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Abstract

Ageing is a complex process characterised by a systemic and progressive deterioration

of biological functions. As ageing is associated with an increased prevalence of age-

related chronic disorders, understanding its underlying molecular mechanisms can pave

the way for therapeutic interventions and managing complications. Animal models such

as mice are commonly used in ageing research as they have a shorter lifespan in compar-

ison to humans and are also genetically close to humans. To assess the translatability of

mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice

aged between 8–96 weeks was investigated using capillary electrophoresis coupled to

mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides signifi-

cantly correlated with age in mice were identified. To investigate the relevance of using

mouse models in human ageing studies, a comparison was performed with a previous

correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in

urinary excretion of fibrillar collagens and an increase of uromodulin fragments was

observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong

homology to the respective human age-related peptides. These ortholog peptides includ-

ing several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an

ageing classifier that was able to discriminate the age among both wild-type mice and

healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out
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mice were older than their chronological age. Hence, with a focus on ortholog urinary pep-

tides mouse ageing can be translated to human ageing.

Introduction

During a lifetime, a number of molecular and cellular insults accumulate and lead to ageing

[1]. Ageing is therefore a complex process characterised by a systemic and progressive deterio-

ration of biological functions, leading to impaired tissue function thus increasing the likeli-

hood of death. The burden caused by age-related diseases is prominent and prone to increase

over the years. As life expectancy increases, improving health in the elderly population will be

pivotal in dealing with subsequent enormous socio-economic challenges as a consequence of

this improved longevity [2]. There is therefore an urgency to develop intervention strategies

that will improve management of co-morbidities associated with ageing. Management of com-

plications associated with ageing can firstly be accomplished by understanding molecular

mechanisms associated with healthy ageing.

In ageing research, human studies are rare due to limiting factors mainly pertaining to the

challenge in obtaining tissue samples from apparently healthy subjects [3]. As a result, animal

models including mouse models have mostly been used due to obvious factors including

shorter life span and the ease of obtaining samples in comparison to humans. A major concern

of using animal models is the ability (or the lack thereof) to translate results to humans [4]. We

have previously reported the benefit of using urinary proteome analysis in the screening of

suitable animal models for human diseases [5,6]

In the present study our aim was to investigate if findings in ageing research using mouse

models can be translated to humans using urinary proteome (naturally occurring peptides of

less than 20 kDa) analysis. The use of urinary proteome analysis allows obtainment, in a non-

invasive manner, of information on ageing. We have previously shown this in a number of

studies which included over 1200 healthy individuals [7,8]. Comparison of human and mouse

age-related urinary proteomes should provide unique insight in the translatability of mouse

models of ageing.

Materials and methods

Mice

Mice urine samples were obtained from wild-type C57BL/6 strains (N = 89). These mice

included 4 weeks (N = 13), 12 weeks (N = 15), 48 weeks (N = 28), 61 weeks (N = 5), 84 weeks

(N = 13) and 96 weeks (N = 15) old mice that were purchased from Janvier Labs, France. Addi-

tionally, 61 weeks old telomerase knock-out (Terc-/-) mice samples (N = 5) were originally gen-

erated by injecting mTR -/- WW6 ES cells to C57BL/6 recipients and were maintained since

their generation in 1997 on this C57BL/6 background by in-house breeding [9,10]. All animal

experiments were conducted in accordance with the German Law for the welfare of animals

and were approved by the committee from the “Regierungspräsidium Freiburg” (approval

number: 35–9185.81/G-11/51).

Humans

To compare mouse ageing with human ageing, we have used the 1227 healthy subjects previ-

ously described in a human ageing study [7]. For the definition and validation of an ageing
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support vector machine (SVM) classifier (see Results), a training set of 50 subjects was estab-

lished by randomly selecting young and old healthy subjects within this cohort of 1227 healthy

subjects. For the definition of the SVM classifier young healthy subjects were considered to be

between 20–39 years (N = 25) whereas older subjects were considered over 60 years (N = 25).

An independent test set was also randomly selected to validate the SVM classifier and it com-

prised of young (20–39; N = 20), mature (40–59; N = 20) and old healthy subjects (60 and

over; N = 20). The study was performed in accordance with the ethical principles in the Decla-

ration of Helsinki and Good Clinical Practice. All datasets were derived from previous studies

and were anonymised. The study was approved by the local ethics committee (approval num-

ber: 3185–2016).

Sample preparation and proteome analysis

The proteomic analysis based on capillary electrophoresis coupled to mass spectrometry

(CE-MS) for human urine samples has already been published [7]. For mouse proteomic anal-

ysis, a 150 μl aliquot of mice urine was thawed immediately before use and diluted with 150 μl

of 2 M urea, 10 mM NH4OH containing 0.02% SDS. To remove higher molecular mass pro-

teins, such as albumin and immunoglobulin G, the sample was ultra-filtered using Centrisart

ultracentrifugation filter devices (20 kDa MWCO; Sartorius, Goettingen, Germany) until

filtrate was obtained. This filtrate was then applied onto a PD-10 desalting column (GE

Healthcare, Uppsala, Sweden) equilibrated in 0.01% NH4OH in HPLC-grade in H2O (Roth,

Germany) to decrease matrix effects by removing urea, electrolytes, salts, and to enrich poly-

peptides present. Finally, all samples were lyophilised, stored at 4˚C, and suspended in HPLC-

grade H2O shortly before capillary electrophoresis coupled to mass spectrometry (CE-MS)

analyses, as described [7].

CE-MS analyses were performed using a P/ACE MDQ capillary electrophoresis system

(Beckman Coulter, Fullerton, USA) on-line coupled to a microTOF MS (Bruker Daltonics,

Bremen, Germany) as described previously [11,12]. The ESI sprayer (Agilent Technologies,

Palo Alto, CA, USA) was grounded, and the ion spray interface potential was set between –4

and –4.5 kV. Data acquisition and MS acquisition methods were automatically controlled by

the CE via contact-close-relays. Spectra were accumulated every 3 s, over a range of m/z 350 to

3000. Accuracy, precision, selectivity, sensitivity, reproducibility, and stability of the CE-MS

measurements were demonstrated elsewhere [11].

Peptide sequencing

For sequencing, processed urine samples were separated on a Dionex Ultimate 3000 RSLS

nano flow system (Dionex, Camberly UK). A 5 ml sample was loaded onto a Dionex 5 mm

C18 nano trap column at a flow rate of 5 ml/min. Elution was performed on an Acclaim Pep-

Map 75 mm C18 nano column over 100 min. The sample was ionised in positive ion mode

using a Proxeon nano spray ESI source (Thermo, Fisher Hemel UK) and analysed in an Orbi-

trap Velos FTMS (Thermo Finnigan, Bremen, Germany). The MS was operated in data-

dependent mode to switch between MS and MS/MS acquisition and parent ions were frag-

mented by (high-) energy collision-induced dissociation and also electron transfer dissocia-

tion. Data files were searched against Mus musculus entries in the Swiss-Prot database with

Proteome Discoverer version 1.2 (Thermo Fisher Scientific, Bremen) with SEQUEST spectral

algorithm. No fixed modification and oxidation of methionine as variable modifications were

selected. Mass error windows of 10 ppm for MS and 0.05 Da (HCD; high resolution) or 0.5 Da

(CID, ETD; low resolution) for MS/MS were allowed. For further validation of obtained pep-

tide identification, the strict correlation between peptide charge at pH 2 and CE-migration
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PLOS ONE | DOI:10.1371/journal.pone.0166875 February 15, 2017 3 / 15



time was utilised to minimise false-positive identification rates [13]. Calculated CE migration

time of the sequence candidate based on its peptide sequence (number of basic amino acids)

was compared to the experimental migration time. Peptides were accepted only if they had a

mass deviation below ± 80 ppm and a CE-migration time deviations below ± 2 min. Only

sequenced peptides were considered for further investigation.

Data processing

Mass spectral peaks representing identical molecules at different charge states were deconvo-

luted into single masses using MosaiquesVisu software [14]. Only signals with z>1 observed

in a minimum of three consecutive spectra with a signal-to-noise ratio of at least four were

considered. CE-MS data were calibrated using 150 reference mass data points and 452 refer-

ence migration time data points by locally weighted regression. For normalisation of analyti-

cal and urine dilution variances, signal intensities were normalised relative to 29 internal

standard peptides [15]. The obtained peak lists characterise each peptide by its molecular

mass [Da], normalised CE migration time [min] and normalised signal intensity. All

detected peptides were deposited, matched, and annotated in a Microsoft SQL database

allowing further statistical analysis [16]. For clustering, peptides in different samples were

considered identical if mass deviation was <50 ppm for small (<4,000 Da) or 75 ppm for

larger peptides. Acceptable migration time deviation was, < ± 1 minutes for 19 min, gradu-

ally increasing to, < ± 2.5 min at 50 min. The mass spectrometry proteomics data have been

deposited to the ProteomeXchange Consortium via the PRIDE [17] partner repository with

the dataset identifier PXD005229.

Correlation analysis and development of a high dimensional model

As peptide profiles across the samples were not normally distributed, a correlation analysis

was performed for peptide discovery using the non-parametric Spearman’s rank coefficient to

estimate the correlation of individual peptides using age as a continuous variable. All peptides

present in the full cohort were included in the correlation analysis since a frequency threshold

was not set. The statistical significance was assumed at p-value less than 0.05. The p-value was

adjusted by applying Benjamini-Hochberg [18] using an R-based statistical software (version

2.15.3). Generation of Box-Whisker plots and the Mann-Whitney test were performed and

verified with MedCalc version 8.2.1.0 (MedCalc Software, Mariakerke, Belgium). MosaCluster

(version 1.7.0) was used to build a classifier based on support vector machine (SVM) that

allows the classification of samples in the high dimensional data space [19,20]. MosaCluster

calculated classification scores based on the amplitudes of ageing peptides. Classification is

performed by determining the Euclidian distance (defined as the SVM classification score) of

the vector to a maximal margin hyperplane. The SVM-classifier uses the log transformed

intensities of x features (peptides) as coordinates in an x-dimensional space. It then builds an

x-1 dimensional hyperplane that spans this space by performing a quadratic programming

optimisation of a Lagrangian using the training labels only while allowing for samples to lie on

the wrong side of the plane. For such mistakes in classification the SVM introduces a cost

parameter C. Because non separable problems in low dimensions may be separable in higher

dimensions, the SVM uses the so called Kernel-trick to transform the samples to a higher

dimensional space. MosaCluster uses the standard radial basis functions as kernel. These

functions are just Gaussians with the parameter gamma controlling their width. There are

generally implemented in SVMs in all popular data mining software, particularly the kernlab

cran contributed R package is a versatile tool for building SVM based-classifiers [21]. After
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identification of significant biomarkers and generation of different classifiers, they were

assessed in a test set or a validation set to check their performance.

Orthology

Orthology between age-correlated mouse and human peptides was defined as follows: i) iden-

tical fragments, ii) peptides derived from the same protein region with a minimum overlap of

6 amino acids between the two species and iii) peptide sequences with a one amino acid gap

[22]. In addition only peptides with the same correlation direction with age in mice and

humans were retained.

Results

Identification of age-correlated peptides in mice

To identify peptides associated with ageing, the urinary proteome profiles of a cohort of 89

C57BL/6 wild-type mice were analysed by CE-MS (Fig 1). A correlation analysis of individ-

ual peptides with age was performed using age as a continuous variable and 295 peptides

were significantly correlated with age (p� 0.05) (S1 Table). A considerable number of pep-

tides (42%) associated to mouse ageing were fragments of different collagen proteins, simi-

larly to what was observed in human ageing [7,8]. Additionally, some age-correlated

peptides were only identified in mice including fragments of kidney androgen-regulated pro-

tein, complement factor D and pro-epidermal growth factor (S1 Table). Non collagen pep-

tides were predominantly positively correlated with age and included fragments of kidney

androgen-regulated protein, pro-epidermal growth factor, alpha-1-antitrypsin, major uri-

nary protein, meprin A subunit alpha, complement factor D, uromodulin and serine prote-

ase inhibitor A3K whereas collagen fragments were predominantly negatively correlated

with age and included collagen alpha-1(I) chain, collagen alpha-1(III) chain and collagen

alpha-2(I) chain (S1 Table, see rho factor). The two most strongly negatively age-correlated

peptides were collagen alpha-1(III) chain and collagen alpha-1(I) chain fragments (respec-

tively ρ = -0.787, p< 0.0001 and ρ = -0.739, p< 0.0001 Table 1) whereas the two most

strongly positively correlated peptides corresponded to E3 ubiquitin-protein ligase and a

kidney androgen-regulated protein fragments (respectively, ρ = 0.717, p< 0.0001 and ρ =

0.709, p< 0.0001 respectively Table 1).

Assessment of urinary proteome similarity in wild-type mice and humans

ageing: Individual peptides

We have recently identified urinary peptides related to human ageing [7]. Briefly, the urinary

proteome of 1227 healthy individuals between (20–86 years old) was analysed and correlated

with age. A total of 116 peptides predominantly made up of different collagen fragments (72%)

were found to be associated to apparent healthy human ageing [7]. Collagen fragments were

predominantly negatively correlated and comprised mainly collagen alpha-1(I) chain, collagen

alpha-1(III) chain, and collagen alpha-2(I) chain whereas non collagen fragments were pre-

dominantly positively correlated and comprised for example fibrinogen fragments and

uromodulin.

Since collagen fragments and uromodulin fragments were observed to be associated to both

mouse and human ageing and represented the majority of the peptides, they were further used

to evaluate the similarity between mouse and human ageing based on orthology analysis. Forty

nine unique sequences in mice showed orthology to 42 unique sequences in humans, although

1 peptide in mice could have several corresponding ortholog peptides in humans and vice

Proteomic analysis in mouse ageing
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versa (Table 2, S2 Table). Ortholog sequences included collagen alpha-1(I) chain, collagen

alpha-1(III) chain, collagen alpha-2(I) chain and uromodulin. Proteome profiles of the ortho-

log peptides in young and old wild-type mice and healthy subjects were depicted for visual

representation. The decreased of collagen alpha-1(I) (respectively Figs 2 and 3, green stars)

and the increased of uromodulin peptides (respectively Figs 2 and 3, red stars) with age were

depicted. Overall, of the 295 peptides associated to mouse ageing, 49 displayed similarity with

urinary peptides of human ageing in healthy individuals.

Fig 1. Summary of the study design. The human study has already been published [5]. The orthology analysis enabled to identify 49

ortholog peptides in mice, equivalent to 42 peptides in humans. Then ageing models were generated using ortholog peptides in mice and

humans. ACM49: ageing classifier in mouse containing 49 peptides, ACH42: ageing classifier in human containing 42 peptides.

doi:10.1371/journal.pone.0166875.g001
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Assessment of urinary proteome similarity in wild-type mice and humans

ageing: Use of multidimensional peptide models

To further investigate whether the mouse urinary peptides were representative of human age-

ing, we developed multidimensional classifiers based on the ortholog peptides. We scored

mice and human age using these classifiers based on the hypothesis that correct age classifica-

tion by these ortholog peptides in both mice and humans validates the translatability of the

mouse peptides. With this aim, an ageing classifier was developed, using the 49 ortholog age-

correlated mouse peptides, along with a training cohort of wild-type mice (N = 39) using sup-

port vector machine (SVM)-based modelling. This resulted in the classifier called ACM49

(ACM: ageing classifier in mouse). To validate the classifier, a cohort of 45 wild-type mice

including young (12 weeks; N = 15), mature (48 weeks; N = 15), and old (96 weeks; N = 15)

were used. In this validation, the ACM49 classifier was able to discriminate between the differ-

ent age groups with p< 0.0001 in young versus old; p = 0.0030 in young versus mature; and

p = 0.0045 in mature versus old. As depicted in the Box-Whisker plot (Fig 4), the median

scores from the ACM49 classifier increased proportionally to the age of wild-type mice. Addi-

tionally, ACM49 was also used to assess the age of telomerase knock out mice samples (N = 5).

Findings revealed that classification scores of 61 weeks old telomerase knock out mice were

significantly higher (p = 0.0019) than of 96 weeks old wild-type mice (Fig 4).

The same peptides, but now ortholog in humans, comprised of 42 peptides (S2 Table) were

modelled in a classifier called ACH42 (ACH: ageing classifier in human) using a training

human cohort of healthy subjects (N = 50). To validate the classifier, an independent cohort of

60 healthy subjects including young (20–39 years; N = 20), mature (40–59 years; N = 20) and

old (60 years and over; N = 20) were used. In this independent validation the ACH42 classifier

Table 1. The 20 best age-correlated peptides identified in mice.

Rho factor Adjusted p-value Sequence Protein name Start AA Stop AA

-0.787 3.08E-16 GSPGAKGEVGpAGSPGSNGSPGQRGEpGpQ Collagen alpha-1(III) chain 344 373

-0.739 2.50E-13 GQpGAKGEpGDTGVKGDAGPpGP Collagen alpha-1(I) chain 810 832

-0.680 9.48E-11 GQPGAKGEpGDTGVKGDAGPpGP Collagen alpha-1(I) chain 810 832

-0.678 1.10E-10 ppGpAGAAGPAGNPGADGQpGAKG Collagen alpha-1(I) chain 364 387

-0.620 2.14E-08 GLPGppGPpGEGGKQGDQ Collagen alpha-1(I) chain 531 547

-0.582 3.34E-7 GLPGppGPpGEGGKQGDQ Collagen alpha-1(II) chain 666 683

-0.577 4.5E-07 YKGmVGSIGAAGpPGEEGPRGppGEAG Collagen alpha-2(IX) chain 250 276

-0.553 1.73E-06 DEAGSEAHREGETR Fibrinogen alpha chain 527 540

-0.551 1.94E-06 KGTAGEpGKAG Collagen alpha-1(I) chain 575 585

-05.47 2.51E-06 AGPpGPTGPTGPp Collagen alpha-1(I) chain 320 332

0.543 2.98E-06 SLNEKLQN Coiled-coil domain-containing protein 18 1069 1076

0.560 1.15E-06 ELQNSIIDLLNS Kidney androgen-regulated protein 30 41

0.564 9.15E-7 VSINKELQNSII Kidney androgen-regulated protein 25 36

0.572 5.99E-7 LVSINKELQNSIIDLLNS Kidney androgen-regulated protein 24 41

0.597 1.15E-07 SINKELQNSIIDLLNS Kidney androgen-regulated protein 26 41

0.599 1.07E-7 AAPEIILGNPV Triple functional domain protein 2962 2972

0.694 2.54E-11 LVSINKELQNS Kidney androgen-regulated protein 24 34

0.697 1.92E-11 EEHTQSPIFLGKVVDPTHK Alpha-1-antitrypsin 1–1 395 413

0.709 6.35E-12 VSINKELQNS Kidney androgen-regulated protein 25 34

0.717 3.00E-12 MPSLVVVSGGNSLNNLI E3 ubiquitin-protein ligase HERC2 2846 2862

In bold are negatively correlated peptides and positively correlated peptides are in italic. p = hydroxylated proline.

doi:10.1371/journal.pone.0166875.t001
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Table 2. Ortholog peptides identified in mice and humans.

Peptide ID

mice

Sequence mice Peptide ID

humans

Sequence humans Gene

symbol

1504650 GPpGKNGDDGEAGKpGRpGERGPpGP 68411 PpGPpGKNGDDGEAGKpGRp COL1A1

16415 KNGDDGEAGKpGRpG 41476 GPPGkNGDDGEAGKPG COL1A1

1504057 KNGDDGEAGKpGRpGERGPpGP1 102819 GPpGKNGDDGEAGKPGRpGERGPpGpQ COL1A1

1504810 KNGDDGEAGKpGRPGERGpPGP 38011 PpGKNGDDGEAGKpG COL1A1

19556 GEAGKPGRpGERGPpGP2 93897 PpGKNGDDGEAGKPGRpGERGppGP COL1A1

19556 GEAGKPGRpGERGPpGP2 99919 PpGKNGDDGEAGKPGRpGERGppGPQ COL1A1

6931 GRpGERGPpGP 87365 KNGDDGEAGKpGRpGERGPPGpQ COL1A1

1504057 KNGDDGEAGKpGRpGERGPpGP1 89642 KNGDDGEAGKPGRpGERGPPGpQG COL1A1

7545 AGPpGPTGPTGPp3 141007 ARGNDGATGAAGPpGPTGPAGppGFpGAVGAKGEAGPQGPRG COL1A1

7545 AGPpGPTGPTGPp3 155132 ARGNDGATGAAGpPGPTGPAGPPGFpGAVGAKGEAGpQGpRGSEGPQG COL1A1

37057 NSGEpGApGNKGDTGAKGEpGATGVQGPpGP 50172 ApGSKGDTGAKGEpGPVG COL1A1

18625 TGSpGSPGPDGKTGPpGP 29538 SpGSPGPDGKTGPp COL1A1

18875 TGSpGSpGPDGKTGPpGP 46649 SpGSPGPDGKTGPpGPAG7 COL1A1

20909 TGSpGSPGPDGKTGPpGPAG 46649 SpGSPGPDGKTGPpGPAG7 COL1A1

16583 GSpGSPGPDGKTGPpGP 29538 SpGSPGPDGKTGPp8 COL1A1

16886 GSpGSpGPDGKTGPpGP 29538 SpGSPGPDGKTGPp8 COL1A1

19345 GSpGSpGPDGKTGPpGPAG 46649 SpGSPGPDGKTGPpGPAG7 COL1A1

18066 SpGSPGPDGKTGPpGPAG 46649 SpGSPGPDGKTGPpGPAG7 COL1A1

3902 KGTAGEpGKAG 117371 VMGFPGpKGAAGEPGKAGERGVpGppGAVGPAG COL1A1

1506170 TAGEpGKAGERGLpGPpG4 122825 GEpGKAGERGVpGPPGAVGpAGKDGEAGAQGPPGP COL1A1

1506170 TAGEpGKAGERGLpGPpG4 127351 AAGEPGkAGERGVpGPpGAVGPAGKDGEAGAQGPPGP COL1A1

1505741 ERGEQGPAGSpG 135166 ERGEQGPAGSpGFQGLpGPAGPpGEAGKpGEQGVPGD COL1A1

19814 GLPGpAGPpGEAGKpGEQ 100255 GLPGpAGppGEAGKPGEQGVPGDLGApGP9 COL1A1

4170 KpGEQGVPGD 100255 GLPGpAGppGEAGKPGEQGVPGDLGApGP9 COL1A1

17232 KpGEQGVpGDLGApGP 100255 GLPGpAGppGEAGKPGEQGVPGDLGApGP9 COL1A1

16079 GQPGAKGEpGDTGVKG 92841 ADGQPGAKGEpGDAGAKGDAGPpGPAGP10 COL1A1

26939 GQPGAKGEpGDTGVKGDAGPpGP 121241 ADGQPGAKGEpGDAGAKGDAGPpGPAGPAGPPGPIG COL1A1

27161 GQpGAKGEpGDTGVKGDAGPpGP 28850 DGQPGAKGEpGDAG COL1A1

27388 GQpGAKGEpGDTGVKGDAGppGP 40344 DGQPGAKGEPGDAGAK COL1A1

9877 PGAKGEpGDTGVK 44802 DGQPGAKGEpGDAGAKG COL1A1

14420 PGAKGEpGDTGVKGD 92841 ADGQPGAKGEpGDAGAKGDAGPpGPAGP10 COL1A1

24239 ETGPAGRpGEVGPpGPpGPAG 140803 ETGPAGRpGEVGPpGpPGPAGEKGSPGADGPAGAPGTPGPQG11 COL1A1

20667 GEVGPpGPpGpAGEKGSpG 140803 ETGPAGRpGEVGPpGpPGPAGEKGSPGADGPAGAPGTPGPQG11 COL1A1

38376 ESGREGSpGAEGSpGRDGApGAKGDRGETGP 127432 GPpGESGREGAPGAEGSpGRDGSpGAKGDRGETGp COL1A1

35125 REGSpGAEGSpGRDGApGAKGDRGETGP5 130077 GPpGESGREGApGAEGSpGRDGSpGAKGDRGETGPA COL1A1

35125 REGSpGAEGSpGRDGApGAKGDRGETGP5 51175 EGSpGRDGSpGAKGDRG COL1A1

10361 DGApGAKGDRGET 124886 PpGESGREGAPGAEGSpGRDGSpGAKGDRGETGP COL1A1

17249 pGPVGPAGKNGDRGET 128435 DRGETGPAGPpGApGAPGAPGPVGpAGKSGDRGETGP COL1A1

25169 QGIpGTGGPpGENGKpGEpGP 16910 GLpGTGGPpGENGKPGEPGp COL3A1

15377 GIpGTGGPpGENGKpG 61304 GLpGTGGPpGENGKpGEPGpKG12 COL3A1

12858 GPpGENGKpGEpGP 61304 GLpGTGGPpGENGKpGEPGpKG12 COL3A1

31210 QNGEpGAKGERGApGEKGEGGPpGP 70911 GAPGQNGEPGGkGERGApGEKGEGGPpG COL3A1

27744 GEpGAKGERGApGEKGEGGPpGP 97638 ApGEKGEGGPpG13 COL3A1

8738 ApGEKGEGGPpGP 97638 ApGEKGEGGPpG13 COL3A1

1505438 ApGLpGPRGIpGPAG 126318 TGAkGAAGLpGVAGApGLpGPRGIpGPVGAAGATGARG COL1A2

1506234 KGEQGpAGPPGFQGLpG 138279 EVGKpGERGLHGEFGLpGpAGpRGERGPPGESGAAGP COL1A2

(Continued )
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was able to discriminate between the different age groups with p = 0.0005 in young vs old;

p< 0.0001 in young vs mature; and p = 0.0453 in mature vs old. The classifier was significantly

able to discriminate between different age groups as younger subjects had a lower median

score generated by the ACH42 classifier which progressively increased with age (Fig 5). The

data suggested that urinary peptide classifiers exclusively comprising ortholog peptides, can

discriminate the age in both species.

Table 2. (Continued)

Peptide ID

mice

Sequence mice Peptide ID

humans

Sequence humans Gene

symbol

30714 SGTTGEVGKpGERGLpGEFGLpGP 148645 EVGKpGERGLHGEFGLPGPAGpRGERGpPGESGAAGPTGPIG COL1A2

27017 DGPpGRDGQpGHKGERGYpG6 112515 GRDGNpGNDGPpGRDGQpGHKGERGYpG COL1A2

27017 DGPpGRDGQpGHKGERGYpG6 80306 NDGPpGRDGQpGHKGERGYpG COL1A2

36597 PGKDGEVGPSGPVGPPGLAGERGEQGppGP 113351 GpSGpVGpPGLAGERGEQGPpGPTGFQGLPG COL5A2

25768 SGNFIDQTRVLNLGPITR 53181 SGSVIDQSRVLNLGPI UMOD

6864 FIDQTRVLN 43605 SVIDQSRVLNLGPI UMOD

18643 IDQTRVLNLGPITR 50056 SVIDQSRVLNLGPIT14 UMOD

16362 DQTRVLNLGPITR 50056 SVIDQSRVLNLGPIT14 UMOD

3736 VLNLGPITR 50056 SVIDQSRVLNLGPIT14 UMOD

The superscripted numbers represent sequences that have several ortholog in either mice or humans. In bold are the ortholog sequences. p = hydroxylated

proline.

doi:10.1371/journal.pone.0166875.t002

Fig 2. Abundance of ortholog peptides in wild-type mice. (A) Young mice (4 weeks old) and (B) wild-type old mice (84 weeks old). The green stars

represent collagen alpha-1(I) chain peptides where as the red stars represent uromodulin peptides.

doi:10.1371/journal.pone.0166875.g002
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Discussion

The urinary proteome profiles of 89 wild-type mice were analysed and compared with the pro-

teome profiles of a unique cohort of 1227 healthy subjects to evaluate the translatability of age-

ing findings from mice to humans.

Using urinary proteomics, common molecular mechanisms describing ageing in human

and mouse were identified. The difference in the number of identified peptides (295 versus

116) between mice and humans most likely lies in the high genetic variability in humans and

their exposure to environmental changes leading to age-dependent changes being obstructed.

Therefore, the great biological variance resulted in a lower number of biomarkers. In both spe-

cies, a decrease in collagen fragments and increase in uromodulin peptides were identified as

key molecular changes observed during ageing. These ortholog peptides which predominantly

included collagens fragments were able to discriminate among different age groups in both

human and mouse cohorts. These findings not only highlight the translatability from mice to

humans, but also specifically point out that this translatability is mostly attributed to collagens.

Thus, findings highlight the key role of collagens in human and mouse ageing processes.

Indeed, the pivotal role of collagens in ageing has previously been shown [3,7,8]. However,

the strong homology in mouse and human collagens in ageing via investigation of the urinary

proteome has not been shown before. This observation suggests that mice can be used to assess

anti-ageing interventions targeting collagens [23] in humans. As a disturbance in the collagen

homeostasis is associated with several chronic age-related conditions including cancers [24],

chronic kidney diseases (CKD) [25] and cardiovascular diseases [26], mice can also be used

to develop therapeutic interventions for humans against these age-associated pathologies.

Fig 3. Abundance of ortholog peptides in healthy subjects. (A) Young subjects (20–39 years old) and (B) healthy old subjects in (60 years old and

over). The green stars represent collagen alpha-1(I) chain peptides where as the red stars represent uromodulin peptides.

doi:10.1371/journal.pone.0166875.g003
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Furthermore, the identification of age-correlated ortholog peptides enables to gain

increased insight into molecular mechanisms involved during human and mouse ageing. In

humans, ageing was characterised by the decrease of fibrillary collagen fragments, especially

collagen alpha-1(I) chain, collagen alpha-1(III) chain and collagen alpha-2(I) chain. The

reduction in collagen type I and type III synthesis has previously been associated to skin ageing

[27] and to systemic ageing [7,8]. Indeed, a reduction in collagen synthesis may indicate a per-

turbation in the extracellular matrix (ECM) remodelling. The ECM is ubiquitous in the organ-

ism and plays a pivotal role in tissue elasticity and integrity [28]. Perturbations of the ECM

have been associated with several pathologies [28]. For instance, perturbations in the ECM

have been shown to cause fibrosis; a condition characterised by an abnormal accumulation of

ECM components. Fibrosis has been associated with renal diseases, cardiovascular diseases

and cancers [29]. Hence in humans, ageing is characterised by a perturbation in collagen

homeostasis which can lead to fibrosis formation followed by a myriad of age-related

complications.

In mice, the urinary excretion of fibrillar type I and III collagen fragments representing the

majority of collagenous peptides decreased with increasing age. This may be reflective of

Fig 4. Box-whisker plot depicting the age classification in wild-type and telomerase knock-out mice. * Statistically significant p-value, WT:

wild-type, Terc-/-: telomerase knock-out mice and w: weeks.

doi:10.1371/journal.pone.0166875.g004
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increased cross-linking and subsequently increased collagen biosynthesis and decreased activ-

ity of matrix metalloproteinases and other collagen degrading enzymes [30]. In a recent study,

a mouse model developing resistance to type I collagenase activity (Col1a1r/r) was demon-

strated to promote premature ageing [31]. The Col1a1r/r mice were shown to have shortened

lifespan in comparison to WT mice and they developed hypertension caused by aortic stiffness.

Interestingly, collagenase-resistant collagen was reported to promote premature ageing by

inducing senescence in vascular smooth muscle cells due to inadequate communication with

αvβ3 integrin [31]. Moreover, a type III collagen-deficient mouse was generated to assess blad-

der function [32]. It was shown in this study that deficiency in type III collagen fragment

caused reduced tension or elasticity subsequently resulting in impaired bladder contraction

and development [32]. In humans, resistance in collagen degradation by collagenases has been

previously shown to predict the chronological age using diaphragm tissues obtained from

biopsies [33]. In addition to collagen fragments, uromodulin was shown to increase with age.

Uromodulin is a protein exclusively produced in the kidney and the most abundant protein in

urine. Its biological function still remains unknown however; deregulation in its synthesis has

been reported to be associated with hypertension and chronic kidney diseases [34].

Fig 5. Box-whisker plot depicting the age classification in healthy subjects. Young subjects are between 20–39 years, mature subjects are

between 40–59 years and old subjects are 60 years old and over. * Statistically significant p-value.

doi:10.1371/journal.pone.0166875.g005
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Ageing classifiers were established based on ortholog peptides and these classifiers could

discriminate the age in both humans and wild-type mice. Hence, these findings demonstrate

the translatability of results from mouse to human based on urinary proteome analysis. Similar

observations were also made while using urinary proteome analysis to compare between rat

and human in a previous study [35]. It was observed that the ZDF rat model for type 2 diabetes

mellitus displayed similarity to human cardiovascular diseases rather than chronic kidney dis-

eases based on ortholog peptides [35]. Furthermore, the mouse ageing classifier ACM49 was

able to discriminate the age in wild-type mice and also the internal age in telomerase knock-

out (Terc-/-) mouse models characterised by a short lifespan. The ACM49 revealed a discrep-

ancy between the chronological age of Terc-/- and their internal age as the 61 weeks old Terc-/-

mouse models had higher scores compared to 96 weeks WT mice. Though findings in mice

are translatable in humans when focusing on ortholog peptides, this observation cannot be

generalised to all identified age-related peptides. Indeed looking at the differences in the num-

ber of identified peptides, and also looking at the unique peptides specific to each species, it is

obvious that findings using mouse models must be interpreted with care.

In conclusion, we have demonstrated that mice can be good models to study human ageing

when focusing on ortholog peptides. One major advantage of using urinary proteomics to

study ageing, as suggested by the results, is the ability to obtain a representative readout of

human ageing using mouse models, hence, allowing eventually to investigate interventions in

the management of ageing-associated complications.
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