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Abstract 
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the 
near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly 
to deploy, this paper investigates the deployment of two types of charging facilities, namely 
charging lanes and charging stations, along a long traffic corridor to explore the competitiveness 
of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, 
the number of chargers installed at each station, the length of charging lanes, and the charging 
prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. 
We then discuss the optimal deployment of charging infrastructure considering either the public 
or private provision. In the former, a government agency builds and operates both charging lanes 
and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to 
be built and operated by two competing private companies to maximize their own profits. 
Numerical experiments based on currently available empirical data suggest that charging lanes are 
competitive in both cases for attracting drivers and generating revenue.  
 
Keywords: electric vehicle, charging lane, charging station, deployment plan, choice equilibrium  
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1. Introduction 

The market size of electric vehicles (EVs) has grown steadily in recent years due to the rapid 
development of battery technology, concern over climate change, and the growing deployment of 
public charging infrastructure (e.g., Statista, 2016 a, b). Generally, charging infrastructure can be 
classified into two types: stationary and dynamic. The former, i.e., charging stations and battery 
swapping stations, have been deployed in many places, where vehicles need to stop for services. 
The latter, i.e., charging lanes that can charge vehicles while they are in motion, is an emerging 
application of charging-while-driving (CWD) technology being developed and tested around the 
world. Charging lanes function by either conductive or inductive charging. The former charges 
EVs via lines overhead or metal bars in the pavement, while the latter transmits electric power via 
inductive coupling, magnetic resonance coupling or microwaves (Vilathgamuwa and Sampath, 
2015). Recent conductive charging experiments include Scania’s field test at a 2-kilometre 
Siemens eHighway in Gross Dolln, Germany (Herron, 2014; Scania Newsroom, 2014) and the 
construction of a 400-meter track by Volvo near Gothenburg, Sweden (Schiller, 2013). On the 
other hand, a 15-mile inductive charging lane has been constructed in Gumi, South Korea to serve 
a dozen buses (Bansal, 2015). Other companies and universities, such as Qualcomm and Utah 
State University, are also testing their own CWD technology. 

Anticipating that charging lanes can be technically ready for deployment in the foreseeable 
future, this paper investigates the deployment of charging stations and lanes along a long traffic 
corridor, in which charging infrastructure is more critical for EVs to finish their trips than in dense 
residential areas (Nie and Ghamami, 2013). We are particularly interested in determining how 
charging lanes compare with charging stations. To do so, we model EV drivers’ choice of charging 
facility and then optimize a deployment plan of charging stations and lanes along the corridor to 
serve the charging need of EVs. The deployment plan specifies the number of charging stations, 
the number of chargers installed at each station, the length of charging lanes, and charging prices 
at charging stations and lanes. Based on the deployment plan, we explore the competitiveness of 
charging lanes for attracting drivers and generating revenue.  

We consider two scenarios of charging infrastructure provision: a government agency builds 
and operates both types of charging facilities or private companies are franchised to do so. For the 
former, the government agency is considered to minimize the social cost (we refer to this situation 
as the “public provision”). For the latter, different operators may compete with each other to 
maximize their own profits (we refer to this as the “private provision”). For simplicity, it is 
assumed in this paper that there are two private operators each specialized in providing either 
charging lanes or charging stations. Based on both the public and private provision scenarios, we 
investigate the optimal deployment of the charging infrastructure and examine the competitiveness 
of charging lanes.  

In contrast to a large body of literature on charging station deployment (see, e.g., He et al., 
2013, 2015, 2016; Ghamami et al., 2016, for recent reviews), there are a limited number of studies 
on the deployment of charging lanes. Riemann et al. (2015) formulated a flow-capturing model to 
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optimize the location plan of charging lanes, and a linearized approach is proposed to solve the 
model. Fuller (2016) proposed an optimization approach to minimize the total capital cost of 
deploying charging lanes on the California freeway network. Chen et al. (2016) developed a novel 
user equilibrium model to describe EV drivers’ travel and charging choices when charging lanes 
are deployed. Further, an optimal deployment of charging lanes is obtained by solving a 
mathematical program with complementarity constraints. In a series of efforts, Jang and his 
colleagues optimized the locations of charging lanes and the battery size to minimize the total 
social cost for an electrified bus line (e.g., Jang et al., 2015, 2016a,b; Jeong et al., 2015; Ko and 
Jang, 2013; Ko et al., 2015). In particular, Jang et al. (2016a) qualitatively compared stationary, 
quasi-dynamic, and dynamic wireless charging and suggested that dynamic wireless charging may 
not be as competitive as the other two due to the high infrastructure cost. 

This study contributes to the literature by offering, to our best knowledge, the first study that 
investigates the deployment of different types of charging infrastructure while taking into account 
drivers’ choice of charging facilities; it explores the competition between charging facilities and 
examines the competitiveness of charging lanes in both public and private provision scenarios.  

The remainder of the paper is organized as follows. In the next section, basic assumptions for 
the proposed models are presented. In Section 3, the charging-facility-choice equilibrium is 
formulated to delineate EV drivers’ choice of facility for charging their vehicles. Section 4 then 
models the optimal deployment of charging stations and lanes under both the public and private 
provision, followed by a discussion and analysis of their solutions in Section 5. Section 6 provides 
empirical analysis to examine the competitiveness of charging lanes, and Section 7 concludes the 
paper. 
 

2. Basic Considerations 

Since the intent of this paper is to answer a “big picture” question regarding the competitiveness 
of charging lanes against charging stations, we adopt a highly simplified setting, first used by Nie 
and Ghamami (2013), where there lies a traffic corridor and fully-charged EVs with identical 
battery size travel from one end to the other; the corridor is sufficiently long so that no EV can 
finish the trip without recharging. We will discuss the deployment of charging stations and lanes 
along the corridor. The models to be developed are macroscopic, and do not attempt to optimize 
specific locations of charging stations and lanes. Instead, they aim to provide a mathematically 
tractable means to characterize the deployment and operations of charging lanes and stations. 
Considerations and assumptions of the modeling framework are summarized as follows: 

i. Both charging stations and charging lanes are deployed along the corridor;  
ii. The number of charging stations is sufficient to support a trip, i.e., an EV can finish its trip 

by charging only at charging stations; 
iii. Similarly, charging lanes are sufficiently long to support a trip, i.e., an EV can traverse the 

corridor by using charging lanes only; 
iv. Charging stations are uniformly deployed along the corridor (see Fig. 1); 
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v. Charging lanes can be intermittent, and the length of each segment may be different (see 
Fig. 1); 

vi. Travel speed of EVs across the corridor is constant; 
vii. EVs do not need to slow down to recharge on charging lanes; 

viii. There is no delay for accessing or egressing a charging station nor waiting for a charger at 
the station;  

ix. While preventing their vehicles from running out of energy, drivers of EVs minimize their 
travel costs, which consist of driving time, a charging fee and the charging time at charging 
stations or the equipment cost for enabling CWD. 

We note that most of the above assumptions can be relaxed. Doing so may complicate the 
models, but it does not alter the major findings of this paper.  

Please place Fig. 1 about here 
 

3. Charging-Facility-Choice Model  

Both charging stations and lanes are deployed so that EV drivers can choose either option to 
recharge their vehicles. Those who choose charging stations have to stop at the stations and thus 
encounter a charging delay. Those using charging lanes will have to equip their vehicles with 
additional devices to enable CWD and pay a potentially higher charging price. However, they will 
enjoy a faster travel time because they will not need to stop for charging. Consequently, drivers 
with a higher value of time (VOT) will likely favor charging lanes. This partly explains why 
charging lanes are expected to be initially deployed for commercial fleet vehicles such as buses 
and trucks whose VOT is much higher than those of passenger vehicles (e.g., Bansal, 2015; Herron, 
2014; Scania Newsroom, 2014). The charging-facility-choice model possesses a similar structure 
as the two-mode or two-link tolling problem in the literature (see, e.g., Palma and Lindsey, 2000; 
Nie and Liu, 2010; Zhang et al., 2014), in which one mode or link costs less but takes more travel 
time, while the other mode or link takes less travel time but costs more.    

To model charging-facility-choice behavior, let 𝑙 denote the length of the traffic corridor and 
𝛽 denote the distance an EV can run on each unit of battery energy consumed; thus, the energy 

consumption for finishing the corridor is #
$

. Let 𝐸 be the battery size for EVs and 𝜃 be a given 

parameter (0 ≤ 𝜃 < 1) so that 1 − 𝜃 𝐸 represents the minimum state of charge that a driver will 
feel comfortable with. We thus identify 𝜃 as a range anxiety factor. The minimum charging needed 

in order to finish the trip is #
$
− 𝜃𝐸. As per assumption vi, let 𝑣 define the travel speed along the 

corridor. For a charging-station user whose VOT is 𝛾, his or her travel cost consists of charging 
time (in monetary units) and the charging fee at stations, as well as driving time (in monetary units) 
along the corridor. Mathematically, it can be written as  

𝛾 ⋅

𝑙
𝛽 − 𝜃𝐸

𝛼𝑃1
+ 𝑞1

𝑙
𝛽 − 𝜃𝐸 + 𝛾 ⋅

𝑙
𝑣 
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where 𝛼 ∈ 0,1  represents the recharging efficiency; 𝑃1 is the electric power of charging stations; 
𝑞1 is the charging price at charging stations. 

Similarly, the travel cost of a charging-lane user with VOT 𝛾 consists of a charging fee for 
using charging lanes, equipment cost for enabling CWD, and driving time (in monetary units) 
along the corridor, i.e.,  

𝑞#
𝑙
𝛽 − 𝜃𝐸 + 𝑐7

𝑙
𝛽 − 𝜃𝐸 + 𝛾 ⋅

𝑙
𝑣 

where 𝑞# is the charging price at charging lanes and 𝑐7 is the equipment cost for unit electricity 
recharged on charging lanes (for convenience, we refer to 𝑐7  as “unit equipment cost”). For 
example, suppose CWD equipment costs $20,000 for one EV, and can be recharged for 10 years 
with total usage of 52,000	kWh (i.e., 130,000	mi for a passenger car with 𝛽 = 2.5mi/kWh). 
According to the Office of Management and Budget (OMB), the 10-year discount rate for 2016 is 
1.0% (OMB, 2016); thus, we calculate that 𝑐7 = $0.4/kWh. 

It should be noted that the above travel cost is irrelevant to the recharging efficiency (denoted 
as 𝜉) and charging power (denoted as 𝑃#) of the charging lanes. Drivers using charging lanes can 
always recharge their vehicles while driving, so the recharging efficiency and charging power have 
no impact on their travel time as long as the charging lanes are long enough to support their trips. 

Consider an interior equilibrium in which both charging stations and charging lanes are 
utilized. There exists a driver who has no preference for either charging stations or lanes. Let 𝛾∗ 
denote the VOT for this indifferent driver (hereinafter referred to as “indifferent VOT”). Because 
the cost of using each facility is the same, we have: 

𝛾∗ ⋅

𝑙
𝛽 − 𝜃𝐸

𝛼𝑃1
+ 𝑞1

𝑙
𝛽 − 𝜃𝐸 + 𝛾∗ ⋅

𝑙
𝑣 = 𝑞#

𝑙
𝛽 − 𝜃𝐸 + 𝑐7

𝑙
𝛽 − 𝜃𝐸 + 𝛾∗ ⋅

𝑙
𝑣 

The above equality leads to: 
𝛾∗ = 𝑞# + 𝑐7 − 𝑞1 ⋅ 𝛼𝑃1        (1) 
It can be readily verified that travelers with 𝛾 < 𝛾∗ will prefer charging stations, while those 

with 𝛾 > 𝛾∗ will favor charging lanes. Suppose the VOTs of EV drivers follow a density function 

ℎ 𝛾 , where 𝛾 ∈ 𝛾, 𝛾 . If 𝛾∗ > 𝛾, the charging lanes will not be competitive at all, and all drivers 

will choose charging stations. On the other hand, if 𝛾∗ < 𝛾, all drivers will be attracted to the 

charging lanes. Neither situation is of interest here, and we thus consider the scenario that 𝛾 <

𝛾∗ < 𝛾 in our study. It follows that the demands of EVs using charging stations and charging lanes 
are: 

𝑓1 = 𝑓 ⋅ ℎ 𝑥 𝑑𝑥N∗

N           (2) 

𝑓# = 𝑓 ⋅ ℎ 𝑥 𝑑𝑥N
N∗           (3) 

where 𝑓 is the total EV demand. 
Sensitivity analysis of 𝛾∗ with respect to different variables or parameters is summarized in 

Table 1. As we can easily see, a higher charging price at charging stations (i.e., larger 𝑞1) will lead 
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to a lower indifferent VOT (i.e., lower 𝛾∗); while a higher recharging efficiency (i.e., larger 𝛼), 
charging power at charging stations (i.e., larger 𝑃1), charging price at charging lanes (i.e., larger 
𝑞#), and unit equipment cost (i.e., larger 𝑐7) all result in a higher indifferent VOT (i.e., larger 𝛾∗).  

Please place Table 1 about here 
 

4. Deployment Model 

In this section, we turn to the model development for optimizing the deployment of charging 
infrastructure under the two provision scenarios.  

4.1 Basic consideration for deployment 

Let 𝑚 and 𝑛Q denote the number of charging stations and the number of chargers at each charging 
station. According to assumptions ii and iv, the distance between any two sequential charging 

stations is equal to #
RST

, and it should be within the anxiety-free range of the EV, which yields 

𝛽𝜃𝐸 ≥ #
RST

  

It can be rewritten as: 

𝑚 ≥ #
$VW

− 1          (4) 

As one charger can provide only 𝛼𝑃1  energy per hour, to accommodate the flow using 
charging stations 𝑓1, the minimum number of chargers at each charging station can be calculated 

as 
X
YZVW [\

R] \̂
. Therefore, 𝑛Q ≥

X
YZVW [\

R] \̂
, which yields         

𝑚𝑛Q ≥
X
YZVW [\

] \̂
           (5) 

According to assumption iii, the total length of charging lanes (denoted as 𝑑) must be long 
enough to support EVs in completing their trips, i.e., 

𝑑 ≥ #
$
− 𝜃𝐸 ⋅ _

`^X
         (6) 

and it cannot exceed the length of the corridor, i.e., 
𝑑 ≤ 𝑙            (7) 
To guarantee the existence of 𝑑 that satisfies both (6) and (7), the parameters given in this 

paper will ensure #
$
− 𝜃𝐸 ⋅ _

`^X
≤ 𝑙.  

The costs of constructing and operating one charging station with 𝑛Q chargers and a one mile 
charging lane used by 𝑓# EVs are given as follows: 

𝐶1 𝑛Q = 𝐴1 + 𝐵1d𝑛Q + 𝐵1T𝑃1𝑛Q        (8) 

𝐶# 𝑓# = 𝐴# + 𝐵#𝑃# ⋅
[X
_

         (9) 

where 𝐴1, 𝐵1d, 𝐵1T, 𝐴#, 𝐵# are all given parameters to our model. Specifically, 𝐴1 is the construction 
cost for building one charging station; 𝐵1d is the construction cost for installing one charger; and 
𝐵1T is the installation cost per unit charging power (Nie and Ghamami, 2013). For charging lanes, 
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𝐴# is the construction cost to convert or upgrade one mile of regular lane to a charging lane, and	𝐵# 

is the construction and operation cost per unit of charging power. Note that [X
_

 is the flow density 

of EVs on charging lanes, and hence 𝑃# ⋅
[X
_

 represents the total charging need on one mile of 

charging lane. 

4.2 Public provision 

In the public provision scenario, the government aims to minimize the social cost, including the 
construction and operation cost of charging facilities, charging time (in monetary units) at charging 
stations, equipment cost for using charging lanes, total cost for producing and transmitting 
electricity for charging facilities, and total driving time (in monetary units). As 𝛾∗ is the VOT of 
the indifferent user at equilibrium, the social cost minimization (SCM) problem can be formulated 
as follows:  

SCM: 

min𝑍 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑 = 𝜔𝑚 ⋅ 𝐶1 𝑛Q + 𝜔𝑑 ⋅ 𝐶# 𝑓# +
X
YZVW

] \̂
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N∗

N +
X
YZVW

]
	 ⋅

𝑞d𝑓1 +
X
YZVW

`
⋅ 𝑞d𝑓# + 𝑐7

#
$
− 𝜃𝐸 ⋅ 𝑓# +

#
_
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N

N       (10) 

s.t.  (2)-(7) 
where 𝜔 is a conversion parameter, which converts the total cost into hourly cost, and 𝑞d is the 
cost to produce and transmit one unit of electricity. Specifically, the first two terms represent the 
total cost to construct and operate charging stations and charging lanes, respectively; the third term 
specifies the charging-time cost at charging stations; the fourth and fifth terms represent the total 
cost to produce and transmit electricity for charging facilities to serve the charging need of EVs; 
the sixth term represents the total equipment cost for enabling CWD; and the last term specifies 
the total driving-time cost.  
Proposition 1. There exists at least one optimal solution to SCM. 
Proof: By substituting (8) into the objective function and defining 𝑁 = 𝑚𝑛Q , SCM can be 
rewritten as 

min𝑍 𝑓1, 𝑓#, 𝛾∗,𝑚,𝑁, 𝑑 = 𝜔 ⋅ 𝑚𝐴1 + 𝑁𝐵1d + 𝑁𝐵1T𝑃1 + 𝜔𝑑 ⋅ 𝐶# 𝑓# +
X
YZVW

] \̂
⋅ 𝑓 ⋅

𝑥ℎ 𝑥 𝑑𝑥N∗

N +
X
YZVW

]
	 ⋅ 𝑞d𝑓1 +

X
YZVW

`
⋅ 𝑞d𝑓# + 𝑐7

#
$
− 𝜃𝐸 ⋅ 𝑓# +

#
_
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N

N    (11) 

s.t.  (2)-(4), (6), (7), and  

𝑁 ≥
X
YZVW [\

] \̂
            

Apparently, adding some upper bounds (e.g., a sufficiently large number) for 𝑚 and 𝑁 will 
not affect the optimal solution of the above problem. With those upper-bound constraints, the set 
of constraints turns out to be compact. In addition, since each term in the objective function (11) 
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is continuous, the objective function is thus also continuous. Therefore, the problem has at least 
one optimal solution. �  
Proposition 2. Constraints (4)-(6) must be binding under an optimal solution to SCM. 
Proof: Let 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑  denote an optimal solution to SCM. By contradiction, suppose one 
or more of constraints (4)-(6) are not binding. Take constraint (4) as an example. It follows 𝑚 >
#

$VW
− 1 . We construct another solution 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑  where 𝑚 ⋅ 𝑛Q = 𝑚 ⋅ 𝑛Q , and 𝑚 =

#
$VW

− 1 , i.e., constraint (4) is binding under this solution. It is easy to verify that 

𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑  is a feasible solution. Further, 𝑍 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑 − 𝑍 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑 =
𝜔𝐴1 𝑚 −𝑚 < 0, which contradicts that 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑  is an optimal solution. Similarly, we 
can prove that constraints (5) and (6) are also binding under an optimal solution to SCM. � 

According to Proposition 2 and, as previously mentioned, #
$
− 𝜃𝐸 ⋅ _

`^X
≤ 𝑙, solving SCM is 

equivalent to solving the following problem: 

min𝑍 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑 = 𝜔𝑚 ⋅ 𝐶1 𝑛Q + 𝜔𝑑 ⋅ 𝐶# 𝑓# +
X
YZVW

] \̂
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N∗

N +
X
YZVW

]
	 ⋅

𝑞d𝑓1 +
X
YZVW

`
⋅ 𝑞d𝑓# + 𝑐7

#
$
− 𝜃𝐸 ⋅ 𝑓# +

#
_
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N

N   

s.t. (2), (3), and  

𝑚 = #
$VW

− 1          (4a) 

𝑛Q =
VW[\
] \̂

            (5a) 

𝑑 = #
$
− 𝜃𝐸 ⋅ _

`^X
         (6a) 

Note that in practice, the number of charging stations and chargers per charging station should 
be integer, but we ignore this requirement for simplicity. We further note that the optimization of 
battery size can be easily incorporated into SCM if the government is interested in determining a 
socially optimum one (e.g., Nie and Ghamami, 2013; Kontou et al., 2015; Jang et al, 2016a). 

4.3 Private provision 

In the private provision scenario, both operators aim at maximizing their profits in building and 
operating their charging facilities. The competition leads to the Nash equilibrium where each 
operator will make the best response to the deployment plan of its competitor. In other words, at 
the Nash equilibrium, neither operator can improve its current profit by unilaterally changing its 
deployment plan. 

Specifically, given the deployment plan of the charging-lane operator (i.e., 𝑑 and 𝑞# ), the 
charging-station operator attempts to maximize his or her profit: 

𝑍1 𝑞1, 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q = 𝑞1𝑓1
#
$
− 𝜃𝐸 − 𝑞d𝑓1 ⋅

X
YZVW

]
− 𝜔𝑚 ⋅ 𝐶1 𝑛Q    

s.t. (1)-(5) 
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Similar to Propositions 1 and 2, it can be readily shown that there must exist at least one 
optimal solution to the above problem, and constraints (4) and (5) must be binding in an optimal 
solution. Therefore, the problem (dubbed as PS) can be represented below: 

max𝑍1 𝑞1,𝑚, 𝑛Q, 𝑓1, 𝑓#, 𝛾∗ = 𝑞1𝑓1
#
$
− 𝜃𝐸 − 𝑞d𝑓1 ⋅

X
YZVW

]
− 𝜔𝑚 ⋅ 𝐶1 𝑛Q     

s.t. (1)-(3), (4a), (5a) 
Similarly, given the deployment plan of the charging-station operator (i.e., 𝑚, 𝑛Q and 𝑞1), the 

profit-maximizing problem of the charging-lane operator (dubbed as PL) is as follows:  

max𝑍# 𝑞#, 𝑑, 𝑓1, 𝑓#, 𝛾∗ = 𝑞#𝑓#
#
$
− 𝜃𝐸 − 𝑞d𝑓# ⋅

X
YZVW

`
− 𝜔𝑑 ⋅ 𝐶# 𝑓#     

s.t. (1)-(3), (6a)  
 

5. Solution and Analysis 

This section provides and analyzes the solutions to the deployment models formulated in Section 
4. 

5.1 Public provision 

By substituting (2), (3), and (4a)-(6a) into 𝑍 𝑓1, 𝑓#, 𝛾∗,𝑚, 𝑛Q, 𝑑 , and replacing 𝑓# with 𝑓 − 𝑓1, we 
can obtain the social cost as a function of 𝑓1. The first and second derivatives of the social cost 
with respect to 𝑓1 can then be derived as:   

kl
k[\

= 𝜔 ⋅
X
YZVW

]
⋅ m\n

\̂
+ 𝐵1T +

X
YZVW

] \̂
⋅ 𝛾∗ +

X
YZVW

]
⋅ 𝑞d − 𝜔 ⋅

X
YZVW

`
⋅ 𝐵# −

on
`
+ 𝑐7 ⋅ #

$
− 𝜃𝐸   

kpl
k[\p

=
X
YZVW

] \̂[
⋅ T
q N∗

  

Obviously, k
pl

k[\p
> 0, ∀𝛾∗ ∈ 𝛾, 𝛾 . That is, given the interior equilibrium assumption, the 

above social cost minimization problem is a convex problem. At optimality,  kl
k[\

= 0, implying 

that the increased cost at charging stations due to one driver switching from charging lanes to 

stations, i.e., 𝜔 ⋅
X
YZVW

]
⋅ m\n

\̂
+ 𝐵1T +

X
YZVW

] \̂
⋅ 𝛾∗ +

X
YZVW

]
⋅ 𝑞d , is equal to the decreased cost at 

charging lanes, i.e., 𝜔 ⋅
X
YZVW

`
⋅ 𝐵# +

on
`
+ 𝑐7 ⋅ #

$
− 𝜃𝐸 . The condition yields 

𝛾∗ = 𝜔 ]mX \̂
`

− 𝐵1d − 𝐵1T𝑃1 + on
`
+ 𝑐7 −

on
]

⋅ 𝛼𝑃1     (12) 

Equality (12) gives the indifferent VOT with the optimal share of two charging modes. Via 
(2), (3), and (4a)-(6a), the optimal number of charging stations, number of chargers per station, 
and the total length of charging lanes can be easily calculated.  

Given (1) and (12), the optimal charging prices need to satisfy the following condition: 

𝑞# − 𝑞1 =
smX
`
+ on

`
− s

]
⋅ m\n

\̂
+ 𝐵1T − on

]
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Specifically, smX
`
+ on

`
 and s

]
⋅ m\n

\̂
+ 𝐵1T + on

]
 are the marginal costs of constructing and 

operating charging lanes and stations to provide one more unit of electricity, respectively:  

t sk⋅uX [X S
X
Yvwx

y ⋅on[X

t[X
X
YZVW

= smX
`
+ on

`
  

t sR⋅u\ z{ S
X
Yvwx

| 	⋅on[\

t[\
X
YZVW

= s
]
⋅ m\n

\̂
+ 𝐵1T + on

]
  

In other words, in order to minimize social cost, the difference of charging prices at charging 
lanes and charging stations must be equal to the difference of the marginal costs of constructing 
and operating charging lanes and stations. Maintaining the same difference, we can find an infinite 
number of optimal charging price patterns due to the fixed demand setting. Note that the marginal-
cost pricing pattern is one of them. If the demand is elastic, the optimal charging prices are unique 
and equal to the marginal costs (see Appendix A). It should be noted that just as the marginal costs 
are irrelative to the travel demand 𝑓, the battery size 𝐸, the distribution of VOT ℎ 𝛾 , and cost 
parameters 𝐴1 and 𝐴#, so is the indifferent VOT at optimality also irrelevant to them.  

Please place Table 2 about here 
 

According to equality (12), Table 2 shows how each variable or parameter in the model could 
affect the indifferent VOT (i.e., 𝛾∗). Specifically, a change that leads to a higher cost for charging 
stations (i.e., larger 𝐵1d and 𝐵1T) and a lower recharging efficiency at charging stations (i.e., smaller 
𝛼) will lead to a lower 𝛾∗. Also, a higher recharging efficiency at charging lanes (i.e., larger 𝜉) 
will result in a lower 𝛾∗, but higher unit equipment cost (i.e., larger 𝑐7) and larger 𝐵# will lead to a 
higher 𝛾∗. In addition, increasing 𝑞d can increase 𝛾∗, as the recharging efficiency of charging lanes 
(i.e., 𝜉) is assumed to be lower than the one of charging stations (i.e., 𝛼). It is worth pointing out 

that, as tN
∗

t \̂
 can be either positive or negative, the impact of the charging power of charging stations 

(i.e., 𝑃1) on 𝛾∗ is ambiguous. On one hand, as 𝑃1 increases, the charging time in charging stations 
will be reduced, which in turn will attract more drivers and likely increase 𝛾∗. On the other hand, 
the cost for constructing and operating charging stations will increase, which will lead to a higher 
charging price at charging stations and will likely decrease 𝛾∗. The overall effect of the change of 
𝑃1 will depend on the dominating effect. 

Although the marginal-cost pricing pattern can achieve the minimum social cost, it will lead 
to a deficit due to the large capital cost of constructing charging lanes and stations. Specifically, 

the deficit can be calculated as 𝜔 }\
VW
+ _}X

`^X
⋅ #

$
− 𝜃𝐸 . In practice, in addition to minimizing the 

social cost, the government may be interested in helping charging infrastructure break-even or be 
self-financed. To do so, we can require the revenue to be equal to the cost, i.e., 
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𝑞#𝑓# + 𝑞1𝑓1 ⋅ #
$
− 𝜃𝐸 = 𝜔𝑚 ⋅ 𝐶1 𝑛Q + 𝜔𝑑 ⋅ 𝐶# 𝑓# +

X
YZVW

`
⋅ 𝑞d𝑓# +

X
YZVW

]
⋅ 𝑞d𝑓1 (13) 

By solving (1), (12), and (13) simultaneously, we can obtain the revenue-neutral charging 
prices 𝑞1∗ and 𝑞#∗ as follows: 

𝑞#∗ =
s
[
⋅ }\

VW
+ _}X

`^X
+ smX

`
+ on

`
												

𝑞1∗ =
s
[
⋅ }\

VW
+ _}X

`^X
+ sm\n

] \̂
+ sm\~

]
+ on

]

        (14) 

Compared with the marginal-cost pricing, there is an additional item: s
[
⋅ }\

VW
+ _}X

`^X
, which 

represents the additional charging price to cover the sunk cost of constructing the charging 
infrastructure.  

As per (14), a change that leads to a higher cost for charging stations or lanes (e.g., larger 
𝐴1, 𝐴#, 𝐵#, 𝐵1d, 𝐵1T) and larger 𝑞dwill increase the revenue-neutral charging prices. In particular, a 
larger 𝐴1,	𝐴#, or 𝑞d increases charging prices at both charging lanes and stations while a larger 𝐵# 
or 𝐵1d, 𝐵1T can only result in a higher price at charging lanes or stations. That is because 𝐴1	and 𝐴# 
are fixed costs and 𝑞d is a common variable cost for both charging facilities, while 𝐵#, 𝐵1d, and 𝐵1T 
are variable costs for each charging facility (see equalities (8) and (9)). Additionally, higher travel 
demand (i.e., a larger 𝑓) and higher charging power of charging lanes (i.e., a larger 𝑃#) can lower 
revenue-neutral charging prices. Larger battery size (i.e., a larger 𝐸) can as well, because a larger 
battery size can reduce the number of charging stations and the total length of charging lanes, as 
per equalities (4a) and (6a).  

5.2 Private provision 

We now turn to the private provision scenario. To achieve the Nash equilibrium, both operators 
will maximize their profits simultaneously. That is, we must solve problems PS and PL 
simultaneously.   

First, we consider problem PS. Taking the first-order derivative of 𝑍1, we obtain: 

kl\
ko\

= 𝑓1
#
$
− 𝜃𝐸 + 𝑞1

#
$
− 𝜃𝐸 ⋅ t[\

to\
− 𝑞d ⋅

X
YZVW

]
⋅ t[\
to\

− 𝜔 ⋅
X
YZVW

]
⋅ m\n

\̂
+ 𝐵1T ⋅ t[\

to\
  (15) 

Specifically, the term 𝑓1
#
$
− 𝜃𝐸 + 𝑞1

#
$
− 𝜃𝐸 ⋅ t[\

to\
 represents the change in revenue due 

to changing the charging price; 𝑞d ⋅
X
YZVW

]
⋅ t[\
to\

+ 𝜔 ⋅
X
YZVW

]
⋅ m\n

\̂
+ 𝐵1T ⋅ t[\

to\
 specifies the change in 

cost. Consequently, kl\
ko\

= 0 implies that the former is offset by the latter, a necessary condition 

for an interior optimum.  

As 𝛾∗ = 𝑞# + 𝑐7 − 𝑞1 ⋅ 𝛼𝑃1, 𝑓1 = 𝑓 ⋅ ℎ(𝑥)𝑑𝑥N∗

N , we then have: 

t[\
to\

= 𝑓 ⋅ ℎ 𝛾∗ ⋅ −𝛼𝑃1          (16) 

Substituting (16) into (15), and letting kl\
ko\

= 0, we obtain: 
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𝑞1 −
on
]
− s

]
⋅ m\n

\̂
+ 𝐵1T = ℎ 𝑥 𝑑𝑥N∗

N ⋅ ℎ 𝛾∗ ⋅ 𝛼𝑃1 ZT     (17) 

The second-order derivative of 𝑍1 yields 
kpl\
ko\p

= #
$
− 𝜃𝐸 𝑓 ⋅ 2ℎ 𝛾∗ ⋅ −𝛼𝑃1 + 𝑞1 −

on
]
− s

]
⋅ m\n

\̂
+ 𝐵1T ⋅ kq N∗

kN∗
⋅ 𝛼𝑃1 �    

Substituting (17) into the above, we have: 
kpl\
ko\p

= #
$
− 𝜃𝐸 𝑓 ⋅ −𝛼𝑃1 ⋅ 2ℎ 𝛾∗ − ℎ 𝑥 𝑑𝑥N∗

N ⋅ ℎ 𝛾∗ ZT ⋅ kq N∗

kN∗
   

If k
pl\
ko\p

≤ 0, which yields	 

kq N∗

kN∗
≤ �q N∗ p

q � k��∗
�

 ,         (18) 

then kl\
ko\

= 0 is also a sufficient condition for local optimum. 

Similarly, for the charging-lane operator, klX
koX

= 0 yields 

𝑞# −
on
`
− smX

`
= ℎ(𝑥)𝑑𝑥N

N∗ ⋅ ℎ 𝛾∗ ⋅ 𝛼𝑃1 ZT       (19) 

Taking the second-order derivative of 𝑍#, we have: 
kplX
koX

p =
#
$
− 𝜃𝐸 𝑓 ⋅ −𝛼𝑃1 ⋅ 2ℎ 𝛾∗ − ℎ(𝑥)𝑑𝑥N

N∗ ⋅ ℎ 𝛾∗ ZT ⋅ kq N∗

kN∗
    

If k
plX
koX

p ≤ 0, which yields  

kq N∗

kN∗
≤ �q N∗ p

q � k��
�∗

 ,         (20) 

then klX
koX

= 0 is also a sufficient condition for local optimum. 

Given ℎ 𝛾 , which satisfies (18) and (20), we can obtain the Nash equilibrium by solving (17) 
and (19) simultaneously.  

To further our analysis, we present an analytical example assuming that VOT is uniformly 

distributed, i.e., 𝛾~𝑈 𝛾, 𝛾  and ℎ 𝛾 = T
NZN

. Note that a uniform VOT distribution satisfies (18) 

and (20) simultaneously. Solving (17) and (19) simultaneously, we can obtain the Nash 
equilibrium solution for the two profit-maximizing operators: 

𝛾∗ = T
�

on
`
+ 𝑐7 −

on
]
𝛼𝑃1 + 𝜔

]mX \̂
`

− 𝐵1d − 𝐵1T𝑃1 + 𝛾 + 𝛾   

𝑞1∗ =
T
�

�on
]
+ on

`
+ 𝑐7 +

s
]
⋅ ]mX

`
+ �m\n

\̂
+ 2𝐵1T +

NZ�N

] \̂
     (21) 

𝑞#∗ =
T
�

�on
`
+ on

]
− 𝑐7 +

s
]
⋅ �]mX

`
+ m\n

\̂
+ 𝐵1T +

�NZN

] \̂
      (22) 

𝑓1∗ = 𝑓 ⋅
�n
y SQ�Z

�n
| ⋅] \̂Ss

|�X�\
y Zm\nZm\~ \̂ SNZ�N

� NZN
  

𝑓#∗ = 𝑓 ⋅
�n
| Z

�n
y ZQ� ⋅] \̂Ss m\nSm\~ \̂Z

|�X�\
y S�NZN

� NZN
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𝑍1∗ =
#
$
− 𝜃𝐸 ⋅ [] \̂

� NZN
⋅ on

`
+ 𝑐7 −

on
]
+ s

]
⋅ ]mX

`
− m\n

\̂
− 𝐵1T +

NZ�N

] \̂

�
− s}\

VW
  

𝑍#∗ =
#
$
− 𝜃𝐸 ⋅ [] \̂

� NZN
⋅ on

]
− on

`
− 𝑐7 +

s
]
⋅ m\n

\̂
+ 𝐵1T −

]mX
`

+
�NZN

] \̂

�
− s_}X

`^X
  

According to (4a)-(6a), the optimal number of charging stations, number of chargers per 
station, and the total length of charging lanes can be easily calculated. 

Table 3 shows how each variable in the model could affect 𝛾∗  at the Nash equilibrium. 
Compared with Table 2, coincidently, the only difference in Table 3 is that all the partial 
derivatives of 𝛾∗ are divided by 3. Therefore, the sensitivity analysis is similar to the one in Section 
5.1. 

Please place Table 3 about here 
 

6. Empirical Analysis  

This section presents an empirical analysis to investigate the optimal deployment of charging lanes 
and stations and examine the competitiveness of charging lanes. Table 4 presents the data obtained 
from previous studies. We try to represent the reality as closely as possible by utilizing available 
empirical data. 

Please place Table 4 about here 
 

We explain the chosen values in Table 4 in the following. Conservatively, suppose that 
charging facilities can be used for 10 years. As the 10-year discount rate for 2016 is 1.0% (OMB, 
2016), we can calculate that 𝜔 = 1.19×10Z� . Furthermore, based on the discount rate, if we 
assume that the cost of the CWD equipment is very high, say, $20,000 for one EV, and the 
equipment can be used for 10 years with a total usage of 52,000	kWh, then the unit equipment 
cost can be calculated as 𝑐7 = $0.4/kWh. Since there is no available empirical data about 𝑐7 , 
sensitivity analysis will be conducted in this section.  

According to Nie and Ghamami (2013), 𝛼 = 0.77; 𝛽 = 2.5mi/kWh; 𝐵1T = $500/kW; the 
unit construction cost for new stations is $104/ft�	, and the minimum construction area for a 
charging station is 2,000	ft�, hence 𝐴1 = $2,000×104 = $208,000; and the construction area for 
one charger is taken as 300	ft�, thus 𝐵1d = $300×104 = $31,200.  

In addition, based on the OLEV system used in Korea (Jang et al, 2016a), the average cost of 
a power transmitter (including construction cost) is about $500/m; thus, the construction cost for 
converting one mile of regular lane to a charging lane is estimated at 𝐴# = $800,000/mi . 
Additionally, the average cost of one inverter unit, which can provide 100	kW power, is $55,000. 
Therefore, the construction cost per unit of charging power can be estimated as 𝐵# =
$55,000/100	kW = $550/kW.  

The length of the corridor (i.e., 𝑙) is set to be 300 miles long. Note that changing it will not 
affect the main findings of this study, as charging prices, the indifferent VOT, and the relation 
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between the profits of charging-lane and charging-station operators at the Nash equilibrium are all 
irrelevant to the length of the corridor. The demand of EVs on the corridor is set to be 300	veh/h, 
consistent with the currently low market penetration of EVs. Nevertheless, as travel demand can 
affect the profits of charging-lane and charging-station operators, sensitivity analysis will be 
provided in this section.  

6.1 Public provision 

According to equality (12), we can obtain the indifferent VOT such that the government can 
maximize social welfare, which is 

𝛾∗ = $31.79/h 
Furthermore, based on equality (14), the revenue-neutral prices at charging stations and 

charging lanes can be calculated below. 
𝑞1∗ = $0.148/kWh, 𝑞#∗ = $0.161/kWh 

For ease of calculation, suppose 𝛾 ∈ 𝑈 10,70 . Fig. 2 and Fig. 3 plot the changes of social 
cost and profit in a two-dimension space of charging prices at charging stations and lanes. As 
observed in Fig. 2, every social-cost contour has an angle of 45 degrees. This is consistent with 
the fact that the social cost is solely relative to the indifferent VOT, which, as per equality (1), only 
depends on the price difference between charging lanes and stations rather than their absolute 
values. It is worth highlighting that the red dashed line in Fig. 2 represents the minimum social-
cost contour that is equal to $70,803, and its expression is 𝑞# = 𝑞1 + 0.013, which follows 𝛾∗ =
$31.79/h based on equality (1). Also, note that there is no contour in the lower right corner in Fig. 
2 since the social cost remains the same if the price difference between charging lanes and stations 
is sufficiently small. Actually, this phenomenon, which stems from the boundary condition of the 
VOT, is also true when the price difference is sufficiently large. More specifically, when the price 
difference is so small that 𝛾∗ = 𝑞# + 𝑐7 − 𝑞1 ⋅ 𝛼𝑃1 < 𝛾 (so large that 𝛾∗ > 𝛾), all drivers are 

attracted to charging lanes (stations), and the social cost will thus remain the same no matter how 
much 𝑞1 (𝑞#) increases (decreases).  

We can observe from Fig. 3 that the profit increases along any 45-degree slanting line. That 
is, an increase of charging prices at charging stations and lanes while maintaining their difference 
(i.e., not changing the indifferent VOT) will lead to increasing profit, because in the setting of this 
case, the total demand is fixed. Also, it can be observed that all the contours under the red dashed 
line (see Fig. 3) are horizontal. For example, when the charging price at charging lanes is set at 
$0.22/kWh, the profit remains at $2,000 no matter how much the charging price at charging 
stations increases from $0.5/kWh. The reason is that the associated indifferent VOT has reached 
the lower bound of the VOT distribution, and drivers will no longer use charging stations. 
Consequently, both the revenue and operation cost are fixed no matter how much the charging 
price at charging stations increases. Fig. 4 combines Fig. 2 and Fig. 3, and we find that the revenue-
neutral charging prices are achieved at the red point, the point of intersection of the minimum 
social-cost and the zero-profit contours. 



16 

Please place Fig. 2 about here 
Please place Fig. 3 about here 
Please place Fig. 4 about here 

 
Now we turn to calculating what percentage of EV drivers will use charging lanes based on 

an empirical VOT distribution. Table 5 shows the VOT distribution of passenger cars traveling on 
the managed lanes on Interstate 95 in Miami, Florida, which was estimated from a survey 
conducted by Perk et al. (2011). Based on the distribution and the default values of parameters in 
Table 4, 49.8%  of EV drivers are expected to choose charging lanes. However, as CWD 
technologies advance, the unit equipment cost (i.e., 𝑐7) is likely to decrease significantly, which 
may have a critical impact on the facility choice. Fig. 5 plots how the indifferent VOT (i.e., 𝛾∗) 
and the percentage of EV drivers using charging lanes and stations change with respect to 𝑐7. As 
𝑐7 increases, 𝛾∗ increases linearly from $1.0/h to $78.0/h. Accordingly, the percentage of using 
charging stations, like an S-shape curve, initially increases mildly from 0%, then rises drastically, 
and finally reaches 100%; while the percentage of using charging lanes first decreases mildly from 
100% , then descends drastically, and eventually converges to 0% . Apparently, if 𝑐7  can be 
reduced to a low level (e.g., $0.3/kWh), most EV drivers will prefer to use charging lanes instead 
of charging stations. As mentioned in Section 1, charging lanes can be achieved by either 
conductive or inductive charging. Because conductive charging is more mature, the CWD 
equipment cost for enabling conductive charging is expected to be lower. For example, if 𝑐7 
decreases to $0.3/kWh by using conductive charging technology, then the percentage of using 
charging lanes will increase to 71.1% (see Fig. 5).  

Since the VOTs of commercial vehicles are much higher than those of passenger cars, we can 
envision that commercial vehicles are likely to be early users of charging lanes. Accordingly, we 
are interested in investigating how the VOT distribution will affect the charging-facility choice of 
drivers (see Fig. 6). Specifically, the horizontal axis “Ratio” in Fig. 6 represents how many times 
the VOT distribution is uniformly increased (take the one in Table 5 as the initial distribution). For 
example, “2” means that the VOTs in the first column of Table 5 are doubled. Obviously, the 
increasing “Ratio” leads to increasing percentages of drivers using charging lanes. In particular, 
when the “Ratio” equals 3, more than 90% of drivers will choose to use charging lanes. This result 
is in agreement with the fact that charging-lane experiments are currently designed for EVs with 
high VOT, e.g., electric buses or trucks. 

 Please place Table 5 about here 
Please place Fig. 5 about here 
Please place Fig. 6 about here 

 

6.2 Private provision 

In this subsection, we firstly analyze some basic results, including the optimal profits and charging 
prices of two operators and the corresponding indifferent VOT, and then conduct sensitivity 
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analysis for various parameters, such as the cost function, recharging efficiency, and charging 
power of charging lanes. 

6.2.1 Basic results 

Using the default values in Table 4, and assuming 𝛾~𝑈 10,70 , the profits of the two operators in 
the private provision scenario can be calculated as: 

𝑍1∗ = $4,857;	𝑍#∗ = $6,083 
The corresponding charging prices and indifferent VOT are calculated as follows:  

𝑞1∗ = $0.471/kWh; 𝑞#∗ = $0.555/kWh;	𝛾∗ = $37.26/h 
We can see that both operators are profitable, and the charging-lane operator makes more 

profit than its competitor. Furthermore, as per the VOT distribution and the indifferent VOT, we 
find that 54.6% of EVs prefer charging lanes. The above findings imply that, based on the settings 
in our paper, charging lanes are competitive in terms of attracting drivers and generating revenue.  

Fig. 7 and Fig. 8 display how the profits of charging-lane and charging-station operators vary 
in the domain of these two charging prices, respectively. It can be readily seen that, while keeping 
a charging price within the profitable region (the contours with values greater than zero), one 
operator will not suffer loss if the other operator increases his or her charging price. Take Fig. 7 
as an example. By setting the price at $0.3/kWh, the charging-lane operator can make a greater 
profit when the charging price at charging stations increases from $0.1/kWh to $0.56/kWh; over 
$0.56/kWh, the profit remains the same. The reason is rather straightforward, as an increasing 
charging price at charging stations will force more drivers to use charging lanes. As a result, the 
profit of a charging-lane operator will keep growing until all drivers switch to charging lanes.  

Fig. 9 combines Fig. 7 and Fig. 8. In the figure, the Nash equilibrium charging prices are 
achieved at the red point, at which neither operator can benefit by changing their own prices. By 
comparing Fig. 9 and Fig. 4, one may also notice that the Nash equilibrium prices in the private 
provision scenario are quite different from the revenue-neutral optimal prices in the public 
provision scenario. The prices of the former are much higher than those of the latter. However, the 
associated social cost of the former is $70,900, which only slightly differs from the latter, $70,803. 
In fact, such a finding also holds when considering elastic demand (see, Appendix B). 

Please place Fig. 7 about here 
Please place Fig. 8 about here 
Please place Fig. 9 about here 

 

6.2.2 Sensitivity analysis 

Due to the development of CWD technology and the market penetration of EVs, the cost function, 
recharging efficiency and charging power of charging lanes, the demand level, the battery size, 
and the unit equipment cost may change drastically, and such changes are very likely to have a 
critical impact on the competitiveness of charging lanes. Accordingly, we further investigate how 
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the profits of operators will change with respect to those changes. Furthermore, as discussed in the 
public provision scenario, the VOT distribution has a profound impact on the charging-facility 
choice, we thus also explore how it will affect the profits of operators in the private provision 
scenario. 

Fig. 10 specifies how the profits of operators change as the construction and operation cost of 
charging lanes changes. Similar to Fig. 6, the horizontal axis “Ratio” represents how many times 
the construction and operation cost of charging lanes (i.e., 𝐴# and 𝐵#) will increase (take the default 
values in Table 4 as the initial setting). As expected, increasing 𝐴# and 𝐵# will decrease the profit 
of the charging-lane operator, but increase the profit of the charging-station operator. In other 
words, a higher 𝐴# and 𝐵# will weaken the competitiveness of charging lanes. However, even if 𝐴# 
and 𝐵# double, the profit of the charging-lane operator will still be higher than that of the charging-
station operator. Moreover, the charging-lane operator will be profitable even if such costs triple 
or more.  

Fig. 11 illustrates the relation between the profits of operators and the EV demand. The 
charging-lane operator makes more profit than its competitor unless the EV demand is at a low 
level (e.g., less than 120	veh/h). Both operators benefit from an increase in EV demand, but the 
charging-lane operator gains more. As a result, the profit difference between the two operators 
becomes more noticeable as the EV market penetration increases, which suggests a favorable 
prospect for investing in charging lanes.  

Fig. 12 plots the relation between the profits of operators and the unit equipment cost. The 
charging-lane operator suffers from an increase in the unit equipment cost (i.e., larger 𝑐7), but the 
charging-station operator benefits. Specifically, when 𝑐7  is higher than $0.46/kWh, operating 
charging stations is more profitable. On the contrary, when the CWD technology advances to a 
high level such that 𝑐7 < $0.46/kWh, operating charging lanes will be a better choice.  

Fig. 13 describes the relation between the profits of operators and the charging power of 
charging lanes. The profit of operating charging lanes increases from $4,676 to $6,436 when the 
level of charging power of the charging lanes (i.e., 𝑃#) changes from 40	kW to 160	kW, but the 
profit of charging stations remains the same, $4,857. This result is rooted in the fact that the 
indifferent VOT and the optimal charging prices are irrelevant to 𝑃#. More specifically, as 𝑃# has 
little impact on the charging-facility choice of EV drivers and the Nash equilibrium price at 
charging stations, it will not affect the profit of operating charging stations. For charging lanes, as 
𝑃# increases, although the per-mile construction and operation cost will increase, the total cost will 
decrease since their length is reduced. As a result, the charging-lane operator can benefit from an 
increase in 𝑃#.  

Fig. 14 presents the relation between the profits of operators and the recharging efficiency of 
charging lanes. Not surprisingly, a lower recharging efficiency of charging lanes leads to a lower 
profit for the charging-lane operator, and a higher profit for the charging-station operator. However, 
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even if the recharging efficiency of charging lanes is pretty low, say, 0.5, its profit is still higher 
than that of charging stations.  

Fig. 15 delineates the change of operators’ profits due to the change of battery size. It can be 
observed that the profits of both operators decrease as the battery size increases, because with a 
larger battery, drivers can reduce the amount of electricity recharged.  

Fig. 16 shows the relation between operators’ profits and various VOT distributions. Like Fig. 
6, the horizontal axis “Ratio” indicates how many times the VOT distribution will increase. As we 
can see, an increase in “Ratio” leads to a higher profit for both operators, as the Nash equilibrium 
prices rise according to (18) and (19). In particular, the charging-lane operator gains more. In other 
words, with increasing VOT distribution, the profitability of operating charging lanes is more 
considerable than that of operating charging stations. 

Please place Fig. 10 about here 
Please place Fig. 11 about here 
Please place Fig. 12 about here 
Please place Fig. 13 about here 
Please place Fig. 14 about here 
Please place Fig. 15 about here 
Please place Fig. 16 about here 

 

7. Conclusion 

We have investigated the optimal deployment of charging stations and lanes along a long traffic 
corridor to serve the charging need of EVs and have examined the competitiveness of charging 
lanes. When both charging stations and lanes are deployed along the corridor, EV drivers traveling 
from one end to the other are assumed to choose charging facilities to minimize their travel costs, 
which include driving time, charging fee, charging time at charging stations, and amortized 
equipment cost for enabling CWD. Given the charging infrastructure supply, a choice equilibrium 
model is firstly proposed to capture the charging facility choices of EV drivers for charging their 
vehicles. With the proposed charging-facility-choice model, we then formulate mathematical 
programs to optimally deploy charging stations and lanes with regard to different operating 
regimes, i.e., the public and private provision. Based on the optimal deployment plans, empirical 
analysis is conducted to explore the competitiveness of charging lanes. Below are the main 
observations from our analysis: 

• Charging lanes are competitive as compared with charging stations for attracting drivers. 
Specifically, in the public provision scenario, EV drivers with a VOT higher than $31.79/h 
would favor charging lanes; in the private provision scenario, EV drivers with a VOT higher 
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than $37.26/h may prefer charging lanes to charging stations, when drivers’ VOTs follow a 
uniform distribution between $10.00/h and $70.00/h. 

• In the private provision scenario, operating charging lanes is more profitable than operating 
charging stations.  

• The Nash equilibrium charging prices in the private provision scenario are much higher than 
the revenue-neutral charging prices in the public provision scenario. Nevertheless, their 
resulting social costs do not differ substantially, which can be partly attributed to the 
competition between the private operators.  

It is worth pointing out that the continuing advance of CWD technology can significantly 
affect the empirical data in Table 4, and thus the above observations should not be treated 
conclusive. Our analysis primarily shows that charging lanes are economically viable and 
competitive for attracting drivers even with the current CWD technology. Further development of 
the technology will likely make them even more economically viable. The proposed modeling 
framework in this paper is generally applicable to investigate the competition between charging 
lanes and charging stations with further development of CWD technology.  

Future study may extend the proposed models to a general network where besides selecting 
charging facilities, EV drivers will make route choices. In addition, as it is impossible to 
sufficiently deploy each type of charging facility along each route in the network, drivers may 
choose to alternate between charging stations and lanes during their trips to meet their charging 
needs. Considering the above issues in the proposed deployment models, however, would be rather 
challenging. 
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Appendix A 

This appendix considers the elastic demand for the public provision scenario, i.e., the total demand 
of EVs is sensitive to travel cost. Suppose travelers always have another alternative (e.g., transit), 

with constant travel time 𝑡Q >
#
$
− 𝜃𝐸 ⋅ ]

\̂
+ #

_
 (that is, using charging stations without payment 

is always a better choice). Accordingly, the travel cost of a driver with VOT 𝛾 is equal to 𝛾𝑡Q. 
Consider an interior equilibrium where both the alternative and charging stations are utilized, 

there exist a driver who is indifferent between using them. Let 𝛾  denote the VOT for this 
indifferent driver, because the cost of using the alternative and charging stations is the same, we 
have: 

𝛾𝑡Q = 𝛾 ⋅
X
YZVW

] \̂
+ 𝑞1

#
$
− 𝜃𝐸 + 𝛾 ⋅ #

_
  

The above implies that travel cost of using the alternative is identical to that of using charging 
stations for the indifferent traveler with 𝛾. It follows:  

𝛾 =
o\

X
YZVW

�{Z
X
Yvwx

|�\
ZX�

           (A1) 
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It can be readily shown that any traveler with 𝛾 < 𝛾 will choose to travel on the alternative, 
while others prefer to use charging stations or lanes. We assume that 𝛾 < 𝛾∗ (𝛾∗ is the VOT of the 
driver who is indifferent to use charging stations and charging lanes). Then the travelers with 𝛾 <
𝛾 < 𝛾∗ will choose charging stations, and the others with 𝛾 > 𝛾∗ will choose charging lanes. We 
exclude the case with 𝛾 > 𝛾∗, where no traveler will choose to use charging stations1.  

Consequently, if we define the demand of choosing the alternative as 𝑓Q, then to minimize the 
social cost, it is to solve: 

min𝑍 𝑓1, 𝑓#, 𝑓Q, 𝛾∗, 𝛾,𝑚, 𝑛Q, 𝑑 = 𝜔𝑚 ⋅ 𝐶1 𝑛Q + 𝜔𝑑 ⋅ 𝐶# 𝑓# +
X
YZVW

] \̂
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N∗

N +
X
YZVW

]
	 ⋅ 𝑞d𝑓1 +

X
YZVW

`
⋅ 𝑞d𝑓# + 𝑐7

#
$
− 𝜃𝐸 ⋅ 𝑓# +

#
_
⋅ 𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N

N + 𝑡Q𝑓 ⋅ 𝑥ℎ 𝑥 𝑑𝑥N
N   

s.t. (4a)-(6a) 

𝑓Q = 𝑓 ⋅ ℎ 𝑥 𝑑𝑥N
N           (A2) 

𝑓1 = 𝑓 ⋅ ℎ 𝑥 𝑑𝑥N∗

N           (A3) 

𝑓# = 𝑓 ⋅ ℎ 𝑥 𝑑𝑥N
N∗           (A4) 

By substituting all the constraints into 𝑍 𝑓1, 𝑓#, 𝑓Q, 𝛾∗, 𝛾,𝑚, 𝑛Q, 𝑑 , and replacing 𝑓# with 𝑓 −
𝑓1 − 𝑓Q, we obtain the partial derivatives as below: 
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It is easy to verify that 
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 is positive definite, hence the above problem is a 

convex problem. The optimality conditions tl
t[\

= 0 and tl
t[{

= 0 yield (assuming interior optimal 

solution) 

                                                
1 While this is not the focus of the paper, it can be similarly formulated as the charging-facility-choice model of 
charging lanes and charging stations. 
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𝛾∗ = 𝜔 ]mX \̂
`

− 𝐵1d − 𝐵1T𝑃1 + on
`
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]
+ 𝑐7 ⋅ 𝛼𝑃1      (A5) 
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Substituting (1) and (A1) into (A5) and (A6), and solving them simultaneously, we can obtain:  

𝑞#∗ =
on
`
+ smX

`
           (A7) 

𝑞1∗ =
on
]
+ s

] \̂
⋅ 𝐵1d + 𝐵1T𝑃1          (A8) 

As a result, the revenue is shown as below: 

𝑞#∗𝑓#∗ + 𝑞1∗𝑓1∗ ⋅ #
$
− 𝜃𝐸          (A9) 

Comparing equalities (A5) and (12), we can see that they are exactly the same, which implies 
that adding an alternative has no impact on travelers using charging lanes based on our setting. 
Indeed, the travelers using the alternative used to use charging stations (in the fixed demand case). 
Based on (A6), a higher travel time (i.e., larger 𝑡Q) leads to a smaller 𝛾, hence less travelers using 
the alternative (i.e., smaller 𝑓Q). Observed from equalities (A7) and (A8), the optimal charging 
prices at charging stations and lanes are exactly equal to their marginal costs, and are not relevant 
to the constant travel time 𝑡Q.  

Given the specific values of the parameters, we can evaluate the gap between charging 
revenue and operating cost.  
 

Appendix B 

This appendix considers the elastic demand for the private provision scenario, and we adopt the 
same setting in Appendix A. Accordingly, (A1)-(A4) will also hold in this scenario. Given the 
deployment plan of the charging-lane operator (i.e., 𝑑  and 𝑞# ), the charging-station operator 
attempts to maximize his or her profit: 

𝑍1 𝑞1, 𝑓1, 𝑓#, 𝑓Q, 𝛾∗, 𝛾,𝑚, 𝑛Q = 𝑞1𝑓1
#
$
− 𝜃𝐸 − 𝑞d𝑓1 ⋅

X
YZVW

]
− 𝜔𝑚 ⋅ 𝐶1 𝑛Q    

s.t. (1), (4a), (5a), (A1)-(A4) 
 Similarly, given the deployment plan of the charging-station operator (i.e., 𝑚, 𝑛Q and 𝑞1), the 

profit-maximizing problem of the charging-lane operator is as follows:  

max𝑍# 𝑞#, 𝑑, 𝑓1, 𝑓#, 𝑓Q, 𝛾∗, 𝛾 = 𝑞#𝑓#
#
$
− 𝜃𝐸 − 𝑞d𝑓# ⋅

X
YZVW

`
− 𝜔𝑑 ⋅ 𝐶# 𝑓#     

s.t. (1), (6a), (A1)-(A4) 
Following the solution procedure in Section 5.2, we can obtain the Nash equilibrium by 

solving the following equations simultaneously: 
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To further our analysis, we present an analytical example in the following assuming that 

VOT is uniformly distributed, i.e., 𝛾~𝑈 𝛾, 𝛾  and ℎ 𝛾 = T
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. Then, we can obtain: 
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Accordingly, the travelers using charging stations, lanes, and the alternative (i.e., 𝑓1, 𝑓#, and 
𝑓Q), the profits of different operators (i.e., 𝑍1 and 𝑍#), the optimal number of charging stations, 
number of chargers per station, and the total length of charging lanes can be easily calculated. 

Using the default values in Table 4, and assuming 𝛾~𝑈 10,70 , Fig. 17 and Fig. 18 
delineate the change of charging prices and social costs due to the change of travel time on the 
alternative. From Fig. 17, it is easy to observe that charging prices at both charging stations and 
lanes in the private provision scenario are always higher than the ones in the public provision 
scenario. Particularly, as per (A7) and (A8), the latter ones are equal to the marginal costs of 
constructing and operating charging lanes and stations to provide one more unit of electricity, 
both of which are irrelative with the travel time on the alternative, they are thus invariant. For the 
private provision scenario, as the travel time on the alternative increases, both charging-station 
and -lane operators increase their charging prices so as to maximize their profits. Fig. 18 reveals 
that with the increasing travel time on the alternative, the social costs in both private and 
provision scenarios increase, and more important, their discrepancy is always less than 2%.  
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Fig. 3 Change of profit ($) in the two-dimension space of charging prices at charging stations and 
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Fig. 4 Change of social cost and profit ($) in the two-dimension space of charging prices at 
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Fig. 6 Relation between the charging facility choice and various VOT distributions 
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Fig. 8 Change of profit ($) of the charging-station operator in the two-dimension space of charging 
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Fig. 9 Change of profit ($) of the two operators in the two-dimension space of charging prices at 
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Fig. 10 Relation between profits of operators and the increasing construction cost of charging lanes 
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Fig. 11 Relation between profits of operators and EV demand 
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Fig. 12 Relation between profits of operators and the unit cost of CWD equipment 
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Fig. 13 Relation between profits of operators and the charging power of charging lanes 
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Fig. 14 Relation between profits of operators and the recharging efficiency of charging lanes 
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Fig. 15 Relation between profits of operators and battery size 
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Fig. 16 Relation between profits of operators and various VOT distributions 
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Fig. 17 Relation between charging prices and travel time on the alternative  
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Fig. 18 Relation between social costs and travel time on the alternative 
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Table 1 Indifferent VOT  

Variable Partial derivative of 𝛾∗ 

𝛼 
𝜕𝛾∗

𝜕𝛼 = 𝑞# + 𝑐7 − 𝑞1 ⋅ 𝑃1 > 0 

𝑃1 
𝜕𝛾∗

𝜕𝑃1
= 𝑞# + 𝑐7 − 𝑞1 ⋅ 𝛼 > 0 

𝑞1 
𝜕𝛾∗

𝜕𝑞1
= −𝛼𝑃1 < 0 

𝑞# 
𝜕𝛾∗

𝜕𝑞#
= 𝛼𝑃1 > 0 

𝑐7 
𝜕𝛾∗

𝜕𝑐7
= 𝛼𝑃1 > 0 

 

  



48 

Table 2 Indifferent VOT at the optimum for the public provision 

Variable Partial derivative of 𝛾∗ 

𝛼 
𝜕𝛾∗

𝜕𝛼 =
𝛼𝐵#𝑃1
𝜉 +

𝑞d
𝜉 + 𝑐7 𝑃1 > 0 

𝜉 
𝜕𝛾∗

𝜕𝜉 = −
𝜔𝛼𝐵#𝑃1 + 𝑞d𝛼𝑃1

𝜉� < 0 

𝑃1 
𝜕𝛾∗

𝜕𝑃1
=
𝜔𝛼𝐵# + 𝑞d𝛼

𝜉 + 𝛼𝑐7 − 𝜔𝐵1T − 𝑞d 

𝑞d 
𝜕𝛾∗

𝜕𝑞d
=

𝛼 − 𝜉 𝑃1
𝜉 > 0 

𝑐7 
𝜕𝛾∗

𝜕𝑐7
= 𝛼𝑃1 > 0 

𝐵1d 
𝜕𝛾∗

𝜕𝐵1d
= −𝜔 < 0 

𝐵1T 
𝜕𝛾∗

𝜕𝐵1T
= −𝜔𝑃1 < 0 

𝐵# 
𝜕𝛾∗

𝜕𝐵#
=
𝜔𝛼𝑃1
𝜉 > 0 

 

  



49 

Table 3 Indifferent VOT at the Nash equilibrium for the private provision 

Variable Partial derivative of 𝛾∗ 

𝛼 
𝜕𝛾∗

𝜕𝛼 =
1
3
𝛼𝐵#𝑃1
𝜉 +

𝑞d
𝜉 + 𝑐7 𝑃1 > 0 

𝜉 
𝜕𝛾∗

𝜕𝜉 = −
𝜔𝛼𝐵#𝑃1 + 𝑞d𝛼𝑃1

3𝜉� < 0 

𝑃1 
𝜕𝛾∗

𝜕𝑃1
=
1
3
𝜔𝛼𝐵# + 𝑞d𝛼

𝜉 + 𝛼𝑐7 − 𝜔𝐵1T − 𝑞d  

𝑞d 
𝜕𝛾∗

𝜕𝑞d
=

𝛼 − 𝜉 𝑃1
3𝜉 > 0 

𝑐7 
𝜕𝛾∗

𝜕𝑐7
=
𝛼𝑃1
3 > 0 

𝐵1d 
𝜕𝛾∗

𝜕𝐵1d
= −

𝜔
3 < 0 

𝐵1T 
𝜕𝛾∗

𝜕𝐵1T
= −

𝜔𝑃1
3 < 0 

𝐵# 
𝜕𝛾∗

𝜕𝐵#T
=
𝜔𝛼𝑃1
3𝜉 > 0 
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Table 4 Parameter definitions and default values 
Parameter Description Value 

𝑓 Demand of EVs in the corridor 300	veh/h	
𝑙 Corridor length 300	mi	
𝑣 Average speed along the corridor 65	mph	
𝛼 Recharging efficiency for charging stations 0.77	
𝜉 Recharging efficiency for charging lanes 0.67 
𝛽 Battery performance 2.5	mi/kWh	
𝜃 Range anxiety factor 0.8	
𝜔 Converting factor (converting the total cost into hourly cost) 1.19×10Z�		
𝐸 Battery size 24	kWh	
𝑐7 Unit cost of CWD equipment $0.4/kWh	

𝑞d 
Cost to produce and transmit one unit of electricity for 
charging facilities 

$0.08/kWh	

𝑃1 Electric power of charging station 100	kW	
𝑃# Electric power of charging lane 100	kW	
𝐴1 Construction cost for building one charging station $208,000	
𝐵1d Construction cost for installing one charger $31,200	
𝐵1T Operation and maintenance cost per unit of charging power $500/kW	
𝐴# Construction cost for building one mile of charging lane $800,000/mi	
𝐵# Construction cost per unit of charging power $550/kW	

 
 

  



51 

Table 5 VOT distribution of passenger cars for survey respondents traveling on Interstate 95 
express corridor (reproduced by authors based on Perk et al. (2011)) 

VOT ($/h) PDF (%) CDF (%) 
2-7 2.7 2.7 
7-12 6.7 9.4 
12-16 5.3 14.7 
16-20 12.0 26.7 
20-25 2.7 29.4 
25-30 16.0 45.4 
30-35 13.3 58.7 
35-40 16.0 74.7 
40-45 4.0 78.7 
45-60 18.7 97.4 
>60 2.6 100 

 
 


