
 
 
 
 
 

Peloni, A., McInnes, C. R., and Ceriotti, M. (2017) Osculating Keplerian 

Elements for Highly Non-Keplerian Orbits. In: 27th AAS/AIAA Space 

Flight Mechanics Meeting, San Antonio, TX, USA, 5-9 Feb 2017. 

 

  

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 
http://eprints.gla.ac.uk/136992/ 
     

 
 
 
 
 

 
Deposited on: 15 February 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk33640 

http://eprints.gla.ac.uk/view/author/30141.html
http://eprints.gla.ac.uk/view/author/19113.html
http://eprints.gla.ac.uk/view/author/15307.html
http://eprints.gla.ac.uk/136990/
http://eprints.gla.ac.uk/136990/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


 1 

OSCULATING KEPLERIAN ELEMENTS FOR HIGHLY NON-
KEPLERIAN ORBITS 

Alessandro Peloni,* Colin R. McInnes,† and Matteo Ceriotti‡ 

This paper presents a mapping between the elements of highly non-Keplerian 

orbits and classical orbital elements. Three sets of elements are discussed and 

mappings are derived in closed, analytical form for both the direct and inverse 

problem. Advantages and drawbacks of the use of each set of elements are dis-

cussed. The spacecraft thrust-induced acceleration used to generate families of 

highly non-Keplerian orbits is extracted from the inverse mapping from the os-

culating orbital elements. The key signatures of highly non-Keplerian orbits in 

Keplerian elements tracking data are determined through a set of representative 

test cases. 

INTRODUCTION 

In classical Keplerian mechanics, an object of negligible mass orbits around an attractor due to the grav-

itational interaction existing between the two bodies. Celestial mechanics traditionally deals with Keplerian 

orbits, treating any non-Keplerian effect as a perturbation to the classical Keplerian orbit. However, a non-

Keplerian orbit is defined as an orbit in which a perturbative or propulsive acceleration acts in addition to 

the gravitational attraction of the primary body. If the magnitude of such acceleration averaged over one 

orbit is comparable with the gravitational and centripetal accelerations experienced by the object, the orbit 

can be classified as highly non-Keplerian.1 For the sake of conciseness and because only Keplerian and 

highly non-Keplerian orbits are considered in this paper, all the highly non-Keplerian orbits will be simply 

referred to as non-Keplerian orbits (NKOs) in this paper. 

New families of NKOs can be generated using continuous low-thrust propulsion.1-4 These include orbits 

displaced above/below the orbit plane of a conventional Keplerian orbit using out-of-plane thrust, or in-

side/outside a Keplerian orbit using radial thrust. Potential applications of NKOs include orbits displaced 

above/below the geostationary ring to increase the number of available slots for communications platforms4 

and on-orbit inspection by formation-flying above/below or inside/outside the orbit of a target spacecraft.5, 6 

For example, a displacement distance of 35 km north/south of the geostationary ring allows a platform on a 

displaced highly non-Keplerian orbit to sit above/below the standard 70 km station-keeping box of a con-

ventional geostationary platform. Such an orbit would require a thrust of 200 mN for a 1000 kg spacecraft, 

which is achievable with a single QinetiQ T6+ thruster.4 

To date, several investigations have been carried out to study non-Keplerian orbits.1-7 Nevertheless, all 

prior studies on non-Keplerian orbits have focused on orbit and mission design. A key open issue in the 

analysis of the families of non-Keplerian orbits is the generation of a mapping from the NKO geometry to a 

corresponding set of osculating orbital elements. This is of importance to support the future operational use 
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of non-Keplerian orbits. Since families of NKOs are generated using a strong, continuous perturbation, 

their osculating orbital elements will be time varying, although still periodic. Similarly, the inverse problem 

is also of importance to deduce the NKO geometry from observations of orbital elements. Once these ele-

ments are known, the thrust-induced acceleration magnitude and direction required for the NKO can be 

determined. 

In order to pursue the above questions, the key objectives of this paper are to: a) map the properties of 

families of highly non-Keplerian orbits onto the classical orbital elements; b) generate an inverse mapping 

from orbital elements to the properties of the non-Keplerian orbits; and c) determine the key signatures of 

non-Keplerian orbits in orbital element tracking data. These objectives represent a largely unexplored as-

pect of the dynamics of families of NKOs and offer a route towards their future operational use. 

The paper is organized as follows. In the first section, mappings for the direct and inverse problem are 

discussed for a model in which the NKO orbital plane is parallel to the equatorial plane. In the second sec-

tion, forward mappings are discussed for a model in which no assumptions are made on the NKO orbital 

plane. Numerical test cases for both aforementioned models are shown and discussed in the third section. 

Conclusions and final remarks are drawn in the last section. 

VERTICAL-DISPLACEMENT MODEL 

Circular non-Keplerian orbits can be obtained considering the dynamics of a low-thrust propelled 

spacecraft in a rotating reference frame.2 The angular velocity of rotation of the reference frame  , to-

gether with the out-of-plane displacement z  and the radius of the orbit  , are used as free parameters of 

the problem. Stationary solutions of the equations of motion in this rotating reference frame correspond to 

periodic, displaced, circular orbits with the orbital plane parallel to the ˆ ˆX Y  plane when viewed from an 

inertial reference frame. In this paper, the Earth-Centered Inertial frame  ˆ ˆ ˆ, ,X Y Z  is considered. The ac-

celeration needed to generate such stationary solutions can be derived in a closed, analytical form.2 The 

thrust vector lies in the plane spanned by the radius vector and the axis of symmetry, as shown in Figure 1. 

Following Reference 2, it can be shown that the propulsive acceleration vector can be described, as a 

function of the NKO elements  , ,
T

NKO z  x , by its magnitude a  and pitch angle  , as follows. 
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The term 
3

* r   in Eq. (1) is the orbital angular velocity of a Keplerian orbit of radius 2 2r z  . 

Viewed from an inertial reference frame, the orbits generated by the acceleration described in Eq. (1) corre-

spond to circular orbits displaced above the central body. The angular velocity of the rotation of the refer-

ence frame   corresponds to the angular velocity of the circular orbit viewed from an inertial reference 

frame. 

Three families of NKOs can be defined based on the value of the angular velocity of the rotating refer-

ence frame.2 Type 1 NKOs are defined as those orbits with the minimum required acceleration. From Eq. 

(1), the requirement of minimum acceleration leads to an angular velocity of the rotating reference frame 

for Type 1 NKOs defined as shown in Eq. (2). A second family of NKOs is characterized by orbits syn-

chronous with a body on a circular Keplerian orbit in the 0z   plane with the same orbit radius. Lastly, a 

third family of NKOs is defined by setting the orbital period to a fixed value. The angular velocities that 

characterize the aforementioned three families of NKOs are shown in Eq. (2). 

 
3 3

Type 1 Type 2 Type 3 0, ,r           (2) 
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Figure 1. Displaced orbit with thrust-induced acceleration for the vertical-displacement model. 

In this section, the mappings between NKO elements and the osculating orbit are derived in closed, ana-

lytical form for both the direct and inverse problem. Three sets of orbital elements are chosen to describe 

the osculating Keplerian orbit: a) classical Keplerian elements (KEP)  , , ,, ,KEP

T
a e i  x , b) modified 

equinoctial elements (MEE)  , , , , ,MEE

T
p f g h k Lx , and c) augmented integrals of motion (AIoM) 

, ,
T

T T

AIoM L   x h e  (with 0 h e ). Therefore, the formulation of the spacecraft thrust-induced accelera-

tion given in Eq. (1) is derived as a function of the osculating orbital elements. 

Forward Map: Non-Keplerian Orbit to Osculating Orbital Elements 

Starting from the NKO elements  , ,
T

NKO z  x , the Cartesian position vector r  and velocity vector 

v  are given by 

        , 0cos sin sin cos
T T

t t t tz              r v   (3) 

From the Cartesian position and velocity vectors described in Eq. (3), the forward maps are derived in 

the following sections for each one of the osculating orbital elements considered. Moreover, a sensitivity 

analysis has been performed in order to study the behavior of the mappings in presence of errors in the 

NKO elements. Both analytical and numerical sensitivity analyses have been carried out to confirm the 

results found. The analytical sensitivity analysis is centered on the computation of the Jacobian J  of the 

mapping. 

NKO to Osculating KEP Map. From Eq. (3), the NKO to osculating classical Keplerian elements map 

can be derived following the conversion from Cartesian position and velocity to KEP, as described in Algo-

rithm 4.2 from Reference 8. The resulting map is shown in Eq. (4). 

It is worth noting that the case  2 2 2 20z z      is not taken into account in the formulation 

of   and   in Eq. (4). However, this case corresponds to an osculating circular orbit, which is not possi-

ble for the types of NKOs taken into account within this study. Moreover, it is important to underline that 

0   is arbitrarily chosen in the case of a planar NKO. Lastly, Eq. (4) shows that 0   only if 
2 30z      , which is the condition for a Keplerian orbit. 

The first important characteristics of the osculating Keplerian orbits that describe an NKO have already 

been shown in the forward map. In fact, from the formulation of the true anomaly in Eq. (4), it can be noted 

that a spacecraft on a NKO is always either at the apogee or perigee of the osculating Keplerian orbit. 
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  (4) 

For the sensitivity analysis, an analytical study can be carried out only on those elements characterized 

by a continuous function (i.e. semi-major axis, eccentricity, and inclination). Only a numerical sensitivity 

analysis can be carried out on the last three elements of the map. The parameters used to test the sensitivity 

of the mapping to uncertainties in an NKO element 
ix  depend on the classical Keplerian element and are 

(Eq. (5)): a) relative error of the semi-major axis; b) absolute error of the eccentricity; and c) normalized 

error of the general angles  , ,,i   . 
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NKO to Osculating MEE Map. In order to have a mapping with no singularities, a map from Cartesian 

position and velocity to osculating modified equinoctial elements is derived. In fact, MEE have been intro-

duced to avoid singularities occurring in Keplerian orbits in the case of planar and/or circular orbits and are 

defined as follows.9 

 
     

       

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

   

   



 
  (6) 

Starting from the expressions of the Cartesian position and velocity vectors (Eq. (3)) and the analytical 

mapping of the osculating classical Keplerian elements shown in Eq. (4), the mapping from NKO elements 

to osculating MEE is shown in Eq. (8). The full derivation of the NKO to osculating MEE map is not 

shown here for the sake of conciseness. 

It is worth noting that there are no singularities in the formulations of the out-of-plane MEE in the case 

of zero out-of-plane displacement orbits. It can be seen, in fact, that 
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lim lim 0
z z

h k
 

    (7) 
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  (8) 

Moreover, it is important to note that no assumptions have been made in the derivation of this map. In-

deed the functions that describe the NKO to osculating MEE map are continuous in the whole spectrum of 

the NKO elements. 

The parameters used to test the sensitivity of the mapping to uncertainties in an NKO element 
ix  de-

pend on the MEE and are (Eq. (9)): a) relative error of the semi-latus rectum; b) absolute error of the gen-

eral element  , , ,y f g h k ; and c) normalized error of the true longitude L . 
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NKO to Osculating AIoM Map. A third set of osculating orbital elements has been chosen for the map. 

The integrals of motion (orbital angular momentum h  and eccentricity vector e ) are computed by using 

the expressions of Cartesian position and velocity vectors given in Eq. (3). The resulting map is as follows: 
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The parameters used to test the sensitivity of the mapping to uncertainties in an NKO element 
ix  de-

pend on the AIoM and are (Eq. (11)): a) relative error of the magnitude of the difference between the nom-

inal angular momentum vector and the one related to uncertainties in the NKO elements; b) absolute error 

of the magnitude of the difference between the nominal eccentricity vector and that related to uncertainties 

in the NKO elements; and c) normalized error of the true longitude L . 
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Inverse Map: Osculating Orbital Elements to Non-Keplerian Orbit 

After the forward mappings from non-Keplerian orbit families to osculating orbital elements described 

in the previous section, three different inverse mappings from orbital elements to NKO geometry have been 

generated. These mappings have been derived in closed, analytical form. A sensitivity analysis has been 

performed to understand the impact of uncertainties in the orbital elements on the NKO properties. Only a 

numerical sensitivity analysis has been carried out by computing the values of the osculating elements from 

the perturbed input elements and then computing the errors respect to the nominal values. The parameters 

used to test the sensitivity of the mapping to uncertainties in the osculating orbital elements are as follows. 

 Absolute error of the vertical displacement. The absolute error has been chosen against the rel-

ative error because all the NKOs are feasible with the near-term technology are characterized 

by small vertical displacements. 



 6 

 Relative error of the orbit radius. The relative error has been chosen against the absolute error 

because usually NKO with small vertical displacements are characterized by large orbit radii. 

 Relative error of the orbital angular momentum. 

 

Osculating KEP to NKO Map. Recalling that the radius of the osculating orbit can be expressed, in 
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Therefore, the position and velocity vectors shown in Eq. (12) can be written in the Earth-Centered In-

ertial reference frame by following the rotations      3 1 3R R i R     . After algebraic manipula-

tion, the map from osculating classical Keplerian elements to NKO elements is summarized as 
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Osculating MEE to NKO Map. From the formulation of Cartesian position and velocity vectors as a 

function of MEE given in Betts,10 the inverse map from osculating MEE to NKO elements is derived as 
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in which 
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Osculating AIoM to NKO Map. From Eq. (4), it was noted that the spacecraft is always at either the ap-

ogee or perigee of its osculating orbit. Therefore, the magnitude of the position vector can be expressed, in 

terms of the osculating integrals of motion, as 
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in which the ambiguity in the sign is due to the possibility of the spacecraft being at either the apogee or 

perigee of the osculating orbit. Defining the four-quadrant inverse tangent as* 
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Recalling that 
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  (19) 
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
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h e
h

v

h e
h

  (20) 

Therefore, the inverse map from osculating AIoM to NKO elements is derived as shown in Eq. (21). 

From Eq. (21), it can already be noted that such map is extremely sensitive to errors in both eccentricity 

vector and true longitude. In fact, if the spacecraft is computed to be far from both apogee and perigee be-

cause of errors in the osculating AIoM, one is not able to convert the osculating orbital elements to NKO 

elements by using this map. 

                                                           

* Definition from MATLAB User’s Guide, Ver. R2014b, atan2 – Symbolic four-quadrant inverse tangent. 
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  (21) 

Determination of Spacecraft Thrust-Induced Acceleration 

The magnitude and direction of the spacecraft thrust-induced acceleration used to generate families of 

NKOs have been derived by using the inverse mapping from the orbital elements discussed in the previous 

section as inputs for Eq. (1). This analysis links the thrust-induced acceleration to the NKO geometry. 

The analytical expressions for the thrust-induced acceleration have been derived for osculating KEP and 

MEE. Because of the very poor robustness of the osculating AIoM for the inverse mapping, these elements 

have not been considered in the study of the thrust-induced acceleration. 

Classical Keplerian elements. From Eq. (1) and using the mappings shown in Eq. (14), the magnitude 

of the thrust-induced acceleration and pitch angle are obtained as 

  
 

 
2

2 2
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e

e
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 xa   (22) 
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 
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x   (23) 

in which 
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  (24) 

Modified equinoctial elements. From Eq. (1) and using the mappings shown in Eq. (15), the magnitude of 

the thrust-induced acceleration and pitch angle are obtained as shown in Eqs. (26) – (27), in which s  and 

  are defined in Eq. (16), whereas 
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  (25) 
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ARBITRARY-ORIENTATION MODEL 

The mappings derived in the previous section are related to non-Keplerian orbits whose orbital plane is 

displaced vertically and, therefore, parallel to the ˆ ˆX Y  plane in a Cartesian reference frame (i.e. the 

equatorial plane, in this work). A mapping for the direct problem is now investigated which considers an 

arbitrary orientation of the NKO plane. 

 

Figure 2. Displaced orbit with thrust-induced acceleration for the arbitrary-orientation model. 

Two extra elements are introduced for the description of the non-Keplerian orbit in the three-

dimensional space, as shown in Figure 2. These are 

 
Inclination of the non-Keplerian orbit

Right ascension of the ascending node of the non-Keplerian orbit

j







  (28) 

Note that the symbols  ,j   have been used for the description of the NKO elements inclination and 

right ascension of the ascending node (RAAN) because these elements should not be confused with the 

osculating inclination and RAAN, respectively. Therefore, the set of NKO elements is 

 , ,, ,
T

NKO z j  x . The formulation of the Cartesian position and velocity vectors shown in Eq. (3) can 

be expanded, considering inclination and RAAN, as 
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Following the same procedure used to obtain the mappings in the vertical-displacement case, the arbi-

trary-orientation mappings from NKO elements to osculating orbital elements are obtained. Because of the 

very poor robustness of the osculating AIoM for the inverse mapping, these elements have not been consid-

ered in this study. 

NKO to Osculating KEP Map. From Eqs. (29) – (30), the NKO to osculating classical Keplerian ele-

ments map can be derived following the conversion from Cartesian position and velocity to KEP, as de-

scribed in Algorithm 4.2 from Reference 8. The resulting map is as follows. 
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  (31) 

in which 
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   (32) 

Note that the mapping shown in Eq. (4) is a particular case of the  mapping for an arbitrary orientation 

of the orbital plane. In fact, it can be easily verified that Eq. (31) becomes Eq. (4) if 0j   . 

NKO to Osculating MEE Map. Starting from the expressions of the Cartesian position and velocity vectors 

(Eqs. (29) – (30)) and the analytical mapping of the osculating classical Keplerian elements shown in Eq. 

(31), the arbitrary-orientation mapping from NKO elements to osculating MEE is shown in Eq. (33), in 

which *  and   are defined in Eq. (32). The full derivation of the NKO to osculating MEE map is not 

shown here for the sake of conciseness. 

Note that, as in the previous case, the mapping shown in Eq. (8) is a particular case of the arbitrary-

orientation mapping. In fact, it can be easily verified that Eq. (33) becomes Eq. (8) if 0j   . Because of 

the introduction of inclination and RAAN related to the non-Keplerian orbit, in this case, it has not been 

possible to simplify further the mapping and the piecewise formulation cannot be avoided. 
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 (33) 

NUMERICAL TEST CASES 

Several test cases are chosen to assess the validity of the mappings, investigate the behavior of the oscu-

lating elements and understand the impact of uncertainties on the mappings. For the sake of conciseness, 

only the most interesting results are shown here. In the following sections, the test cases related to both the 

vertical-displacement and arbitrary-orientation models are shown and discussed. 

Vertical-Displacement Model 

A Geostationary Earth Orbit (GEO) is chosen as the reference Keplerian orbit. In terms of NKO ele-

ments, a GEO is characterized by11 
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GEO :  42,164.1696 kmGEO
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
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 
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  (34) 

Two displaced GEOs are chosen as test cases in this study: a Type 1 NKO and an in-plane displaced 

Type 3 NKO. Station-keeping regulations currently require a station-keeping box of 0.1 0.2 deg .11 There-

fore, the out-of-plane displacement for the Type 1 NKO is chosen such that the spacecraft hovers just 

above the GEO station-keeping box. The same displacement is considered in the in-plane case. The NKO 

elements of the two test cases are 
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   (35) 
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Forward Maps. Figure 3 shows the Type 1 NKO with 0z   described by Eq. (35), together with its os-

culating Keplerian orbits, corresponding to the instantaneous orbital elements of the spacecraft if the thrust 

is nulled. In this case, it is shown how the semi-major axis and eccentricity of the osculating orbits do not 

change, but the osculating orbit plane rotates around the vertical axis. The spacecraft, being always at the 

apogee of the osculating Keplerian orbits, describes the desired NKO. Therefore, the envelope resulting 

from the osculating Keplerian orbits after an entire orbit is well approximated by a truncated cone, the 

characteristics of which depend on inclination and apogee and perigee radii of the osculating orbits. 

Moreover, from Figure 3, another characteristic of the NKO to KEP map for a Type 1 NKO can be 

seen. That is,   is the only osculating KEP that varies in time. All other osculating KEP are constant, as 

shown in Eq. (4). On the other hand, the in-plane displaced Type 3 NKO (not shown here for the sake of 

conciseness) is characterized by an osculating argument of perigee being the only element that varies in 

time. 

Figure 4 shows the double cone created by the osculating eccentricity unit vectors due to the rotation of 

the osculating Keplerian orbits. The height of the cone and its base radius depend on both the vertical dis-

placement z  and the radius of the orbit  . The osculating eccentricity vector depend on the sign of the 

vertical displacement, whereas the osculating angular momentum does not. On the contrary, the osculating 

eccentricity vectors for the in-plane Type 3 NKOs lie on the ˆ ˆX Y  plane, while the eccentricity vector in 

the GEO case is arbitrarily set to  1 0 0
T

GEO e . 

 

Figure 3. Type 1 NKO displaced GEO (solid 

black line) and osculating Keplerian orbits. 

 

Figure 4. Time evolution of the osculating eccen-

tricity unit vectors. 

To investigate the sensitivity analysis of the forward maps, the relative error of the NKO elements is 

considered fixed and constant, such that 
310 .z         Considering the characteristics of the orbits 

shown in Eq. (35), the absolute errors on the NKO elements considered for the sensitivity analysis are 
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  (36) 

Note that the term 3z  in Eq. (36) depends on the displacement of the Type 1 NKO. This is made on 

purpose in order to have a non-zero error for the out-of-plane displacement. 

Figure 5 shows the evolution over one orbit of the osculating in-plane MEE f  for the case of Type 1 

NKO. The nominal value and the values due to errors in the NKO elements are shown. It can be seen that 

the error on the in-plane element f  due to uncertainties in the NKO elements is of the same order of mag-
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nitude as the uncertainties themselves. The same behavior is noted in the other in-plane modified equinoc-

tial element g . On the other hand, Figure 6 shows the evolution over one orbit of the out-of-plane MEE h  

for the case of Type 1 NKO. The nominal value and the values due to errors in the NKO elements are 

shown. Figure 6 shows that the error on the out-of-plane element h  due to uncertainties in the NKO ele-

ments is orders of magnitude smaller than the value of the uncertainties. The same behavior is noted in the 

other out-of-plane modified equinoctial element k . Here, the semi-latus rectum shows a constant error due 

to uncertainties in the NKO elements of the same order of magnitude as the uncertainties themselves. Last-

ly, the true longitude exhibits a linearly increasing error due to a 0.1% uncertainty on the orbit angular ve-

locity. After one orbit, the absolute error on the true longitude is therefore 0.36 deg . 

 

Figure 5. Evolution of the f over one orbit. 

 

Figure 6. Evolution of h over one orbit. 

Inverse Maps. The same test cases used to study the forward maps are now considered for the study of 

the inverse maps. All the results of the mappings have been numerically verified against their nominal val-

ues. That is, the osculating orbital elements have been obtained through the forward mappings starting from 

the nominal NKO elements. Then, the inverse mappings are used to obtain the original NKO elements. The 

errors between the nominal values of the NKO elements and those obtained after the conversion gives an 

estimate of the accuracy of both forward and inverse mappings. This results in errors of less than 910  km  

for z  and  , and errors of less than 1210  deg day  for  . This validates the inverse maps. 

For the sensitivity analysis, the errors of the osculating KEP and MEE are considered fixed and con-

stant, as follows. 
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  (37) 

in which the errors relative to angular quantities are considered as 0.1% of the maximum possible error 

( ). As discussed earlier, the AIoM to NKO elements map is extremely sensitive to errors in both eccen-

tricity vector and true longitude. The issue is not only the piecewise formulation per se, but the fact that the 

formulation takes into account only two points in the orbit, which are the apogee and perigee. If an error in 

either eccentricity vector or true longitude moves the point from the apogee/perigee, the inverse map fails. 

Therefore, there is no need to perform a sensitivity analysis for the AIoM case. 

The sensitivity analysis study demonstrates that the planar elements (i.e. ,  ) of both mappings are 

robust to uncertainties in the osculating orbital elements. Both mappings of the out-of-plane displacement 

z  are robust to uncertainties in the in-plane osculating elements. However, the out-of-plane displacement 

is very sensitive to errors in the out-of-plane osculating elements. This is understandable if the osculating 
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Keplerian orbit has a small inclination and a large semi-major axis ( ~ GEOa r  in this case). For the sake of 

conciseness, only the most interesting plots of the sensitivity analysis study are shown here. 

Figure 7 shows the relative error evolution of the orbit radius   over one orbit obtained from the oscu-

lating MEE with a 0.001 error in the in-plane MEE f . Both test cases are shown. It is shown that the rela-

tive error on the orbit radius is at most the same order of magnitude as the initial uncertainty itself. Figure 8 

shows the evolution of the out-of-plane displacement z  over one orbit obtained from the osculating MEE. 

Both test cases are shown. Both the nominal value and a 0.001 error in the out-of-plane MEE h  are consid-

ered. It is shown how a small error in the out-of-plane element can cause a large error in the out-of-plane 

displacement, as discussed above. 

 

Figure 7. Relative error in orbit radius in case of 

0.001 error in f. 

 

Figure 8. Out-of-plane displacement. Nominal 

case and 0.001 error in h. 

Thrust-induced acceleration. The acceleration, in terms of magnitude and pitch angle, resulting from 

both Eqs. (22) – (23) and Eqs. (26) – (27) has been validated using two separate checks. In the first check, 

the values of magnitude and pitch angle are compared with those given directly by using Eq. (1). The val-

ues of both the magnitude and direction of the acceleration have been verified for all test cases considered 

with both sets of elements. The errors in magnitude and direction of acceleration are 11 2m10 m s a  

and 1210  rad  , respectively. The second check has been carried out by propagating the equations of 

motion with the propulsive acceleration given by Eqs. (22) – (23) and Eqs. (26) – (27), respectively. The 

relative errors in position and velocity vectors between the initial state and the state after one orbital period 

are used to validate the acceleration. A variable order Adam-Bashford-Moulton PECE solver (as imple-

mented in MATLAB ode113) with relative and absolute tolerances equal to 1010  and 1210 , respectively, 

has been used for the propagation of the equations of motion. The relative errors in the final position and 

velocity are 
910  r r v v . 

Lastly, the accelerations required for the test cases taken into account have magnitudes 

  20.19,0.56  mm sa  for Type 1 and Type 3 NKOs, respectively. Considering a 1000-kg spacecraft, 

such accelerations can be easily converted into maximum required thrusts  0.19,0.56  NmaxT   that are 

feasible values for near-term low-thrust technology.12 

Summary. The use of classical Keplerian elements to describe the osculating orbits is impractical for the 

forward map mainly because of the piecewise formulation of most of the elements. On the other hand, KEP 

are good candidates to be used for the inverse map because of their easy formulation and robustness to un-

certainties. The use of modified equinoctial elements to describe the osculating orbits is a good choice due 

to the easy formulation and robustness to uncertainties. Moreover, for the same reasons, MEE are good 

candidates to be used for the inverse map as well. The use of augmented integrals of motion to describe the 
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osculating orbits resulted is also a good choice due to the easy formulation of the map, even if the elements 

are less intuitive than the other sets. On the other hand, the formulation of the inverse map by means of 

AIoM is extremely sensitive to errors in both eccentricity vector and true longitude to the point that the 

map fails if there is an error in either of these elements. In conclusion, the use of MEE guarantees an easy 

and robust formulation for both forward and inverse mappings in the case of the vertical-displacement 

model, with the NKO orbital plane parallel to the equatorial plane. Lastly, the analytical formulations of the 

thrust-induced acceleration starting from both KEP and MEE have been demonstrated to be valid. 

A summary of advantages and drawbacks of the mappings for both the direct and inverse problems is 

shown in Tables 1 and 2, respectively, for each set of osculating elements considered. 

Table 1. NKO to osculating orbital elements map. Summary of advantages and drawbacks. 

 KEP MEE AIoM 

Advantages 

 Easy to understand 

 Only one element is time de-

pendent 

 Easy formulation (no 

piecewise cases) 

 Robust to uncertainties 

 Robust to the switch apo-

gee/perigee 

 No singularities 

 Easy formulation 

 No singularities 

Drawbacks 

 Piecewise formulation 

 Very sensitive to uncertainties 

 Issues around 0z   

 Singularity: 0 if 0z   

 Very sensitive to the switch 

apogee/perigee 

 5 elements are time depend-

ent 

 Less intuitive 

 7 elements instead of 6 

 Very sensitive to the 

switch apogee/perigee (ec-

centricity vector changes 

sign) 

 

Table 2. Osculating orbital elements to NKO map. Summary of advantages and drawbacks. 

 KEP MEE AIoM 

Advantages 

 Easy to understand 

 Easy formulation 

 Robust to uncertainties 

 Easy formulation 

 Robust to uncertainties on 

in-plane elements 

 

Drawbacks 

 Out-of-plane displacement very 

sensitive to uncertainties on in-

clination 

 Out-of-plane displacement 

very sensitive to uncertain-

ties on out-of-plane ele-

ments 

 Piecewise formulation 

 Extremely sensitive to 

errors in eccentricity and 

true longitude 

 

Arbitrary-Orientation Model 

Three scenarios have been tested in order to both verify the validity of the arbitrary-orientation forward 

mappings and study the behavior of the osculating orbital elements. The three test cases have been chosen 

to be feasible mission scenarios in the near future. For this reason, only small-displacement NKOs are con-

sidered which can be generated with near-term technology. 

The first scenario consists of a 35-km out-of-plane (Type 1) and in-plane (Type 3) displaced GEO, as 

described in the case of the vertical-displacement model. The second scenario is a 5-km out-of-plane (Type 

1) and in-plane (Type 3) displaced global positioning system (GPS) orbit. In this scenario, the spacecraft 

hovers above/below or inside/outside the GPS spacecraft for visual inspection. Moreover, a distance of 5 

km can be considered within the range for proximity operations.13 The orbit considered for describing the 

GPS orbit is related to the PRN-06 satellite, and its orbital parameters are accurate with respect to the Yu-

ma Almanac 2016* (week 0896, GPS Time of Applicability 405504 s). PRN-06 has been chosen because is 

                                                           

* Data available online at https://celestrak.com/GPS/almanac/Yuma/2016/ [retrieved 25 October 2016]. 

https://celestrak.com/GPS/almanac/Yuma/2016/
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the one with the lowest value of eccentricity ( 30.22 10e   ) among those reported in the Yuma Almanac 

and, therefore, a circular orbit is a good approximation. The third and last scenario taken into account is a 

1-km out-of-plane (Type 1) and in-plane (Type 3) displaced Sun-synchronous orbit (SSO). As for the pre-

vious scenario, a 1-km range can be used for visual inspection of the SSO satellite and is within the range 

for proximity operations. In terms of NKO elements, the characteristics of the GEO orbit are defined in Eq. 

(34) together with 0j   . The GPS and SSO orbits are characterized, in terms of NKO elements, by 

 3 3
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0 0
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  (38) 

Signatures. The aforementioned test cases have been used to seek key characteristics of signatures that can 

provide a simple and reliable indication that a spacecraft is being forced along a non-Keplerian orbit. Both 

KEP and MEE are characterized by four elements that can be used to identify a NKO. Therefore, assuming 

perfect knowledge of the NKO geometry, the elements that show a peculiar trend are shown in Eq. (39), in 

which   is the semi-amplitude of the cosine wave related to the element   and   is a generic phase. 
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  (39) 

Impact of noise. The impact of noise on the NKO elements is considered here to study the signatures of 

NKOs in the presence of noise on orbit determination. The same scenarios used to study the signatures 

have been considered. However, only the Type 1 NKOs with a positive displacement are considered. 

Three values for the noise have been considered in this study, consisting of upper/lower boundaries and 

a value inside this range. For the upper boundary, the maximum range error 24 mr   and range rate 

error 0.16 m sr  , due to the instrumental errors, are considered.14 A second set of values for the noise 

is considered by dividing the upper boundary by a factor of 10. It will be seen that these values lie within 

the range defined by upper and lower boundaries. A lower boundary on the noise can be set by considering 

the errors in the orbit determination of the test cases. Because these errors are the result of filtering process-

es (i.e. a Keplerian orbit is assumed in the first place), these values are considered here as the lower bound-

ary, as follows.15-17 
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r
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  (40) 

A Monte Carlo analysis has been carried out to obtain the maximum values of the errors on the Kepleri-

an inclination i  and RAAN   from the aforementioned errors. 500 samples of Cartesian position and 

velocity vectors in a normal distribution have been considered with mean values corresponding to the nom-

inal Cartesian states. The standard deviation considered for each component of the position vector is r , 

assuming the range error being equal to r . The standard deviation considered for each component of the 
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velocity vector is v , assuming the range rate error being equal to v . Considering the conversion 

from Cartesian state to KEP, the errors given by the aforementioned values provide an estimate of i  and 

 . The three sets of errors considered here are, therefore, the following. 
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  (41) 

It is important to note that 180 deg  in the cases 1-2 related to GEO. This is due to the planar na-

ture of GEO and, therefore, the fact that RAAN is arbitrarily set to zero. Even a small error can introduce a 

small inclination and, therefore, a value of  0,2 . On the other hand, the value of the error on RAAN 

for case 3 is significantly lower because of the filtering. The errors  , ,i  r  are used to estimate 

the noise to be considered for the NKO elements. A Monte Carlo analysis has been carried out with 500 

samples of NKO elements in a normal distribution. The mean values considered are the nominal values of 

NKO elements  0 0 0 0, , ,z j  , whereas the standard deviations are   0 0sin , 3 , ,z i   r r , 

respectively. The value of the angular velocity is simply given by 
3   , in which   is the NKO 

orbit radius with noise. 

Figures 9 and 10 both show GEO and Type 1 NKOs in the presence of noise as from Eq. (41) for cases 

1 and 2, respectively. Both figures have been generated using the Cartesian position vectors resulting from 

the osculating KEP obtained through the forward map from NKO elements with noise. The figures show 

that the Keplerian GEO and the NKO are clearly distinguishable for the value of noise related to Case 2. 

On the contrary, the same is not true for the three-dimensional orbits of both the GPS and SSO cases. That 

is, in the GPS and SSO cases, one cannot understand if the orbit is Keplerian or non-Keplerian. 

Figure 11 shows a comparison between all scenarios and noise levels. The evolution of the out-of-plane 

MEE k  has been chosen for comparison. It can be seen that the first level of noise is too large to be able to 

distinguish Keplerian from non-Keplerian orbits. On the other hand, with the third level of noise, which has 

been considered as the lower bound, all test cases show a clear division between the two types of orbits. If 

the second level of noise is considered, the signatures of a spacecraft being forced along an NKO are still 

clear in the GPS and SSO cases. In fact, the constant trend of k  that is peculiar to a Keplerian orbit is 

clearly different to the sinusoidal trend of k , which is characteristic of an NKO. On the contrary, the GEO 

case is still too noisy to be able to separate the two trends. This is due to the very large error on RAAN 

considered (Eq. (41)). 

Lastly, it is interesting to study the thrust-induced acceleration needed to follow the osculating elements 

in presence of noise. However, the formulation of the acceleration as a function of the osculating elements 

shown in Eqs. (22) – (27) has been derived for a reference frame so that viewed from an inertial frame of 

reference, such solutions correspond to circular orbits displaced above the central body.2 That is, the ref-

erence frame should be rotated following the inclination and RAAN of the nominal Keplerian orbit before 

computing the magnitude of the acceleration. Assuming a knowledge of the nominal Keplerian orbit, the 

reference frame can be rotated by the RAAN and inclination following the rotations    3 1R R j  . This 
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is a good assumption since the data are noisy around the nominal values. Therefore, the values of RAAN 

and inclination can be considered as the mean values of the data available. 

 

Figure 9. GEO and NKO. Noise level case 1. 

 

Figure 10. GEO and NKO. Noise level 

case 2. 

 
a) GEO. Noise level case 1. 

 
b) GEO. Noise level case 2. 

 
c) GEO. Noise level case 3. 

 
d) GPS. Noise level case 1. 

 
e) GPS. Noise level case 2. 

 
f) GPS. Noise level case 3. 

 
g) SSO. Noise level case 1. 

 
h) SSO. Noise level case 2. 

 
i) SSO. Noise level case 3. 

Figure 11. Evolution of k over one orbit. All mission scenarios and noise levels are shown. 
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a)  b)  

Figure 12. Magnitude of acceleration over one orbit for noise level case 2. a) GEO. b) GPS. 

This way, the rotated Cartesian state describes a noisy orbit with approximately zero inclination. There-

fore, the analytical formulation of the acceleration given either osculating KEP or MEE shown in Eqs. (22) 

and (26) can be used to provide a first-guess approximation of the magnitude of the acceleration needed to 

follow the observed NKO. Moreover, the value of the magnitude of acceleration can be a further indication 

of the use of a NKO. Figure 12 shows the magnitudes of acceleration computed considering the second 

level of noise for the GEO and GPS cases. 

Summary. In Table 3, the impact of noise on the mappings is summarized. Those signatures that, de-

spite the noise, can provide a clear and reliable indication that a spacecraft is being forced along a non-

Keplerian orbit are highlighted for each case study under consideration. 

Table 3.  Summary of the impact of noise on the NKO signatures. 

 Signatures Issues 

GEO 

GEO and NKO are clearly defined from the 

following (Cases 2-3 only): 

 3D orbits 

 Osculating inclination 

 a  (vertical-displacement analytical ap-

proach) 

 Case 1 is too noisy 

 From  , ,  and all MEE, GEO and NKO are not 

clearly defined 

GPS 

SSO 

GPS/SSO and NKO are clearly defined from 

the following (Cases 2-3 only): 

 Elements  , , ,i h k  

 a  (vertical-displacement analytical ap-

proach) 

 Case 1 is too noisy 

 From  ,  , GPS/SSO and NKO are not clearly de-

fined 

 The magnitude of the in-plane MEE is too small 

 GPS/SSO and NKO are not clearly defined from the 3D 

orbits 

 a can be used only if j  and   are known. 

CONCLUSIONS 

This paper has presented a mapping between highly non-Keplerian orbit (NKO) geometry and classical 

orbital elements for both the direct and inverse problem. Three sets of elements have been discussed and 

mappings have been derived in closed, analytical form. Two models have been considered for the NKOs: a 

vertical-displacement model, in which the NKO orbital plane is parallel to the equatorial plane, and an arbi-

trary-orientation model, in which no assumptions are made. For the vertical-displacement model, it has 

been shown that the main drawback of using the classical Keplerian elements (KEP) is due to the piecewise 

formulation required for a forward mapping. A simpler formulation characterizes, instead, a forward map-

ping that uses the augmented integrals of motion. However, the main drawback of using this set of elements 
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is the extreme sensitivity to uncertainties in eccentricity and true longitude that characterizes the inverse 

mapping. Lastly, the modified equinoctial elements (MEE) provide both a simple formulation and have low 

sensitivity to uncertainties in both the forward and inverse mappings. For the arbitrary-orientation model, 

the forward map has been derived in closed, analytical form. It has been shown that both KEP and MEE are 

characterized by piecewise formulations. Three test cases have been chosen that show a broad range of ap-

plicability of the maps. Using the same test cases, noise has been added to the initial NKO elements to as-

sess the impact on estimates of the classical orbital elements. It has been demonstrated that, despite the 

noise, signatures exist that can provide a clear and reliable indication that a spacecraft is being forced along 

an NKO. Lastly, it has been shown that a first-guess approximation of the magnitude of the acceleration 

needed to follow the observed NKO can be obtained. Both KEP and MEE have equal advantages and 

drawbacks in the case of the arbitrary-orientation forward map. Therefore, in order to clearly distinguish a 

Keplerian orbit from a NKO using their orbital elements, it is important to look at: a) three-dimensional 

orbit; b) osculating i  and  ; c) osculating out-of-plane MEE h  and k ; and d) magnitude of the thrust-

induced acceleration. 
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