

nn) with xkk and ynn as input and 

output of the channel, respectively. In addition, k is the 

alphabet of input node k and n is the alphabet of the 

output node n. 

o User message sets k={1,2,…,2
vR

k} for every k 

o User encoders fk

(v)

: kk

(v)

 for every k  

o Decoders gn

(v)

: n

(v)

  k for every n and every  

kn, where n is the set of users decoded by the receiver 

n, 

where v is the code length. 

Code (fk

(v)

, gn

(v)

,v) uses the channel for v subsequent times. 

User k, generates the codeword xk(wk)= fk

(v)

(wk) by using 

encoder fk

(v)

 and its message wk and transmits it over the 

channel. The receiver n upon reception of the sequence ynn

v

 

carries out its decoding: ŵk

(n)

= gn

(v)

(yn) for every kn. Now if 

we denote k as the set of receivers attempting to decode user 

k, i.e. k  {n: kn } then the user k is said to be decoded 

erroneously if one of the receivers nk has failed to decode it 

correctly, i.e. there exist an nk with ŵk

(n)

 wk. Then, user k 

probability of error is defined as Pe,k =Pr{ŵk

(n)

 wk for some 

nk}. 

Definition 2.2: The rate set R = (R1,…,RK) is said to be 

achievable by MCMAC if there is a sequence of codes (fk

(v)

, 

gn

(v)

,v) such that nn= and for every k, Pe,k 

approaches 0 for large enough value of v.  

III. ACHIEVABLE RATE REGION OF CONSTANT MULTIPLE 

COORDINATED MULTIPLE ACCESS CHANNEL 

We here derive the achievable rate region of the time 

invariant MCMAC.  

Definition 3.2: 
( )nCU

 is the rate region for receiver n  where 

every k with  is decodable at receiver n  and the rest 

of the users k 
c

 are not attempted to be decoded at receiver 

n  , i.e. act as extra noise at receiver n : 

);I()({:)(

 
c:n

XYXRR  for all   , 

for a given input distribution k pk(xk), where R()=k Rk  

and X={Xk: k}. 
( )n

UC  is the conventional well established 

MAC capacity region with user sets  and, therefore, it is 

correct to state that users in the set  are decodable by receiver 

n. The user signals that are not decoded at receiver n  must be 

decodable in at least one of the remaining receivers. 

Lemma 3.3: if  1  and  2  are both decodable by a 

receiver n  for a given rate vector R, then 12 is also 

decodable by that receiver n . 

Proof: The receiver can employ two parallel decoders one for 

decoding the users in 1 and the other one for decoding the 

users in 2; therefore, all the users in 12 will be decoded in 

the end. Lemma 3.3 leads us to the definition of the maximal 

decodable set: 

Lemma 3.4: if R   n


  and R   n


 then R   n


   

Proof: Let us assume a given decoding order at the receiver 

such that R   n


  and R   n


 are achievable. From lemma 

3.3, if  n


 and  n


 are achievable then  n


  is achievable. 

There exists some decoding order in  n


  that satisfies the 

achievability of R 

Lemma 3.5: 2 1 does not imply    nn

 
  . 

Proof: Given that  denotes the cardinality of a set. The rate 

region  n


  is bounded in the dimension of  and 

unbounded in    while the rate region of  n


  is 

bounded in the dimension  . Thus we cannot say that 

   nn

 
  . 

Definition 3.6: For a given rate vector R, the maximal 

decodable set n(R) by a receiver n is the set that contains all 

the decodable sets of the receiver n such that if ʹn is 

decodable by the receiver n then ʹn n(R). 

The definition implies that the maximal decodable set at a 

receiver is a superset whose subsets are also decodable at the 

same receiver.  

Corollary 3.7: Rate R is achievable if its decodability satisfies: 

 )(Rn
n

  

Proof: Corollary 3.7 satisfies definition 3.1 which requires that 

a user must be decodable in at least one of the receivers such 

that each user k  must belong to at least one n. Therefore, the 

union of the decodable sets over the entire receiver must 



correspond to the set of all the users . Thus, corollary 3.7 is 

satisfied.  

Based on the earlier definitions, lemmas and corollary we 

present a theorem that defines the achievable rate region of 

MCMAC 

Theorem 3.8: The achievable rate region of constant MCMAC 

 is given as  

          
 

 

1 2, , ,
. .

n
N

n

n

n n

Q Co s t
 

 
  

 
K

K K K
N N

C K K  

                         =  : n

n

 
 

 N

K KR R ,                     (3.1) 

where Co represents the convex hull operation. We present a 

proof of this theorem after defining the dominating points and 

the extreme points of the achievable rate region of MCMAC 

Definition 3.9: A rate vector R will dominate another rate 

vector Rʹ iff RkRʹk k.  

Figure 2 shows the dominating points a, b, c, d and e with 

point f, g, h, l, m and o being dominated. 

For a given set of decodability sets {1, 2,…,N } the 

achievable sub-region is given by  

n

n

n KN
C . The projection 

of region  

n

n

KC  over subspace spanned by users in n will be a 

polymatroid and thus will be defined by its |n|! vertices. 

Consequently under the condition nn=  the region 
 

n

n

n KN
C  will be bounded and will become a polyhedron [4]. 

As a result this region will also be defined by a limited number 

of vertices. Every point within this region will be dominated 

by one of its vertices. Let us denote the set of all the vertices 

by  =  ,, *
21 RR

*  where *
iR  is the rate vector of the i

th 
vertex. 

The achievable rate region of constant MCMAC can also be 

represented as the convex closure of all dominating point i.e. 

    =
 


  ,,, 

Co   s.t.  )(Rn
n

        (3.2)          

Definition 3.10: The extreme points of the 2-user 2-receiver 

MCMAC model illustrated in figure 1 can be obtained by 

decomposing the MCMAC into two MACs, which are MAC1 

and MAC2. Based on the definition of extreme points of MAC 

in [4], two extreme points can be identified for each MAC. 

User2 for example has two extreme points, one in MAC2  p11  

with user2 achieving )2(
2R and another p12 in MAC1 with  

 
Fig. 2. Dominant points and extreme points on the achievable 

rate region of MCMAC 

 

user2 achieving )1(
2R . The extreme point of user k in the 

MCMAC rate region is given as 

                                   )()(
max

n
k

Ex
k RR


  .        (3.3) 

Thus for user2,  )1(
2

)2(
2

)(
2 ,max RRR Ex   which is shown in 

figure 2 as point p11. 

Using the definitions above, we can now prove theorem 3.8 

Proof of theorem 3.8: We prove the theorem for a simplified 

model with two receivers and then generalize for K user and N 

receivers. 

In order to prove this theorem we consider two scenarios; in 

the first Scenario, case 1, we assume that the receivers can 

successfully decode all the messages of all the users . In case 

2, the receivers can only decode a subset of all the users  due 

to path loss, fading or the receiver has only the codebook of a 

subset of users. 

The capacity region of a discrete memoryless MAC with 

probability transition matrix  mxxyp ,,\ 1   is given in [1] as 

the set of rate vectors R that satisfies 

  
 

cI XYX ;)(R  

Case1: Let us Consider that 2 , 1 is the set of users 

decodable at receiver 1 and 2 is the set of users decodable at 

receiver 2. We index User 1 and User 2 as 1 and 2 

respectively. To satisfy the definition of the achievable rate of 

MCMAC, the following combination  {1 , 2} can be 

satisfied :{{ 1}, {2}}, {{2}, {1}}, {{1}, {1, 2}}, {{2}, {1, 

2}}, {{}, {1, 2}}, {{1, 2}, {1}}, {{1, 2}, {2}}, {{1, 2}, {}}, 

{{1, 2}, {1, 2}}. 

Observe that for each n we can obtain the rate region for {1}, 

{2} and {1, 2} in this approach we treat the users not in the set 

n as noise. For 1 we represent the region with 1, 2, 1,2 

and for 2 we represent the region with 1, 2, 1,2 , where 1, 

2, 1,2, 1, 2 and 1,2 satisfy 

                                             11;YXI                       (3.4) 



 12;YXI                       (3.5) 

 
   }2,1{;R(S): 11,2  nss SXYXI

n
c 


 R        (3.6)                             

 21;YXI         (3.7) 

 22;YXI                       (3.8) 

   }2,1{;R(S): 21,2  nss SXYXI
n

c 


 R         (3.9)                            

The intersection of all possible combination of the rate   

and   that satisfies definition 2.2 are achievable in MCMAC 

rate region for the two-user two-receiver scenario. For 

example 

1,21,221,211,21,22

1,211,21,21,21,21221

,,,

,,,,,,





and


 

are all achievable in the rate region 

In order to obtain the boundary of the achievable rate 

region, the concept of dominating points in section 3.9 can be 

applied. The dominating point over all possible combination 

of    and   that satisfies definition 2.2 is obtained. The 

boundary of the rate region can thus be obtained through 

performing time sharing between the dominating points which 

implies that the convex closure of  is achievable.   QED 

Case 2: Let us consider that 2 , 1 is the set of users 

decodable at receiver 1 and 2 is the set of users decodable at 

receiver 2 with the constraint that user 2 cannot be decoded at 

receiver 1. This implies that user 2 always act as noise to 

receiver 1. To satisfy the definition of the achievable rate of 

MCMAC, the following combination {1, 2} can be 

satisfied: 

{{1}, {1, 2}}, {{1}, {2}}, {{}, {1,2}}. Consequently, we can 

obtain the achievable rate of {1} for each 1, whereas, we can 

obtain the rate region of {2} and {1, 2} for 2. In this 

approach we treat the users not in the set n but in as  noise. 

For 1 we represent the region with 1, and for 2 we 

represent the region with 2, 1,2. Where 1, 2 and 1,2 satisfy 

   11;YXI                     (3.10) 

 22;YXI                     (3.11) 

   }2,1{;R(S): 21,2  nss SXYXI
n

c 


 R        (3.12) 

The intersection between all the possible combination of the 

rates   and    that satisfy definition 2.2 are achievable in 

MCMAC rate region for the three-user two-receiver scenario. 

For example 1,211,212 ,  and are all achievable. 

As in case 1, the dominating point and time sharing concepts 

are applied to obtain the boundary of the rate region. 

 

 
Fig. 3 P1 = P2 = 6, h12 = h21 = 1/3 

 

 
Fig. 4. P1 = P2 = 6, h12 = h21 = 2 

IV. SIMULATING THE ACHIEVABLE RATE REGION  

We consider the Gaussian MCMAC with h11 and h22 

normalized to standard form as in [10, 11]. The results for case 

1 with two users and two receivers are illustrated in Figs. 3-5, 

where JPMAC, MAC1, MAC2, MCMAC and Han-Koba rate 

regions are compared. The JPMAC is the rate region that is 

obtained by joint processing of the signals when the backhaul  

have an unlimited delay-less capacity which is connected to a 

central processor. MAC1 and MAC2 are the rate regions of 

receivers 1 and 2. MCMAC achievable rate region is obtained 

from (3.1) while Han-Kobayashi scheme achievable rate 

region is given in [10]. 

In Fig. 3, the achievable rate region of MCMAC coincides 

with the one of the Gaussian interference channel. Based on 

the classification of two users symmetric interference channels  

in [18], we observe that using the interference channel 

approach to estimate the achievable rate region result in the 



 

 
Fig. 5  P1 = P2 = 5, h12 = 0.85, h21 = 1.25 

 

 
Fig. 6. Case 2: P1 = P2 = 6, h12 = 0.1, h21 = 0.3 

 

same MCMAC for 10 2112  hh . In Fig. 4,  12112  hh  

(the strong and very strong interference channel [8], [18]) and 

the achievable rate region of MCMAC extends beyond the 

achievable rate region of interference channels. Fig. 5 shows a 

non symmetric channel scenario where the channels 

coefficients of MAC1 h11 and h21 are better than these of 

MAC2 h22 and h12. The result shows that the achievable rate of 

MCMAC coincides with the one of MAC1 while the 

achievable rate region of the interference channel is within 

that of MCMAC.  

Fig. 6 shows result for case 2 in which Receiver 1 can only 

decode the message of user 1 while receiver 2 can decode both 

messages. As long as     22111 ;; XYXIYXI  the achievable 

rate region of MCMAC extends beyond that of MAC2, 

however, when     22111 ;; XYXIYXI  , the achievable rate 

region of MCMAC becomes the same one as MAC2. 

V. CONCLUSION 

In this paper, we have established the achievable rate region 

for MCMAC which is suboptimal in comparison with full 

cooperation but this technique requires less complexity than  

JPMAC.  We established the dominating points in the 

achievable rate region using the polymatroid concept and 

indicated that MCMAC has an achievable rate region whose 

boundary is defined by time sharing between dominating 

points. Based on the Gaussian MCMAC analysis, our 

approach can result in significant sum-rate improvement over 

interference limited performance in the cellular system. 
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