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 2 

ABSTRACT 1 

 2 

Exposure to UV-B light regulates numerous aspects of plant metabolism, morphology 3 

and physiology through the differential expression of hundreds of genes. 4 

Photomorphogenic responses to UV-B are mediated by the photoreceptor UV 5 

RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in 6 

understanding UVR8 action: the structural basis of photoreceptor function, how 7 

interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) initiates 8 

signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) 9 

proteins negatively regulate UVR8 action. In addition, recent research shows that 10 

UVR8 mediates several responses through interaction with other signaling pathways, 11 

in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain 12 

poorly understood. Most research to date has been undertaken with Arabidopsis, and 13 

it is important to explore the functions and regulation of UVR8 in diverse plant species. 14 

Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, 15 

regulates processes under natural growth conditions. UV-B regulates the expression 16 

of many genes through UVR8-independent pathways, but the activity and importance 17 

of these pathways in plants growing in sunlight are poorly understood.  18 

 19 

Key-words: UV-B; UVR8; photomorphogenesis; photoreceptor; RUP proteins; COP1; 20 

auxin signaling 21 
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 3 

Short summary 1 

 2 

Exposure to UV-B light regulates plant metabolism, morphology and physiology 3 

through differential gene expression. This review summarises current understanding 4 

of the role of the photoreceptor UVR8 in mediating photomorphogenic responses to 5 

UV-B, including its interactions with other signaling pathways and its action under 6 

natural growth conditions.  7 

 8 

  9 
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 4 

INTRODUCTION 1 

 2 

Ultraviolet B (UV-B) wavelengths (280-315 nm) are a minor component of sunlight, but 3 

they have a major regulatory impact on plant growth and development. Much of the 4 

UV-B radiation and all the highly damaging UV-C radiation that impinges on our planet 5 

is absorbed by the stratospheric ozone layer, whereas UV-A wavelengths are 6 

transmitted. Only wavelengths above approximately 295 nm are present in the 7 

daylight spectrum and the UV-B component is normally less than 1% of incident light. 8 

The relative level of UV-B in sunlight is very variable because it is strongly affected by 9 

diurnal, seasonal and meteorological factors and also by latitude, altitude and 10 

atmospheric pollution (Paul & Gwynne-Jones 2003; Bais et al. 2015). In addition, 11 

since the ozone layer varies in thickness over the earth, some regions have higher 12 

relative levels of UV-B than others. Furthermore, UV-B radiation has complex 13 

interactions with environmental factors associated with climate change (Williamson et 14 

al. 2014), which has important implications for plant distribution. 15 

Although UV-B wavelengths have the potential to damage molecules such as 16 

DNA and to impair cellular processes, plants growing in sunlight rarely show signs of 17 

UV-damage because they have evolved efficient means of protection. It is well 18 

established that UV-B exposure induces an acclimation response that both minimises 19 

UV-B penetration into tissues and repairs potential damage by high levels of UV-B 20 

(Jansen et al. 1998; Frohnmeyer & Staiger 2003; Jenkins 2009). This response 21 

includes the well documented synthesis of phenolic compounds that are deposited in 22 

epidermal tissues and act as a UV-absorbing sunscreen (Caldwell et al. 1983; Li et al. 23 

1993; Stapleton & Walbot 1994; Landry et al. 1995; Rozema et al. 1997). Moreover, 24 

the effects of UV-B on metabolism and biochemical content promote defence against 25 

pests and enhance nutritional qualities of many plants harvested for food (Ballaré et 26 

al. 2012; Schreiner et al. 2012). In addition, many regulatory effects of UV-B on plant 27 

morphology and development have been reported (Klein 1978; Tevini & Teramura 28 
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1989; Jordan 1996; Jansen 2002; Robson et al. 2015); for instance, UV-B exposure 1 

generally reduces extension growth and leaf expansion and increases leaf thickness 2 

and axillary branching. Thus, ambient UV-B should be regarded as a key regulatory 3 

stimulus that modulates plant metabolism and development and actively promotes 4 

viability in diverse ecosystems.   5 

Research in the 1970’s demonstrated that low doses of UV-B elicit 6 

photomorphogenic responses in plants, which include the inhibition of hypocotyl 7 

extension, promotion of cotyledon expansion and stimulation of flavonoid biosynthesis 8 

(Wellmann, 1976, 1983; Ballaré et al. 1995; Boccalandro et al. 2001; Suesslin & 9 

Frohnmeyer, 2003; Ryan et al. 2001). These observations suggested the existence of 10 

a specific UV-B photoreceptor, but little progress was made in its identification for 11 

several decades. The application of a genetic approach in Arabidopsis was key, and 12 

led to the discovery that mutants in UV RESISTANCE LOCUS 8 (UVR8) are defective 13 

specifically in photomorphogenic UV-B responses (Kliebenstein et al. 2002; Brown et 14 

al. 2005; Favory et al. 2009). Subsequent functional and structural characterization 15 

revealed that UVR8 is a UV-B photoreceptor that mediates photomorphogenic 16 

responses and has a unique mechanism of photoreception (Rizzini et al. 2011; 17 

Christie et al. 2012; Wu et al. 2012).  18 

There is presently considerable interest in UV-B-mediated 19 

photomorphogenesis following the discovery of UVR8. Nevertheless, much remains to 20 

be learnt about how UVR8, and UV-B in general, regulates plant processes. The 21 

purpose of this article is to summarise current understanding of the regulatory effects 22 

of UV-B on plants, highlighting both mechanistic aspects and relevance to plants 23 

growing in natural conditions. Further discussion of the topic can be found in several 24 

reviews, including: Jenkins (2009; 2014a, b), Heijde and Ulm (2012), Tilbrook et al. 25 

(2013), Hideg et al. (2013), Li et al. (2013); Robson et al. (2015), Ulm & Jenkins 26 

(2015) and Vanhaelewyn et al. (2016a). 27 

 28 
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 6 

MULTIPLE MOLECULAR PATHWAYS ARE INVOLVED IN PLANT RESPONSES 1 

TO UV-B 2 

 3 

Plant responses to UV-B are achieved through the regulation of gene expression 4 

(Brosché & Strid 2003, Ulm & Nagy 2005; Jenkins 2009). Transcriptome analyses, in 5 

particular with maize (Casati & Walbot 2003, 2004; Casati et al. 2006; Casati et al. 6 

2011a, b) and Arabidopsis (Brosché et al. 2002; Ulm et al. 2004, Brown et al. 2005, 7 

Kilian et al. 2007, Oravecz et al. 2006; Hectors et al. 2007; Brown & Jenkins 2008; 8 

Favory et al. 2009; Morales et al. 2013) have demonstrated that exposure to UV-B 9 

differentially regulates the expression of hundreds of genes in diverse functional 10 

categories. Nevertheless, the gene lists vary considerably, depending on the age and 11 

growth conditions of the plants, the UV-B dose (fluence rate and duration) and the 12 

spectral quality of the UV-B source. Low doses of longer wavelength UV-B activate 13 

expression principally via UVR8 (Fig. 1). For instance, Favory et al. (2009) found that 14 

nearly all the genes regulated by exposure of Arabidopsis seedlings to 1 or 6 hours of 15 

narrowband UV-B (λmax 312 nm) were under UVR8 control. In contrast, shorter 16 

wavelengths and higher doses of UV-B induce additional sets of genes, many of 17 

which are in common with those induced by various stress treatments (Ulm et al. 18 

2004, Kilian et al. 2007, Brown & Jenkins 2008; Fig. 1).  19 

The above studies show that UV-B can regulate gene expression both by UV-20 

B specific, UVR8 photoreceptor mediated signaling, and by activation of pathways that 21 

are not specific to UV-B (Brosché & Strid 2003; Jenkins & Brown 2007; Jenkins 2009; 22 

Fig. 1). The latter include DNA damage signaling and defence and wound signaling 23 

pathways; MAP kinase activity, reactive oxygen species (ROS), salicylic acid, nitric 24 

oxide, ethylene and jasmonic acid have all been implicated in UV-B induced gene 25 

expression responses (A-H-Mackerness 2000, A-H-Mackerness et al. 2001; Jenkins & 26 

Brown 2007; Jenkins 2009; Gonzalez Besteiro et al. 2011; Tossi et al. 2011; Hideg et 27 

al. 2013; Vanhaelewyn et al. 2016a). Moreover, several plant hormone signaling 28 
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pathways are involved in both UVR8 mediated and non-specific UV-B responses 1 

(Vanhaelewyn et al. 2016a).  2 

Clearly it is important to determine which pathways mediate plant UV-B 3 

responses in natural growth environments. Do non-specific UV-B pathways regulate 4 

gene expression under ambient conditions or are they only activated by non-5 

physiological laboratory treatments? If both UVR8-mediated and non-specific UV-B 6 

pathways operate, under what conditions are they active and what is their relative 7 

importance to the plant? The answers to these questions are not clear, but some 8 

information is available. Undoubtedly UVR8 is a key regulator of gene expression in 9 

natural environments because it will mediate acclimation to changing levels of ambient 10 

UV-B, both to prevent UV-damage through sunscreen biosynthesis and to repair UV-11 

damage. Moreover, expression of antioxidant genes, mediated substantially by UVR8, 12 

primes plants to deal with oxidative stress if they become exposed to high levels of 13 

UV-B (Hideg et al. 2013). In addition, UVR8 mediates expression of genes concerned 14 

with morphological responses and defence. Nevertheless, there is evidence that 15 

UVR8 action does not account for all UV-B induced gene expression in plants 16 

exposed to sunlight (Morales et al. 2013). Gene expression mediated by non-UVR8 17 

pathways is likely to occur in natural conditions in response to fluctuations in levels of 18 

UV-B. When plants acclimated to a particular level of UV-B are exposed to a 19 

significantly higher level, non-specific UV-B signaling pathways may be activated, 20 

leading to altered gene expression. Mild UV-B stress conditions are unlikely to cause 21 

damage and may be beneficial if they stimulate the plant to ‘re-assess’ its acclimation 22 

status. Robson et al. (2015) suggest that both UVR8 and non-UVR8 signaling 23 

pathways may regulate morphogenesis in natural conditions. In addition, other 24 

processes may be regulated by a combination of UV-B pathways. Various genes, 25 

including those encoding the cyclobutane pyrimidine dimer photolyase PHR1 (Li et al. 26 

2015) and the E3 ubiquitin ligase ARIADNE12 (Xie et al. 2015) are regulated by both 27 

UVR8 and non-UVR8 pathways, depending on the spectral quality and fluence rate.  28 
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It is important to consider how responses to diurnal fluctuations in ambient UV-1 

B are integrated with underlying circadian regulation. The UV-B induction of many 2 

genes is ‘gated’ by the circadian clock to ensure they are expressed at the appropriate 3 

times of day (Feher et al. 2011; Takeuchi et al. 2014). UVR8 mediates the ability of 4 

low fluence rates of UV-B to entrain the Arabidopsis circadian clock and this involves 5 

the regulation of genes encoding clock components (Feher et al. 2011). Interestingly, 6 

Takeuchi et al. (2014) observed that in Arabidopsis, sensitivity to a brief UV-B stress 7 

treatment is greater during the night than the day and that the circadian clock 8 

regulates this sensitivity. However, uvr8 mutant plants were not altered in their 9 

sensitivity to the short stress-inducing UV-B treatment (Horak & Farré 2015). Thus, 10 

both UVR8-dependent and UVR8-independent UV-B signaling pathways may operate 11 

at particular times of day in response to different fluence rates of UV-B to regulate 12 

acclimation and stress protection in natural growth conditions. The balance of pathway 13 

activation will depend on several factors: the adaptation of a particular genotype to its 14 

UV-B environment, the extent of acclimation to the ambient level of UV-B, the type 15 

and timing of UV-B exposure (in particular the fluence rate and duration in natural 16 

conditions) and the presence of other abiotic and biotic factors (Jenkins 2009; Fig. 1). 17 

 18 

MOLECULAR BASIS OF UVR8 ACTION 19 

 20 

Initial characterization of UVR8 mediated responses: UVR8 functions with COP1 21 

and HY5 22 

UVR8 was originally identified in a genetic screen for Arabidopsis mutants 23 

hypersensitive to UV-B (Kliebenstein et al. 2002). Further alleles were obtained in 24 

screens for mutants impaired in UV-B induced luciferase expression driven by the 25 

promoters of either the CHALCONE SYNTHASE (CHS; Brown et al. 2005) or 26 

ELONGATED HYPOCOTYL 5 (HY5; Favory et al.  2009) genes. Initial 27 

characterization of uvr8 mutant plants showed that they are altered specifically in 28 
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responses to UV-B (Brown et al. 2005). In addition, transcriptome analysis explained 1 

why uvr8 has reduced viability under UV-B illumination; the mutant fails to induce 2 

genes concerned with UV-protection, including flavonoid biosynthesis, DNA repair and 3 

antioxidant activity. Another important finding was that UVR8 mediates the rapid, UV-4 

B induced expression of the HY5 transcription factor and the closely related HY5 5 

HOMOLOG (HYH) (Brown et al. 2005). HY5 is the major effector of UVR8 action, in 6 

that it regulates transcription of numerous downstream target genes, but in several 7 

cases it functions redundantly with HYH (Brown & Jenkins 2008). A further important 8 

discovery was that CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) acts as a 9 

positive regulator of responses to UV-B mediated by UVR8 (Oravecz et al. 2006). 10 

Moreover, transcriptome analysis revealed extensive overlap in the sets of genes 11 

regulated by UVR8 and COP1, with both proteins required for HY5 and HYH 12 

expression (Favory et al. 2009). Thus, the model of UVR8 action that emerged from 13 

these initial studies was that UVR8 and COP1 function together in the same pathway 14 

upstream of the transcriptional effectors HY5 and HYH (Brown et al. 2005; Oravecz et 15 

al. 2006; Brown & Jenkins, 2008; Favory et al. 2009). Furthermore, Favory et al. 16 

(2009) made the key observation that UV-B exposure induces a physical interaction 17 

between UVR8 and COP1. Current models of UVR8 action (see Fig. 2) are based on 18 

these initial findings. 19 

 20 

Photoreception by UVR8  21 

The structure of UVR8 and its mechanism of photoreception have been discussed in 22 

detail in several previous reviews (Tilbrook et al. 2013; Jenkins 2014a, b; Yang et al. 23 

2015) and will only be summarized here. X-ray crystallography (Christie et al. 2012; 24 

Wu et al. 2012) revealed that UVR8 is a 7-bladed β-propeller protein, as expected 25 

from the gene sequence obtained by Kliebenstein et al. (2002). UVR8 exists as a 26 

homo-dimeric protein in the absence of UV-B (Rizzini et al. 2011; Christie et al. 2012; 27 

Wu et al. 2012). The dimer is held together by salt-bridge interactions between 28 
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charged amino acids across the dimer interface. Mutational analysis identified 1 

particular amino acids that are key to maintaining the dimer structure, notably 2 

arginines R286 and R338, which interact with specific aspartate and glutamate 3 

residues on the opposing monomer (Christie et al. 2012; Wu et al. 2012; Heilmann et 4 

al. 2016). UV-B photoreception results in neutralization of these interactions, leading 5 

to dissociation of the dimer into monomers (Fig. 2). As discussed further below, this 6 

process is crucial because monomeric UVR8 initiates signaling. 7 

UVR8 is unique among photoreceptors in that it does not use an attached 8 

chromophore for the absorption of specific wavelengths. Instead, tryptophan amino 9 

acids in the primary sequence of UVR8 absorb UV-B, essentially acting as intrinsic 10 

chromophores. A cluster of tryptophans located at the dimer interface is crucially 11 

important in photoreception. In particular, mutation of either tryptophan W233 or W285 12 

to phenylalanine essentially prevents UVR8 functioning as a UV-B photoreceptor 13 

(Rizzini et al. 2011; Christie et al. 2012; Wu et al. 2012; Liu et al. 2014; Miyamori et al. 14 

2015; Zeng et al. 2015). Similarly, responses to UV-B are strongly impaired in plants 15 

expressing these UVR8 mutants (O’Hara & Jenkins 2012; Heijde et al. 2013; Huang et 16 

al. 2013, 2014). Hence W233 and W285 have essential, non-redundant functions in 17 

UVR8 photoreception. These tryptophans are closely associated with key salt-bridge 18 

amino acids in the dimer interface (Christie et al. 2012; Wu et al. 2012). 19 

Computational modeling (Wu et al. 2014; Li et al. 2014; Voityuk et al. 2014) and 20 

experimental studies (Liu et al. 2014; Mathes et al. 2015) indicate that proton coupled 21 

electron transfer (PCET) from chromophore tryptophans to adjacent charged amino 22 

acids neutralises key cross-dimer salt-bridges. Mathes et al. (2015) used time-23 

resolved absorption and fluorescence spectroscopy to monitor sub-second 24 

photochemical processes following UV-B absorption by UVR8, and proposed that 25 

PCET from W285 neutralises the salt bridges involving R286 and aspartates D96 and 26 

D107. In addition, low temperature dynamic crystallography revealed that 27 

photoreception causes reorientation of the indole rings of W233 and W285, resulting 28 
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in the ejection of a water molecule involved in formation of hydrogen bonds between 1 

W285, R286 and D96, weakening the network of interactions that maintain the dimer 2 

(Zeng et al. 2015).  3 

 4 

UVR8 signal transduction 5 

Importantly, Rizzini et al. (2011) found that UVR8 monomers generated by UV-6 

B photoreception are able to interact with COP1 to initiate signaling (Fig. 2). Several 7 

studies provide evidence that conformational changes accompany UVR8 monomer 8 

formation (Rizzini et al. 2011, Heilmann et al. 2014, Miyamori et al. 2015, Zeng et al. 9 

2015) and likely facilitate the binding of COP1. A key region of UVR8 involved in the 10 

UV-B dependent interaction with COP1 lies towards the C-terminus of the protein. 11 

This 27 amino acid region, termed C27, interacts with the WD40 domain of COP1 and 12 

is required for UVR8 function in vivo (Cloix et al. 2012, Yin et al. 2015). However, the 13 

mechanism of interaction of UVR8 and COP1 is not fully understood (see below).  14 

The finding that COP1 has a positive role in UV-B responses (Oravecz et al. 15 

2006) was unexpected because it is a well known repressor of photomorphogenesis 16 

(Lau & Deng 2012; Huang et al. 2014a). COP1, bound to a SUPPRESSOR OF 17 

PHYA-105 (SPA) protein, acts as a substrate receptor for E3 ubiquitin-ligase 18 

complexes that degrade positive regulators of light responses, including HY5 19 

(Osterlund et al. 2000; Zhu et al. 2008; Lau & Deng, 2012; Huang et al. 2014a). The 20 

binding of COP1-SPA to UVR8 reduces its association with CUL4-DDB1 (Huang et al. 21 

2013; Fig. 2). Hence, the sequestration of COP1 reduces its ability to mediate 22 

targeted proteolysis, and consequently HY5 is stabilized following UV-B exposure 23 

(Favory et al. 2009; Huang et al. 2013). Whether this mechanism entirely explains the 24 

accumulation of HY5 under UV-B illumination is not clear, because there is evidence 25 

that COP1 is required to prevent HY5 degradation by an unidentified proteolytic 26 

activity under UV-B exposure (Huang et al. 2013). 27 
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The stabilization of HY5 under UV-B conditions in wild-type plants stimulates 1 

further HY5 accumulation because the protein positively regulates its own 2 

transcription (Binkert et al. 2014). In addition, HY5 is involved in the stimulation of 3 

COP1 transcription (Huang et al. 2012) and COP1 protein is stabilized following UV-B 4 

exposure (Favory et al. 2009; Heijde et al. 2013; Huang et al. 2014b). Together these 5 

elements of regulation generate a positive feedback loop on HY5 expression, 6 

facilitating the transcription of UVR8 target genes (Fig. 2). Some mutant forms of 7 

UVR8 are altered in COP1 binding, which may have functional consequences. This is 8 

seen with alanine mutants of either tryptophan W285 or arginine R338: constitutive 9 

interaction of UVR8W285A and UVR8R338A with COP1 causes COP1 sequestration and 10 

HY5 stabilization, resulting in plants with a partial cop mutant phenotype (short 11 

hypocotyls and open cotyledons in seedlings) (Heijde et al. 2013; Huang et al. 2014b). 12 

This phenotype is exaggerated when the UVR8W285A mutant is over-expressed (Heijde 13 

et al. 2013).  14 

UVR8 is localized principally in the cytoplasm in plants that have never been 15 

exposed to UV-B, but rapidly accumulates in the nucleus following treatment with low 16 

doses of UV-B (Kaiserli & Jenkins 2007). In principle, nuclear accumulation could be 17 

achieved through translocation into the nucleus, but also by retention in the nucleus if 18 

there is cycling between the nucleus and cytoplasm. UVR8 does not possess an 19 

obvious nuclear localization signal (NLS) and therefore translocation into the nucleus 20 

would require interaction with another protein containing a NLS. Yin et al. (2016) 21 

recently reported that COP1 is required for nuclear accumulation of UVR8 and 22 

proposed that COP1, which has a NLS, is directly involved in mediating nuclear 23 

translocation of UVR8 through a co-import mechanism. It is also possible that UVR8 is 24 

retained in the nucleus when it is active in signaling in association with COP1. 25 

Moreover, since it takes many hours for the photoreceptor to re-accumulate in the 26 

cytoplasm when UV-B treated plants are returned to darkness (Kaiserli & Jenkins 27 
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2007), it is likely that UVR8 remains in the nucleus in plants growing under standard 1 

photoperiodic conditions.    2 

 3 

Negative regulation of UVR8  4 

Photoreception initiates the positive pathway of UVR8 action entailing monomer 5 

formation, binding to COP1 and induction of downstream transcriptional responses. 6 

However, a negative feedback mechanism is in place to constrain UVR8 action and 7 

thus prevent hyper-activation of responses (Fig. 2). Such hyper-activation is seen in 8 

transgenic plants that over-express UVR8 and consequently display increased 9 

hypocotyl growth suppression and gene expression under UV-B conditions (Favory et 10 

al. 2009; Heijde et al. 2013). Negative regulation of UVR8 is mediated by the 11 

REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, RUP1 and 12 

RUP2 (Gruber et al. 2010). A rup1rup2 double mutant displays similar hyper-activation 13 

of UVR8 signaling to that seen in plants over-expressing UVR8. RUP gene expression 14 

is stimulated by UV-B exposure via UVR8 signaling (Gruber et al. 2010). Thus, UVR8 15 

initiates the negative feedback mechanism that limits its own action.  16 

The RUP proteins bind to the same C-terminal region of UVR8 as COP1 and 17 

impair COP1 binding (Cloix et al. 2012; Heijde & Ulm 2013). There is no information 18 

on the relative affinities of COP1 and RUP proteins for binding to UVR8 and it may be 19 

that a relative increase in amount of RUPs following UV-B exposure leads to their 20 

increased association with UVR8 and the displacement of COP1. In addition, the RUP 21 

proteins mediate re-dimerisation of UVR8 monomers (Heijde & Ulm 2013; Fig. 2). 22 

Monomers of purified UVR8 re-associate very slowly in vitro, taking 24 to 48 hours for 23 

completion, whereas the process occurs within less than an hour in vivo (Heilmann & 24 

Jenkins 2013). Re-dimerisation is much slower in rup1rup2 mutant plants than in wild-25 

type (Heijde & Ulm 2013; Findlay & Jenkins 2016). Thus, the RUPs constrain UVR8 26 

action through a combination of COP1 displacement and reversion of the signaling 27 

active monomers to the dimeric form. 28 
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 1 

Some questions regarding UVR8 action 2 

Important questions remain to be addressed regarding virtually every aspect of the 3 

molecular mechanisms of UVR8 action: UV-B absorption and primary photochemistry, 4 

conformational changes, interactions between proteins, nuclear localization, HY5 5 

stabilization and regulation, and downstream transcriptional control. Some of these 6 

issues are discussed below.  7 

One question concerns the role of the UVR8 tryptophans. The 14 tryptophans 8 

in UVR8 are highly conserved in number and position in sequences from diverse 9 

species (Wu et al. 2011; Rizzini et al. 2011; Fernández et al. 2016), but their functions 10 

are not entirely clear. There is evidence both from the crystal structure and mutant 11 

characterization that the ring of 6 tryptophans in the core of the protein helps to 12 

maintain the β-propeller structure (O’Hara & Jenkins 2012). In addition, as outlined 13 

above, it is evident that W233 and W285 are of crucial importance in the mechanism 14 

of photoreception. However, mutational studies of other tryptophans in the dimer 15 

interface have provided little insight into their roles in plants (O’Hara & Jenkins, 2012). 16 

For example, W94 and W337 are very closely associated with the chromophore 17 

tryptophans W233 and W285, but mutation of these tryptophans has relatively little 18 

effect on UVR8 function (Christie et al. 2012; Wu et al. 2012; O’Hara & Jenkins, 19 

2012). Based on calculations of the absorption spectra of individual tryptophans, a 20 

light-harvesting hypothesis has been proposed, whereby peripheral tryptophans 21 

excited by UV-B would transfer exciton energy principally to W233 (Wu et al. 2015; 22 

Yang et al. 2015). Such a mechanism could potentially increase the photoreception 23 

quantum efficiency of UVR8 and broaden the range of UV-B wavelengths over which 24 

it functions. Some biophysical experiments with purified UVR8 protein provide support 25 

for this hypothesis (Liu et al. 2014) whereas others do not (Mathes et al. 2015), but 26 

the key question is whether the mechanism operates in vivo. In this respect, it is 27 

irrelevant whether UVR8 in vitro can absorb UV-B below 295 nm, because only 28 
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wavelengths above approximately 295 nm are present in the daylight spectrum. Action 1 

spectroscopy shows that UVR8 can function at 310 nm in plants (Brown et al. 2009) 2 

and some activity at longer wavelengths is feasible. Hence, detailed photobiological 3 

studies with selected single and multiple tryptophan mutants will be required to 4 

determine the roles of the tryptophans in UVR8 action in vivo. 5 

A second important question concerns the in vivo significance of UVR8 6 

monomer photoreception. In principle, monomeric UVR8 should be capable of 7 

photoreception, in that it contains the necessary tryptophans for UV-B absorbance. 8 

Indeed, constitutively monomeric mutants of UVR8 exhibit UV-B induced 9 

spectroscopic signals similar to the wild-type in vitro (Heilmann et al., 2014; Mathes et 10 

al., 2015; Miyamori et al., 2015). Furthermore, there is now evidence that a mutant 11 

UVR8 protein that is strongly impaired in dimer formation is able to mediate UV-B 12 

responses in vivo similarly to wild-type UVR8 (Heilmann et al. 2016). Aspartates D96 13 

and D107 form salt-bridges with R286 that are crucial in dimer formation, and 14 

conservative mutation of these amino acids to asparagine makes the UVR8 protein 15 

constitutively monomeric in vitro. Similarly, when expressed in plants, only monomeric 16 

UVR8D96N,D107N protein can be detected in extracts, and any dimer formation in cells is 17 

likely to be weak and transient. Nevertheless, the UVR8D96N,D107N mutant mediates UV-18 

B induced gene expression and hypocotyl growth suppression with similar dose-19 

response efficiency to wild-type UVR8 (Heilmann et al. 2016). These findings raise the 20 

question of whether monomeric UVR8 in wild-type plants could also act in 21 

photoreception to mediate responses, or whether only monomer formed by dimer 22 

photoreception is active. This will be a difficult question to answer if there is no 23 

physiological difference between the activity of the monomeric forms derived from 24 

dimer and monomer photoreception, but further examination of monomeric mutants 25 

may help to address this point. 26 

Another key question is: how does UVR8 interact with COP1? UVR8 interacts 27 

with the COP1 WD40 domain via its C27 region (Cloix et al. 2012; Yin et al. 2015), as 28 
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mentioned above, and amino acids valine V410 and proline P411 are essential for this 1 

interaction (Yin et al. 2015). There is evidence that COP1 can also interact with the β-2 

propeller core of UVR8: UVR8 either lacking the C27 region or with both V410 and 3 

P411 mutated to alanine can still interact with COP1 (Yin et al. 2015). It would not be 4 

surprising if a large protein such as COP1 made physical contact with UVR8 in more 5 

than one position, but the extent of interaction with the core appears to be relatively 6 

weak in plants when the C-terminal region is absent (Yin et al. 2015). Moreover, 7 

interaction with the core is not detectable under high stringency conditions (Cloix et al. 8 

2012). Yin et al. (2015) speculated that the WD40 domain of COP1 may interact with 9 

the dimerization surface of UVR8 exposed following monomerisation and that the C-10 

terminus facilitates this interaction. While this is an attractive model, it is not yet clear 11 

whether the C-terminus can fulfill this role. The position of the C-terminus is unknown 12 

because it is not represented in the crystal structures of UVR8. Small-angle X-ray 13 

scattering data suggest that the C-terminus may be located distal to the interaction 14 

surface in the dimer (Christie et al. 2012). In addition, it has been suggested that the 15 

C-terminus could interact with the N-terminus of UVR8 in the dimer to form a β-sheet 16 

structure that impairs interaction with COP1 (Yang et al. 2015). It is not known how 17 

structural changes associated with photoreception and monomerisation, some of 18 

which may be substantial (Zeng et al. 2015), might affect the location of the C-19 

terminus. Structural changes to the β-propeller core of UVR8 following photoreception 20 

are observed in mutants lacking the C-terminal region (Heilmann et al. 2014; Miyamori 21 

et al. 2015), but in the context of the intact protein such changes could influence the 22 

position of the C-terminus and its availability for binding to COP1. There is evidence 23 

from antibody binding (Rizzini et al. 2011) and limited proteolysis experiments 24 

(Heilmann et al. 2014) that the C-terminus becomes more accessible after 25 

monomerisation. Clearly, further information, both on the location of the C-terminus 26 

Page 16 of 53Plant, Cell & Environment



 17

and on conformational changes to UVR8 following monomerisation, is required to 1 

reveal how the protein interacts with COP1.  2 

A further unresolved question is: how does UVR8 regulate transcription? In 3 

vitro experiments showed that UVR8 binds quite strongly to histones immobilized on 4 

agarose beads (Brown et al. 2005), which prompted investigation of in vivo chromatin 5 

association. Chromatin immunoprecipitation (ChIP) experiments provided evidence 6 

that UVR8 associates with genomic sequences of some genes it regulates, such as 7 

HY5 (Brown et al. 2005; Kaiserli & Jenkins 2007; Cloix & Jenkins 2008; Cloix et al. 8 

2012), but not others (Cloix & Jenkins 2008), raising uncertainty about the specificity 9 

of the interaction (Jenkins 2014a). The UVR8 ChIP signal is weak and at the limits of 10 

detection in standard ChIP experiments, and it is therefore difficult to know whether it 11 

represents specific or non-specific binding. Binkert et al. (2016) questioned whether 12 

UVR8 has any association with chromatin; in ChIP experiments with wild-type 13 

Arabidopsis and a line over-expressing UVR8 they did not detect a significant 14 

association of UVR8 with HY5 and MYB12 target sequences. They showed that HY5 15 

gives a much stronger ChIP signal than UVR8, which is consistent with the strong 16 

binding of transcription factors to DNA compared to the relatively weak interaction of 17 

proteins with histones. It would therefore be interesting to assess UVR8 association 18 

with chromatin under conditions that permit the detection of mild interactions. Thus, it 19 

remains unclear whether the weak association of UVR8 with chromatin observed in 20 

previous reports represents a non-specific association or a biologically meaningful 21 

interaction. Interestingly, there is evidence that regulation of transcription mediated by 22 

UVR8 involves a specific histone modification. It was reported that UV-B exposure 23 

increases acetylation of lysines K9 and/or K14 of histone H3 associated with genes 24 

regulated by UVR8 (Cloix & Jenkins 2008). Velanis et al. (2016) found that this 25 

increase in acetylation is dependent on UVR8. Furthermore, ChIP sequencing showed 26 

that all UV-B induced enrichment of H3K9,K14 in the genome is dependent on UVR8. 27 

While this study provides information on the processes through which UVR8 regulates 28 
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transcription, it does not explain how UVR8 influences histone acetylation. The identity 1 

of the histone acetyltransferase(s) involved in UVR8 mediated transcription is 2 

unknown. Histone acetyltransferases are components of protein complexes 3 

associated with chromatin (Lee & Workman 2007), but how UVR8 might affect the 4 

activity of such a complex is an open question. 5 

 6 

RESPONSES MEDIATED BY UVR8: INTEGRATION WITH OTHER PATHWAYS  7 

 8 

Following the discovery of UVR8, researchers started to use uvr8 mutant plants to 9 

investigate whether the photoreceptor is involved in a variety of UV-B responses. 10 

Initial studies demonstrated that UVR8 mediates the suppression of hypocotyl 11 

extension by low fluence rates of UV-B (Favory et al. 2009) and plays a role in the 12 

regulation of leaf expansion by UV-B (Wargent et al. 2009). Subsequent studies 13 

extended the list of responses mediated by UVR8 (Table 1) and the number will likely 14 

continue to grow. 15 

Interestingly, evidence is emerging of a role for UVR8 in plant defence. UV-B 16 

exposure of plants increases resistance to attack by various pests and pathogens 17 

(Roberts and Paul 2006; Ballaré et al. 2012), and this is principally due to biochemical 18 

changes, in particular the synthesis of inhibitory or unpalatable compounds. UVR8 19 

action contributes to some of these protective responses. Morales et al. (2013) found 20 

that UVR8 mediates the UV-B induced expression of several genes concerned with 21 

countering attack by herbivorous pests in Arabidopsis. In addition, the ability of UV-B 22 

exposure to reduce infection by the fungus Botrytis cineria is diminished in uvr8 23 

mutant plants (Demkura & Ballaré 2012). This protection is likely due to UVR8-24 

induced synthesis of sinapic acid derivatives, because the protective response is also 25 

absent in plants defective in sinapate biosynthesis. A recent report suggests that 26 

UVR8 may be involved in systemic acquired resistance (SAR) in Arabidopsis (Carella 27 

et al. 2016). The abundance of UVR8 in phloem exudates of leaves decreased 28 
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following infection with strains of Pseudomonas syringae that induce SAR, relative to 1 

controls. Both uvr8 mutant and UVR8 over-expression lines showed reduced SAR 2 

compared to wild-type, and the authors suggested that UVR8 might have distinct 3 

positive and negative regulatory roles in SAR. However, the experiments were 4 

reportedly undertaken in light conditions lacking UV-B, so it is not clear how UVR8 5 

might be acting in this response. 6 

A recurrent theme in recent research is that UVR8 often functions through 7 

interaction with other signaling pathways. In particular, several studies highlight an 8 

interaction between UVR8 and the hormonal pathways that regulate extension growth. 9 

One example is the role of UVR8 in suppressing the shade avoidance response. 10 

Many plant species respond to the presence of neighbouring vegetation by stimulating 11 

extension growth as a result of increased auxin biosynthesis. Leaves absorb red light 12 

but reflect far-red light, and therefore shading by vegetation leads to a relative 13 

decrease in the ratio of ambient red:far-red light, which is detected by phytochrome, 14 

causing a decrease in Pfr relative to Pr (Casal 2013; Fraser et al. 2016). In turn, the 15 

decrease in Pfr/Pr leads to an increase in stability and activity of several 16 

PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors, notably PIFs 4, 17 

5 and 7, which stimulate expression of auxin biosynthesis genes, leading to extension 18 

growth (Hornitschek et al. 2012; Li et al. 2012). Hayes et al. (2014) showed that UV-B 19 

antagonizes shade avoidance responses in Arabidopsis elicited by low red:far-red 20 

light, and the UV-B effect was strongly impaired in uvr8 mutant plants. UV-B, detected 21 

by UVR8, inhibited the increase in expression of auxin biosynthesis and signaling 22 

genes promoted by reduced red:far-red light. Furthermore, UVR8 signaling stimulated 23 

GA2OXIDASE1 expression, which causes reduced levels of gibberellic acid and 24 

consequent stabilization of DELLA proteins, which antagonize PIF activity (De Lucas 25 

et al. 2008; Feng et al. 2008). Whereas the effect of UV-B on GA2OXIDASE1 26 

expression required HY5/HYH, that on the auxin related genes did not. The 27 

experiments further showed that UV-B elicited destruction of PIFs 4 and 5 and the 28 
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stabilization of DELLA proteins, although it remains to be established directly whether 1 

the effects on these proteins are mediated by UVR8. Thus, UV-B, detected by UVR8, 2 

signals to plants that they are in sunlight and negates shade-induced extension 3 

growth by antagonizing PIF action and auxin biosynthesis.  4 

UV-B also inhibits the morphogenic responses caused by exposure to elevated 5 

temperature, which include hypocotyl extension in seedlings and petiole extension 6 

and leaf elevation in mature plants; again the effect of UV-B is substantially mediated 7 

by UVR8 (Hayes et al. 2016). However, in contrast to the action of UV-B in 8 

suppressing shade avoidance, UV-B inhibition of thermomorphogenesis does not 9 

involve either PIF destruction or an effect on DELLA proteins. PIF4 is a key regulator 10 

of thermomorphogenesis, promoting expression of genes concerned with auxin 11 

biosynthesis and signaling. UV-B inhibits PIF4 transcript accumulation, consequently 12 

preventing an increase in PIF4 protein, and also stabilizes the LONG HYPOCOTYL IN 13 

FAR-RED 1 (HFR1) transcription factor, which binds to PIF4, impairing its ability to 14 

bind to DNA. Together these mechanisms block the accumulation and activity of PIF4 15 

at elevated temperature (Hayes et al. 2016). The inhibition of thermomorphogenesis 16 

by UV-B is likely to be advantageous for plants, as it will prevent detrimental extension 17 

growth under natural conditions where elevated temperature is often accompanied by 18 

exposure to relatively high levels of UV-B. 19 

Another auxin-regulated growth response is phototropism. It is well established 20 

that phototropism in response to unilateral UV-A/blue light is mediated by 21 

phototropins, which direct accumulation of auxin on the non-illuminated side of the 22 

stem, causing localized extension and hence bending towards the light source 23 

(Christie & Murphy 2013). Vandenbussche et al. (2014) reported that UV-B can also 24 

induce phototropic bending, and that the UV-B response in phot1phot2 mutant plants 25 

requires UVR8. However, UV-B induced bending is slower in phot1phot2 than in wild-26 

type, indicating that phototropin action is involved in the wild-type UV-B response, and 27 

that the phototropin mediated response is faster than that mediated by UVR8 28 
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(Vandenbussche et al. 2014; Vandenbussche & Van Der Straeten 2014). Moreover, 1 

the response mediated by phototropin is initiated at lower fluence rates than that 2 

mediated by UVR8 (Vanhaelewyn et al. 2016b). The UV-B induced phototropic 3 

response involves the establishment of an auxin gradient across the hypocotyl, as in 4 

the UV-A/blue light response, but formation of the gradient in UV-B does not require 5 

phototropins and involves some different auxin signaling components to phototropism 6 

mediated by UV-A/blue light (Vandenbussche et al. 2014). UVR8 mediates repression 7 

of genes involved in auxin biosynthesis and signaling, which likely contributes to the 8 

generation of the auxin gradient across the hypocotyl. Vandenbussche & Van Der 9 

Straeten (2014) showed that the accumulation of HY5 on the UV-B exposed side of 10 

the hypocotyl (demonstrated using a HY5-YFP fusion) correlated with UVR8 response 11 

kinetics, and is likely to mediate the repression of auxin biosynthesis genes on the 12 

illuminated side. 13 

A further response involving UVR8 and auxin signaling is leaf epinasty, which 14 

is the downward curling of leaf edges away from incident light. Epinasty is stimulated 15 

by UV-B exposure (Wilson & Greenberg 1993; Jansen 2002) and also by the action of 16 

phyB, whereas phototropins promote leaf flattening (Kozuka et al. 2013). Fierro et al. 17 

(2015) showed that the epinastic response to UV-B in Arabidopsis is mediated by 18 

UVR8, most likely through the regulation of auxin transport. Moreover, they found 19 

considerable overlap in the sets of genes regulated by UVR8 and phyB, notably in the 20 

repression of genes involved in auxin action. The phyB action in epinasty involves the 21 

regulation of specific PIFs (Johansson & Hughes 2014), and there is evidence that 22 

PIFs are required for the UV-B induced response (Fierro et al. 2015). A possible 23 

scenario is that UV-B de-stabilises PIFs, as in the inhibition of shade avoidance, 24 

causing the repression of auxin response genes and consequently initiating the 25 

changes in auxin transport associated with the epinastic response. 26 

Fasano et al. (2014) highlighted the potential interactions between UVR8 and 27 

abiotic stress signaling pathways and proposed that the cross-talk may involve auxin 28 
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signaling. They reported that high salt and osmotic stress stimulate UVR8 expression 1 

and that a uvr8 mutant has increased salt tolerance under UV-B conditions. In 2 

addition, the reduced extension growth of plants over-expressing UVR8, previously 3 

observed by Favory et al. (2009), was enhanced under osmotic stress. Fasano et al. 4 

(2014) found that the UVR8 over-expression phenotype is due to reduced cell 5 

expansion and suggested that the phenotype could be explained by altered auxin 6 

signaling. Abiotic stresses such as drought, salinity and high temperature will often be 7 

accompanied by relatively high fluence rates of UV-B in nature, and the interplay 8 

between UVR8 signaling and auxin signaling could be modulated under such 9 

conditions to regulate growth and promote survival. 10 

The stimulation of stomatal closure by UV-B involves interaction of UVR8 with 11 

different signaling pathways to those that regulate growth responses. In species such 12 

as Vicia faba (Jansen & Noort 2000) and Arabidopsis (Eisinger et al. 2003; He et al. 13 

2013; Tossi et al. 2014), low fluence rates of UV-B stimulate stomatal opening 14 

whereas higher fluence rates promote closure. He et al. (2013) showed that the 15 

closure response in Arabidopsis is mediated by an increase in H2O2, generated 16 

through NADPH oxidase activity. UV-B induced cytosolic alkalinisation is involved in 17 

mediating the increase in H2O2 production (Zhu et al. 2014). In turn H2O2 stimulates 18 

nitric oxide (NO) production (He et al. 2013). Inhibition of endogenous NO 19 

accumulation prevents closure even under conditions where H2O2 remains high (Tossi 20 

et al. 2014). Tossi et al.  (2014) found that UV-B induced stomatal closure is impaired 21 

in uvr8, with a concomitant reduction in H2O2 and NO accumulation in the guard cells. 22 

Nevertheless, the mutant stomata were viable and they closed when either a NO 23 

donor or abscisic acid was added. It is likely that UVR8 acts to promote H2O2 and 24 

hence NO accumulation, but it is not clear how it does so. The UVR8 action likely 25 

involves gene expression, because a mutant lacking the HY5/HYH transcription 26 

factors is impaired in the closure response (Tossi et al. 2014), but the relevant target 27 

genes are not known.  28 
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The ability of UVR8 to influence auxin and gibberellic acid signaling, as well as 1 

redox signaling, is likely to affect a larger number of physiological processes than 2 

reported to date. Furthermore, it is likely that interactions between UVR8 and 3 

additional signaling pathways will be discovered. UVR8 photoreception leads to 4 

sequestration of COP1 and stimulation of HY5 accumulation, and both these proteins 5 

participate in a range of cellular processes (Lau & Deng 2012; Huang et al. 2014a; 6 

Gangappa & Botto 2016). For instance, COP1 is involved in controlling abundance of 7 

the flowering time regulator CONSTANS (Jang et al. 2008; Liu et al. 2008; Sarid-8 

Krebs et al. 2015) and hence UVR8 activation might influence flowering time, as 9 

suggested in some studies (Morales et al. 2013; Fasano et al. 2014). HY5 binds to 10 

over 9000 genomic loci in Arabidopsis (Zhang et al. 2011) and regulates genes in 11 

numerous processes (Gangappa & Botto 2016). Thus, regulation of HY5 provides a 12 

potential mechanism for UVR8 to influence several aspects of plant physiology. Fig. 3 13 

illustrates some of the known and potential interactions involving UVR8.  14 

 15 

HOW DOES UVR8 FUNCTION IN NATURAL GROWTH CONDITIONS? 16 

 17 

To date, most research on UVR8 has been undertaken with either the purified 18 

photoreceptor protein or Arabidopsis plants grown and treated in rather artificial 19 

conditions. Clearly, it is important to understand how UVR8 works in natural growth 20 

environments, where plants grow under photoperiodic cycles usually with much higher 21 

levels of UV-A and photosynthetically active radiation (PAR) than in growth chambers. 22 

One of the first steps in this direction was taken by Morales et al. (2013), who 23 

examined transcriptome profiles and metabolite accumulation in greenhouse-grown 24 

wild-type and uvr8 mutant plants transferred to sunlight, using filters to prevent some 25 

plants being exposed to UV-B, or both UV-B and UV-A, in the daylight spectrum. 26 

Several of the gene expression and metabolite accumulation responses mediated by 27 

UVR8 were similar to those reported previously in experiments in growth cabinets, but 28 
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there were some notable differences, including increased expression of some UV-1 

regulated genes in the uvr8 mutant. The experiments indicate that some UV-B action 2 

is mediated by non-UVR8 pathways and also that the presence of UV-A and/or PAR 3 

can modulate UV-B responses. In addition, evidence was presented that UVR8 can 4 

modify gene expression and accumulation of particular metabolites mediated by UV-5 

A, suggesting cross-talk between UVR8 and cryptochrome signaling. The findings 6 

reveal complexity in responses to UV light in natural sunlight that likely arise from 7 

interactions between different photoreceptor signaling pathways and demonstrate that 8 

further studies are needed to explore UVR8 action in natural conditions.  9 

To understand how UVR8 functions in natural growth conditions it is important 10 

to know how the amount of the signaling-active monomer is regulated. If UVR8 acts 11 

as a simple dimer-to-monomer UV-B switch, one might expect that the photoreceptor 12 

would rapidly be converted to the monomeric form when plants are first exposed to 13 

UV-B in sunlight at the start of the photoperiod, and then would revert to the dimer 14 

overnight. However, this pattern was not seen in Arabidopsis plants growing for 15 

several weeks under photoperiodic cycles with supplementary UV-B (Findlay & 16 

Jenkins 2016). Instead, UVR8 was present as a mixture of dimer and monomer 17 

throughout the diurnal period, with approximately 75% of total UVR8 in the dimeric 18 

form in plants exposed to a range of supplementary UV-B fluence rates. These 19 

experiments show that UVR8 does not operate as a simple UV-B switch under 20 

photoperiodic conditions but exists in a dynamic photoequilibrium, dependent on the 21 

relative rates of monomerisation, resulting from dimer photoreception, and re-22 

dimerisation. The RUP proteins are crucial in maintaining the photoequilibrium, as 23 

they mediate re-dimerisation; rup1rup2 mutant plants failed to establish a stable 24 

photoequilibrium and the relative amount of UVR8 monomer increased during the 25 

photoperiod, reaching 80% of total UVR8.   26 

A mixture of dimer and monomer was also found in plants growing in natural 27 

daylight (Findlay & Jenkins 2016), and a correlation was seen between the formation 28 
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of monomer and the level of ambient UV-B at low fluence rates. However, the relative 1 

amounts of dimer and monomer were quite variable and did not always follow 2 

fluctuations in the amount of ambient UV-B, suggesting that non-UV-B factors could 3 

influence the photoequilibrium. Consistent with this notion, evidence was presented 4 

that temperature could influence the rate of UVR8 re-dimerisation, and the increased 5 

rate of dimer formation at higher temperatures was dependent on the presence of the 6 

RUP proteins. It has been reported that RUP gene expression can be regulated by 7 

different light qualities (Gruber et al. 2010; Wang et al. 2011; Morales et al. 2013) and 8 

is also subject to a circadian rhythm (Wang et al. 2011); whether other factors also 9 

influence RUP expression is unknown. Thus, the control of RUP gene expression 10 

provides an important potential mechanism for regulating UV-B signaling by non-UV-B 11 

factors.  12 

Fig. 4 shows a model for UVR8 action in light-grown plants. The relative 13 

amounts of dimer and monomer are dependent on the rates of monomerisation 14 

through photoreception, and re-dimerisation mediated by RUP proteins. Monomeric 15 

UVR8 initiates gene expression responses, but the relationship between the amount 16 

of monomer and transcriptional activity may not be simple. For example, it is known 17 

that many UVR8-regulated genes are subject to circadian regulation, such as those 18 

involved in flavonoid biosynthesis (Harmer et al. 2000; Feher et al. 2011; Takeuchi et 19 

al. 2014), but the amount of monomer does not appear to be under circadian 20 

regulation, either in growth room conditions or in natural sunlight (Findlay & Jenkins 21 

2016). Hence the mechanism through which UVR8 monomer is coupled to 22 

transcription needs further investigation.   23 

The photoequilibrium mechanism might be advantageous to the plant in that 24 

there is always a pool of dimer to generate signaling-active monomer; so, for instance, 25 

if the fluence rate of UV-B suddenly increases, additional monomer could be formed to 26 

initiate the appropriate response. However, the potential for monomer photoreception 27 

(Heilmann et al. 2016; see above) suggests that plants may not need dimeric UVR8 to 28 

Page 25 of 53 Plant, Cell & Environment



 26

respond rapidly to fluctuations in ambient UV-B, although the extent to which 1 

monomer photoreception occurs under natural conditions is unknown. One advantage 2 

to having a population of dimeric UVR8 is that it limits interaction with COP1. But is 3 

there some other advantage to possessing a dimer and maintaining a dimer-monomer 4 

photoequilibrium? One possibility is that the photoequilibrium may provide a 5 

mechanism for cross-talk with other signaling pathways. Thus, non-UV-B pathways 6 

could modulate the extent of monomer formation, and hence UVR8 action, through 7 

influencing the rate of re-dimerisation, as reported for the effect of temperature 8 

(Findlay & Jenkins 2016). The influence of environmental factors on UVR8 action is 9 

likely achieved through regulation of the expression, and possibly activity, of RUP 10 

proteins (Fig 4).  11 

 12 

UVR8 FUNCTION IN DIVERSE PLANT SPECIES 13 

 14 

Examination of databases of genomic sequences of diverse plant species reveals 15 

numerous putative homologs of UVR8 with key functional amino acids highly 16 

conserved. Sequences encoding proteins with high percentage similarity to 17 

Arabidopsis UVR8 are present in algae (e.g. Chlamydomonas reinhardtii), bryophytes 18 

(e.g. Physcomitrella patens), lycophytes (e.g. the spike moss Selaginella 19 

moellendorffii), and both monocot and dicot Angiosperms (Rizzini et al. 2011; Wu et 20 

al. 2011; Fernández et al. 2016). A study of the genome of the marine Angiosperm 21 

Zostera marina claims that UVR8 is not present (Olsen et al. 2016), and this merits 22 

investigation at the protein level. Nevertheless, the early appearance of UVR8 in plant 23 

evolution and the high degree of sequence conservation in the plant kingdom 24 

emphasize the protein’s functional importance. One can speculate that UVR8 evolved 25 

to help early photosynthetic plants protect themselves against the high levels of UV-B 26 

impinging on the earth in that era, prior to the formation of a mature ozone layer 27 

(Rozema et al. 1997). However, little is known about the functions of UVR8 in such 28 
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species. Recently it was shown that Chlamydomonas reinhardtii UVR8 monomerizes 1 

upon exposure to UV-B, interacting with Chlamydomonas COP1 to induce changes in 2 

gene expression associated with acclimation to UV-B in the algal cells (Tilbrook et al. 3 

2016). Moreover, it was reported that Chlamydomonas UVR8 functionally 4 

complements an Arabidopsis uvr8 mutant, indicating that the mechanism of UVR8 5 

action is conserved through evolution (Tilbrook et al. 2016). It is important to further 6 

explore the functions of UVR8 in early plant species, including in early land plants to 7 

discover when the role of UVR8 in regulating aspects of morphogenesis first 8 

appeared. 9 

Arabidopsis has one UVR8 gene that is constitutively expressed, both spatially 10 

and in different light environments (Rizzini et al. 2011; Kaiserli et al. 2007). However, 11 

there is evidence that UVR8 expression can be affected by various factors in other 12 

species. In maize, UVR8 shows transient changes in expression following UV-B 13 

exposure (Casati et al. 2011a, b). UVR8 expression is subject to developmental 14 

regulation and inhibition by shading and elevated temperature in Vitis vinifera (grape) 15 

berries (Liu et al. 2015; Loyola et al. 2016, who refer to VvUVR8 as UVR1), and is 16 

stimulated by UV-B in apple fruits (Zhao et al. 2016) and sunlight in litchi fruits (Zhang 17 

et al.  2016). In radish (Raphanus sativus), UV-B exposure and abiotic stresses 18 

stimulate UVR8 expression, and evidence was presented that these responses 19 

involve hydrogen peroxide and nitric oxide signaling (Wu et al. 2016). Furthermore, 20 

examination of genomic data reveals that some plant species have several UVR8 21 

genes, raising the possibility of differential expression. There is some evidence of this 22 

in litchi fruits (Zhang et al. 2016), and it will be interesting to see whether it is a 23 

common feature in other species. 24 

 25 

FUTURE PERSPECTIVE 26 

 27 
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Considerable progress has been made in understanding how plants detect and 1 

respond to UV-B light, particularly with the discovery of the previously elusive UV-B 2 

photoreceptor UVR8. The structural analysis of UVR8 has revealed a novel type of 3 

photoreceptor that does not depend on an attached chromophore for wavelength 4 

specificity but uses a tryptophan based photoreception mechanism. Moreover, the 5 

functional characterisation of UVR8 has added an important new dimension to 6 

research in photomorphogenesis. Whereas UV-B signaling has traditionally been 7 

associated with such processes as sunscreen biosynthesis, it is now clear that it 8 

impacts on diverse aspects of plant growth and development, including 9 

morphogenesis, defence, circadian rhythmicity, phototropism and stomatal regulation. 10 

To achieve many of its effects, UV-B signaling interacts with other signaling pathways 11 

in plant cells, including hormonal and redox signaling. The interaction of UV-B 12 

signaling with auxin signaling likely underpins many morphological responses to UV-B 13 

exposure. 14 

Nevertheless, much remains to be learnt about how plants perceive and 15 

respond to UV-B. As discussed in earlier sections, many aspects of UVR8 function 16 

and regulation are not fully understood and detailed information on how UVR8 acts in 17 

a range of responses is lacking. Furthermore, knowledge of UVR8 has been obtained 18 

mainly from research with Arabidopsis, often using artificial growth environments, and 19 

it is important to extend the research both to diverse species and to agricultural and 20 

natural ecosystems. Some progress is being made in these directions but much 21 

remains to be done. The concept that UVR8 operates as a simple dimer-to-monomer 22 

UV-B on/off switch appears too simple to explain how the photoreceptor functions in 23 

natural growth conditions. It is therefore important to further investigate the control of 24 

UVR8 action by non-UV-B factors and the role of RUP proteins in this mechanism, 25 

and also to assess the significance of monomer photoreception in plants growing in 26 

sunlight.  27 
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There is also a lack of knowledge regarding the activity and importance of 1 

UVR8-independent UV-B signaling pathways in natural growth environments. It is 2 

likely that such pathways are stimulated by fluctuations in ambient UV-B, depending 3 

on the acclimation status of the plant and other environmental conditions; but which 4 

pathways are stimulated and how they influence the growth and development of the 5 

plant are not clear. Hence, research is needed to investigate how the different UV-B 6 

pathways act in conjunction with UVR8 to regulate gene expression and physiological 7 

responses under natural growth conditions.  8 
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_____________________________________________________________________ 1 

Table 1. Responses to UV-B mediated by UVR8 2 

Response       References a 3 

Gene regulation      1-10; 13-16, 18-31 4 

UV-B tolerance      1-4; 15, 16, 27 5 

Flavonoid biosynthesis     1, 4, 6, 10, 12, 14-16, 18 6 

Hypocotyl growth suppression    4, 13-16, 18, 20, 26, 29, 30 7 

Leaf/epidermal cell expansion    4, 10, 11, 16, 20 8 

Endoreduplication in epidermal cells    11 9 

Stomata per epidermal cell     11 10 

Entrainment of circadian clock    7 11 

Increased photosynthetic efficiency    8 12 

Photoprotection of photosynthesis    31 13 

Tolerance of Botrytis infection    12 14 

Response to osmotic stress     16 15 

Stomatal closure      17 16 

UV-B induced phototropism     19 17 

Inhibition of shade avoidance     20, 23 18 

Leaf epinasty       22 19 

Inhibition of thermomorphogenesis    30 20 

 21 

Page 46 of 53Plant, Cell & Environment



 47

 a 1, Kliebenstein et al. (2002); 2, Brown et al. (2005); 3, Brown & Jenkins (2008); 4, 1 

Favory et al. (2009); 5, Brown et al. (2009); 6, Grüber et al. (2010); 7, Feher et al. 2 

(2011); 8, Davey et al. (2012); 9, Lang-Mladek et al. (2012); 10, Morales et al. (2013); 3 
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Huang et al. (2013); 15, Heijde et al. (2013); 16, Fasano et al. (2014); 17, Tossi et al. 5 
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Velanis et al. (2016); 29, Heilmann et al. (2016). 30, Hayes et al. (2016). 31. Allorent et 9 

al. (2016) 10 
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FIGURE LEGENDS 1 

 2 

Figure 1. UV-B signaling pathways. Long wavelength UV-B at low fluence rates and 3 

short duration stimulates principally UV-B-specific, photomorphogenic signaling 4 

mediated by UVR8 (shown in magenta). UVR8 is also active in short wavelength, high 5 

fluence rate, long duration UV-B exposure, but additional ‘stress’ signaling pathways 6 

(shown in shades of blue) are activated that are not specific to UV-B (e.g. DNA 7 

damage, wound and defence signaling pathways). The different signaling pathways 8 

regulate particular sets of target genes, which partly overlap. The nature of the 9 

pathways activated will be dependent on the extent to which the plant is adapted and 10 

acclimated to UV-B exposure, together with the influence of non-UV-B stimuli (shown 11 

by red arrow). Modified from Jenkins & Brown (2007) and Jenkins (2009). 12 

Figure 2. A model of UVR8 action. UV-B stimulated processes are shown by pink 13 

arrows, and negative regulation by the dark purple arrows and negative regulation 14 

symbol. 1. UV-B exposure causes dissociation of the UVR8 homo-dimer, yielding 15 

monomers. 2. Monomeric UVR8 binds to COP1-SPA via the C27 region and WD40 16 

domain (see text). 3. Following UV-B exposure COP1-SPA dissociates from the 17 

CUL4-DDB1 E3 ubiquitin ligase complex that promotes degradation of the HY5 18 

transcription factor. 4. UVR8-COP1-SPA regulates transcription of target genes 19 

leading to downstream responses. HY5, sometimes acting redundantly with HYH, 20 

mediates many of these transcriptional responses. HY5/HYH accumulate rapidly 21 

following UV-B exposure through transcription (requiring UVR8, COP1 and HY5) and 22 

post-translational stabilization. In addition, COP1 transcription is stimulated by UV-B. 23 

RUP1 and RUP2 transcription is stimulated by UV-B, mediated by UVR8, COP1 and 24 

HY5. 5. The RUP proteins negatively regulate UVR8 by binding to the C27 region, 25 

displacing COP1, and (6.) by promoting re-dimerisation of the photoreceptor. Modified 26 

from Jenkins (2014b). 27 
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Figure 3. Integration of UVR8 into the cellular signaling network. Pink arrows: UV-B 1 

exposure leads to dissociation of the UVR8 homo-dimer, association of COP1-SPA 2 

with monomeric UVR8 rather than the DDB1/CUL4 E3 ubiquitin ligase complex that 3 

degrades many proteins, including the flowering regulator CO, and stimulation of 4 

HY5/HYH accumulation. Black arrows: illustrate the range of processes affected by 5 

UVR8 signaling; HY5/HYH regulate transcription of genes involved in numerous 6 

signaling pathways, only some of which are shown. Red arrows: the processes shown 7 

could potentially be regulated by UVR8 but further evidence is needed. Abbreviations: 8 

CO: CONSTANS; GA: gibberellic acid; GA2OX1: gibberellic acid 2-oxidase 1; NO: 9 

nitric oxide. 10 

Figure 4. UVR8 dynamics in vivo. UV-B photoreception by the UVR8 dimer induces 11 

monomerisation. In parallel, RUP proteins mediate reversion from monomer to dimer. 12 

The rates of monomerisation (Kp) and reversion (Kr) are balanced, producing a 13 

dimer/monomer photoequilibrium. The photoequilibrium can be influenced by UV-B 14 

and potentially other environmental factors through the regulation of RUP gene 15 

expression and/or RUP activity. The potential for monomer photoreception is also 16 

indicated, although the extent to which this occurs in wild-type plants is unknown. 17 

Monomeric UVR8 initiates changes in gene transcription, including of the RUP genes, 18 

and hence a range of responses. Modified from Findlay & Jenkins (2016). 19 

 20 
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