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On the Multicell Processing Capacity
of the Cellular MIMO Uplink Channel

In Correlated Rayleigh Fading Environment

Symeon Chatzinotas, Muhammad Ali Imran, Reza Hoshyar

Abstract

In the context of cellular systems, it has been shown thaticelllprocessing can eliminate inter-cell interference
and provide high spectral efficiencies with respect to trawial interference-limited implementations. Moreovitr,
has been proved that the multiplexing sum-rate capacity gaimulticell processing systems is proportional to the
number of Base Station (BS) antennas. These results have dig@ established for cellular systems, where BSs
and User Terminals (UTs) are equipped with multiple antenh&evertheless, a common simplifying assumption in
the literature is the uncorrelated nature of the Rayleigtinfa coefficients within the BS-UT MIMO links. In this
direction, this paper investigates the ergodic multipeticessing sum-rate capacity of the Gaussian MIMO Cellular
Multiple-Access Channel in a correlated fading environmémore specifically, the multiple antennas of both BSs
and UTs are assumed to be correlated according to the Krengckduct model. Furthermore, the current system
model considers Rayleigh fading, uniformly distributecetU$erminals (UTs) over a planar coverage area and power-
law path loss. Based on free probabilistic arguments, thgirgral eigenvalue distribution of the channel covariance
matrix is derived and it is used to calculate both Optimahti@iecoding and Minimum Mean Square Error (MMSE)
Filtering capacity. In addition, numerical results areggrted, where the per-cell sum-rate capacity is evaluakdie w
varying the cell density of the system, as well as the levelading correlation. In this context, it is shown that the
capacity performance is greatly compromised by BS-sideetaiion, whereas UT-side correlation has a negligible
effect on the system’s performance. Furthermore, MMSEqgperénce is shown to be greatly suboptimal but more
resilient to fading correlation in comparison to optimatdeing.

Index Terms
Information theory, Information Rates, Multiuser chamneVliIMO systems, Channel correlation, Land mobile

radio cellular systems, Eigenvalues and eigenfunctions.

I. INTRODUCTION

In the short history of wireless cellular systems, there hasn an intense evolutionary process trying to

optimize the multiple-access and coding schemes in ordgrdeide the desired quality of service. In spite of
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the constant improvement, one characteristic of cellulanmunication remained, namely its interference-limited
nature. Considering the fact that the current cellular isgctures are approaching their limit, the interest of both
research and industry turned to cooperative techniqued, aa BS cooperation, relaying and UT conferencing.
In this paper, we focus on cooperating BSs which are intereocted through ideal links to a central processor,
which has perfect Channel State Information (CSI). As altethe received signals from UTs in multiple cells
can be jointly processed (multicell processing). In thetexnof this paper, the multicell processing can be either
optimal joint decoding or MMSE joint filtering, followed byirgjle-user decoding. The capacity enhancement due
to BS cooperation has been extensively studied and has bwsmgo grow linearly with the number of Base
Station (BS) receive antennas [1], [2]. This result alsoliapo the case where BSs and/or UTs are equipped with
multiple antennas [3], [4], [5]. However, the majority ofated results have been produced based on the simplifying
assumption that the fading coefficients of the MIMO subcledsmare completely uncorrelated. In reality, this is not
the case, since fading correlation may appear due to inalequtenna separation and/or poor local scattering [6].
In a typical macrocellular scenario, the inadequate amtesgparation mainly affects the UTs, as the components
of the antenna array may be separated by a distance less alfaof the communication wavelength due to their
size limitations. On the other hand, poor local scatteriffigcégs mainly the BSs, as the number of local scatterers is
insufficient due to their elevated position. On these graeuytids paper studies the effect of MIMO fading correlation
on the capacity performance of a multicell processing syste

In this direction, it has been shown that the correlated nbamatrix of the point-to-point MIMO channel can be
expressed in terms of the separable variance profile, wreplertls on the eigenvalues of the correlation matrices.
In parallel, the channel matrix of a cellular Multiple-Aes(MAC) channel can be expressed in terms of the
path-loss variance profile, which depends on the considdiiedistribution, cell size and path loss exponent. The
main objective of this study is to determine the eigenvalistribution of the channel covariance matrix, which
determines the optimal and the MMSE sum-rate capacity. iicase of point-to-point correlated MIMO channel,
the objective has been accomplished by exploiting the sbjdy of the variance profile [7], [8]. Similarly, for
the case of the cellular MAC channel the asymptotic eigerevdistribution was determined by exploiting the row-
regularity of the variance profile respectively [2]. Nevwtess, the channel matrix of a correlated cellular MAC
channel — expressed as Hadamard product of a separable amdragular variance profile — is neither separable
nor row-regular and hence a new approach is needed. In thigxdpthe main contributions of this paper can be

summarized as follows:

1) A cellular MIMO uplink channel model is introduced, acamwdating distributed UTs, a continuous path-loss
model and Kronecker-correlated antennas.

2) Based on a recent Random Matrix Theory result, the suengapacity calculation problem is transformed
to a non-linear programming problem, which can be utilizeefficiently calculate the optimal capacity for
finite cellular systems.

3) Furthermore, the asymptotic eigenvalue distributiothief channel model is analyzed based on free-probabilistic
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arguments and closed-forms are derived for the per-cellsuencapacity of the optimal joint decoder and
the M M SE decoder.

4) Based on the derived closed-forms, it is shown that asteonrelation at the UT-side has no effect on the
performance, while antenna correlation at the BS-side comjses the multiplexing gain of the system.

5) For a set of practical parameters, the agreement of acellytiosed-forms and Monte Carlo simulations is

established and the effect of BS-side antenna correlasi@valuated.

The remainder of this paper is structured as follows: Sadtiprovides a detailed review of the MIMO correlation
and multicell processing uplink channel models. Sectiorddéfines the considered channel model and describes
the derivation of the optimal and MMSE capacity closed-feri8ection V verifies the accuracy of the analysis
by comparing with Monte Carlo simulations and presents tfaetal results obtained for a typical macrocellular

scenario. Section VI concludes the paper.

A. Notation

Throughout the formulations of this papek, is the cell radiusN is the number of BSsK is the number of
UTs per cell andy is the power-law path loss exponent. Additionalyss andny are the number of multiple
antennas at each Base Station (BS) and each User TerminalrédpectivelyE[-] denotes the expectatioft)”
denotes the complex conjuga(e)T denotes the conjugate transpose matfixdenotes the Hadamard produet,
denotes the Kronecker product anddenotes asymptotic equivalence of the eigenvalue disimist The norm
of a complex scalar is denoted by , whereas the Frobenius norm of a matrix or vector is denojet:h The

inequality A = B, where A, B are positive semidefinite matrices, denotes that B is also positive semidefinite.

Il. RELATED WORK & PRELIMINARIES
A. Correlated MIMO Channel Models

Focusing on a point-to-point MIMO link, the channel matrixncbe expressed in general as [9]:
H = R}/°GzR}/’G,R)/?, 1)

whereGg and G are Gaussian matrices, wherdag, Ry andRr are deterministic or slow-varying matrices.
The matriceRRr andRr, also known as the receive and transmit correlation madepend on the angle spread,
the antenna beamwidth and the antenna spacing at the regwivthe transmit end respectively. The maiiRyy
introduces the notion of the keyhole or pinhole channel,cwhappears whelR i is a low-rank matrix. In cases
where there is adequate scattering to prevent the keyhigetef(i.e.Ry is full-rank), the channel matrix can be
written as:

H = R}/°GR}/”, )

where G is a Gaussian matrix. This channel matrix representskitomecker correlation model [10], since the

covariance of the vectorized channel matrix can be writterthe Kronecker product of the receive and transmit
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correlation matrix, namely:
cov(vec(H)) = Rr @Ry )

or equivalently
E|(H),, (H);.] = Ra),, Rr),,. (4)

where (X)

between two subchannels equals to the product of the camdam transmit and receive correlation (c.f. Equation

;; is the (i, j)th element of matrixXX. According to the Kronecker correlation model, the cotiefa

(4)). From a physical point-of-view, the Kronecker modepagrs when the antennas are arranged in regular arrays
and the correlation vanishes fast with distance [7]. In gwt, it is worth mentioning that according to [11], [12] a
MIMO channel with a large number of keyholes converges taktenecker MIMO model. An interesting property

of the Kronecker model is its equivalency to theparable correlation model [7], [8] , while studying the eigenvalue
distribution of the channel covariance matiKH'. More specifically, ifRr = UDzU' andR; = VDV are

the eigenvalue decompositions of the receive and transonielation matrices respectively, then -based on the
isotropic behavior of Gaussian matrices- the eigenvalsiblution of HH' = R}{QGRTGTR}{Q is equivalent to

the one oﬂ)}fGDTGTD}{Q. In this direction, the equivalent MIMO channel matrix ca@ \Written as:
H = D}/’GD}/”. (5)

This equivalency is going to be very useful in the derivadiof Section IlI.

Let us now focus on the structure of the correlation matrixcommon model often used to effectively quantify
the level of spatial correlation is the exponential coielamodel [13], [14], [15] . More specifically, according
to the exponential model,the receive/transmit corretatizatrix can be constructed utilizing a single coefficient
pe € C with |p.| <1 as follows:

(pe)™70, s

Rij = (6)
. . *
((o)™0) " i>
where abs(-) denotes the absolute value. It has been shown that the exjidneodel can approximate the
correlation in a uniform linear array under rich scattergmnditions [16]. Similar correlation models, such as

the square exponential and the tridiagonal model can bedfaufiL7].

B. Point-to-point MIMO channel capacity

The already existing approaches for the point-to-point @iMhannel can be classified in two main categories:
exact analysis and asymptotic analysis. In the exact asalftse probability distributions of finite-dimension
matrices are investigated, resulting in closed forms whiah produce exact results. On the other hand, in the
asymptotic analysis a single or both dimensions of the randbannel matrix grow infinitely large in order to
allow approximations and simplifications due to the law afjlanumbers. Although the asymptotic analysis may
seem less accurate, it has been widely shown that asymplosied forms are able to produce accurate results even

for finite dimensions [18]. What is more, the asymptotic sl is ideal for studying cases where the system size
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is of no importance, since it reveals the effect of normaiparameters and provides insights into the system’s
performance [19]. In the category of asymptotic analysis,rmajority of the approaches consider the generic setting
where correlation affects both transmit and receive endtl@sumbers of both transmit and receive antennas grow
large together while preserving a fixed ratio. Although tlsgnaptotic eigenvalue distribution analysis comprises
an approximation for matrices of finite dimensions, it iseoftemployed in order to isolate the effect of specific
physical parameters and to produce analytical closed folithis setting is particularly suitable for studying the
uplink channel of multicell processing cellular systeniscs the ratio of transmit and receive antennas is a constant
proportional to the per-cell number of UTs.

The performance of multi-antenna channels was originailyestigated in [20], [21] and it was shown that
the capacity grows linearly witlmin (n,, n;), wheren, andn; are the number of receive and transmit antennas
respectively. However, the correlated fading amongst th#iphe antennas compromises the capacity performance
with respect to the independent fading case. This phenomieneidely established in various regimes and settings;
the capacity of the Kronecker correlated (a.k.a. doublyetated) MIMO channel is expressed as a fixed-point
equation based on the Steltjes’ transform [7] of the lingiteigenvalue distribution dHLH'. In the same direction,
authors in [22] study the capacity of the Kronecker coreddlIMO channel based on the principles of Random
Matrix Theory [18]. The derivation results in a fixed-poigetion including functionals of th€/ N R andM M SE.

In [23] and [8], the expectation and the variance of the ciypare evaluated using closed forms based on the
solution of2 x 2 equation systems. In [24], the principles of majorizatibadry [25] are applied in order to show
that the average mutual information is a Schur-concavetimmavith respect to the ordered eigenvalue vector of the
correlation matrix. In addition, the doubly correlated MIMchannel for Toeplitz correlation matrices is analyzed in
[17] based on the concept of linear spectral statisticsallinin [26], [27] the performance of Kronecker correlated
MIMO channels is studied using the replica method, whiclgiogtes in theoretical physics.

It should be noted that the aforementioned results speltyjfibacus on the point-to-point correlated MIMO
channel. In the following paragraph, we describe the chlacimeracteristics of a multiple-access channel which is

the information-theoretic basis of the cellular uplink ohal.

C. Cdlular uplink models

This section focuses on the evolution of channel modellmthe area of BS cooperation. The description starts
with single-antenna cellular systems and concludes wighetktension of the channel model for multiple-antennas
at both transmit and receive ends. The Gaussian CellulatipletAccess Channel (GCMAC) has been the starting
point for studying the Shannon-theoretic limits of cellugystems. It all began with Wyner’s model [28], which
assumes that all the UTs in the cell of interest have equalraiagains, which are normalized 1o It considers
interference only from the UTs of the two neighboring celldich are all assumed to have a fixed channel gain,
also known as interference factar which ranges in0, 1]. Assuming that there is a power-law path loss model
which affects the channel gain, Wyner has modeled the casegewthe UTs of each cell are collocated with the

cell's BS, since no distance-dependent degradation ofttharel gain is considered. The same assumption is made
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by Somekh-Shamai [1], which have extended Wyner's modefl&trfading environment. In both [28] and [1], a
single interference factax is utilized to model both the cell density and the path lodse interference factos
ranges in[0, 1] , wherea = 0 represents the case of perfect isolation among the cellavand represents the case
of BSs’ collocation, namely a MIMO MAC channel. Subsequgrnthe models in [29], [4] were presented, which
differ from the aforementioned models in the sense that tomsider interference from all the cells of the system
(i.e. multiple-tier interference). In [4], the multipléet interference model is combined with multiple antennad a
the asymptotic performance of optimal and graufV/ SE decoders is derived for orthogonal intra-cell UTs. In
[29], an interference coefficient is defined for each BS-Uik Ibased on the power-law path loss model. Although
the author in [29] takes into account a more realistic stngcbf the path loss effect, the UTs of each cell have
still equal channel gain and this refers to the case wherdJife of each cell are collocated with the cell's BS.
Nevertheless, this model is more detailed than the prelji@escribed models, since it decomposes the interference
factor «, so that the cell density/radius and the path loss exporeanbe modelled and studied separately. Finally,
the model used in [30] extends the previous models by corisglehat the UTs are no longer collocated, but
they can be (uniformly) distributed across the cell's cager area. In this point, it should be noted that for all the
aforementioned Gaussian multiple-access channel moldelsgtimal capacity-achieving transmission strategy is
superposition coding over the available bandwidth [31], [d other words, the ensemble of system UTs transmits
simultaneously over the same bandwidth.

In the latter model [30], by assuming power-law path loss,fliding and uniformly distributed UTs, the received
signal at celln, at time indexi, is given by:

N K
gl =Y D R i) + ), ™)
m=1 k=1
wherez 7} [7] is theith complex channel symbol transmitted by fite UT of themth cell and{g;"™} are independent,
strictly stationary and ergodic complex random processésd time index, which represent the flat fading processes
experienced in the transmission path betweenvitheBS and thekth UT in the mth cell. The fading coefficients
are assumed to have unit power, MLng[iHQ] =1 for all (n,m, k) and all UTs are subject to an average power
constraint, i.eIE[|a:Zl[i]|2] < P for all (m, k). The interference factorg)™ in the transmission path between the
mth BS and theith UT in thenth cell are calculated according to the “modified” power-lpath loss model [29],
[32]:
= (1+ dzm)_”/g. ®)

Dropping the time index, the aforementioned model can be more compactly expressadvactor memoryless
channel of the form:
y =Hx+z. (9)

The channel matri can be written as,
H=X o G, (10)
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whereX is aN x K N deterministic matrix andx is a GaussiamV x K N matrix with complex circularly symmetric
(c.c.s.) independent identically distributed (i.i.d.@mlents of unit variance, comprising the corresponding &gl

fading coefficients. The entries of ti%& matrix are defined by the variance profile function

<(u, U) = (1 +d (u,v) ) 777/2, (11)

wherew € [0,1] andv € [0, K] are the normalized indices for the BSs and the UTs respéctare d (u, v) is
the normalized distance between BSand usemw. In the case of multiple UT and/or BS antennag{ andnggs

respectively), the channel matrH can be written as,
H=3y ©Guy, (12)

where G, is a standard complex Gaussidmpgg x K Nnyr matrix with elements of unit variance, comprising
the Rayleigh fading coefficients between tRéVnyr transmit and theVngg receive antennas. Similarly ,; is

a Nngps x K Nnyr deterministic matrix, comprising the path loss coefficielbétween thd{ Nnyr transmit and
the Nnpg receive antennas. Since the multiple antennas of each UTdrB$ollocated}.;; can be written as a

block matrix based on the variance profile matkixof Equation (10)
Su=2XRJ, (13)

whereJ is angg X nyr matrix of ones.

Ill. CHANNEL MODEL & A SSUMPTIONS

Let us assume that” UTs are uniformly distributed in each cell of a planar caluystem (Fig. 1) comprising
N base stations and that each BS and each UT are equippedchwithand ny antennas respectively. Under
conditions of correlated flat fading, the received signatedt n, at time index:, is given by:

N K
y'lil = D0 D (Rei™)® G (R ™) xii] + 2] (14)
m=1 k=1
wherex}'[i] is the ith complex channel symbol vectaf;r x 1 transmitted by theéith UT of the mth cell and

{G}™} is angs x nyr random matrix with independent, strictly stationary angoelic complex random elements
in the time indexi. According to the Kronecker correlation mod®,;r;;"* and Rg;"™ are deterministic transmit
and receive correlation matrices of dimensiongr x nyr and ngs x ngg respectively. In this context, the
following normalizations are considered in order to ensilva& the correlation matrices do not affect the path
loss gain of the BS-UT linkstr (Rt.™) = nyr andtr (Rry™) = npg for all (n,m, k). The matrix product
(RRZ’”)% GP™(i] (RTL"”)% represents the multiple-antenna correlated flat fadingesses experienced in the
transmission path between theggs receive antennas of theh BS and theiy transmit antennas of thigh UT in

the mth cell. The fading coefficients are assumed to have unit pavee E;[G}™ [i]GR™[i]T] = I for all (n, m, k)
and all UTs are subject to a power constraihti.e. E; [z i)z} [i]T] < %Inw for all (m, k). The vectorz™[i]
represents the AWGN noise at the receiver withe"[i]] = 0, E[z"[i]z"[i]!] = o21. To simplify notations, the

parametery = P/o? is defined as the UT transmit power normalized by the receieése power. The variance
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coefficientss;’™ in the transmission path between th¢h BS and théith UT in thenth cell are calculated according
to the “modified” power-law path loss model (cf. (8)). Dropgithe time index, the aforementioned model can

be more compactly expressed as a vector memoryless chamnthel form
Y = HX + Z, (15)

whereY = [y ..y with y(™ = [y1... y"55] representing the received signal vector by ithg; antennas of
thenth BS,X = [xEB . .xﬁg)xg; ...... xgﬁ)’l)xgﬁ) L xgﬁ;]T with XEZ)) = [z!... 2"vT] representing the transmit
signal vector by theiyr antennas of théth UT in the nth cell andZ=[z"... z(M)]T with z(®) = [21... 2"53]
being i.i.d c.c.s. random variables representing AWGN. ddeo to simplify the notations, it is assumed that all
BSs/UTs are characterized by identical recéig and transmitRt correlation matrices. However, it should be
noted that the following analysis can be straightforwarggneralized to encompass the more realistic case of

different correlation matrices for each BS/UT. The chamatrix H can be written as
H=3u0 ((IN®RR%) Gm (IKN®RT%))7 (16)
whereGy is a Nnpgs x K Nnyr Gaussian matrix with i.i.d. c.s.s. elements of unit varean&s explained before,
the Kronecker correlation model is equivalent to a separabkiance profile model in terms of its eigenvalue
distribution. Based on this equivalence, the channel matain be rewritten as follows:
H=Xu06 ((IN ® RR%) GwMm (IKN ® RT%))
~ 1 ~ 1
=Tm© (DEGMD])
1
=3M O (dde) *©® Gm (17)
whereDg andDr are the diagonal eigenvalue matricedgf, v ® Rg andIy .y ® R respectively andlg and
dr are row vectors containing the diagonal element®gf and Dt respectively. As it can be seen, the MIMO

correlation model has been transformed into an uncortlaedel with a variance profil€ = Xy © (&;&T)%,

which is neither row regular nor separable.

IV. EIGENVALUE DISTRIBUTION ANALYSIS & CAPACITY RESULTS
A. A Random Matrix Theory approach

On the basis of a recent result in Random Matrix Theory [3%oFam 2.4 and Theorem 4.1] the optimal per-cell

sum-rate capacity of the derived channel model is given by:

1 R 7 A1 1 s |1
Coni(7, N, 55, K, = — (1ogdet (T logdet [ ——T ——HQ t77)? 18
pt(v, Nynps, K, nur) N (Og e <nUT ) + logde (nUT KNy © (t"t) (18)
whereT andT are given as the solution of the followingngs + K Nnyr equations:
_ v o
ti = for it=1...Nnpgg (19)

1+ g tr (0T)
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; g

1+ KNanTtr (Q,T)

“
<.
I

for j=1...KNnyr (20)

with the unknown variables

T =diag(t) and t=[t1...tNngs]
’i‘ = dlag (E) and E = [El Ce EKNnUT]

and

Q,; = diag (wj)2 where w; = (w1, ...wNnyg;] IS the jth column of 2
Q; = diag (w;)® where w; = [w;1 ... wikNny.]iS theith row of

This result simplifies the capacity computation in largeteys by converting the original problem to a non-linear
programming problem. Hence, this approach can be utilipeelfftciently calculate the optimal capacity for finite
cellular systems. However, the size of the problem i.e. theber of equations still depends on the size of the

systemN and thus this solution cannot provide asymptotic results.

B. A Free Probability Approach

This section describes a free probability approach whichbzautilized to derive a closed form for the probability
density function of the asymptotic eigenvalue distribatiBirstly, the uncorrelated model is studied, followed by t
transmit and receive single-side correlation model. Sgsetly, the produced results for the single-side case are
utilized to deduce the solution for the double-side casé¢hipoint, it should be noted that free probability theory
was established by Voiculescu [34] and it has been also usg#], [15] to investigate the case of point-to-point
MIMO channels correlated on a single side according to ttpoe&ntial model.

1) Uncorrelated Point-to-point Channel: In this case, there is no variance profile or equivalentlythgance
profile is matrix of ones. Therefore, considering a Gausshannel matrixG ~ CN (0, 1), the empirical eigenvalue
distribution of%GTG converges almost surely (a.s.) to the non-random limitiggerevalue distribution of the

Marcenko-Pastur law [35], whose Shannon transform isrglwe

V%GTG(y) =2 Vwue(y, 8) (21)

where Vuee (1, 5) = log (14~ 16 (5.5) ) + Fiog (1438~ 16 (1.5 ) = 76 (1:5)

408y
o (y,B) = (\/y (1+\/E)2+1—\/y (1—\/5)2+1)

andn-transform is given by [36, p. 303]

2

e 3 9) =1 - 225 22)

whereg is the ratio of the horizontal to the vertical dimension of {8 matrix. The transforms of the Marcenko-

Pastur law are going to be useful in the capacity derivatafrthe uncorrelated case.
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2) Uncorrelated Cellular Channel: In this case, there is a row-regular path-loss variance lprafid thus the
channel matrix is written a¥l = 3\; © Gy. For the sake of completeness, we include the derivatiorhef t
asymptotic eigenvalue distribution of HH' based on the analysis in [29]. In this directiogH'H can be

written as the sum of{ Nnyr x K Nnyr unit rank matrices, i.e.

1 Nnpgs
NHTH: > hih; (23)
=1

whereh; ~ CN(0,V;) denotes théth 1 x K Nnyr row vector of\/—lﬁH, since the term}v has been incorporated
in the unit rank matrices. The covariance matrix eq0&js= + (diag(e;))* , wherediag(o;) stands for a diagonal
matrix with the elements of vecter; across the diagonal witér; being theith row of 3y;. The unit-rank matrices
W, = hjhi constitute complex singular Wishart matrices with one degyf freedom and their density according

to [37, Theorem 3-4] is
v, (W;) = Byldet (W)~ Kmvr ot (VW)

By, = vt N=ldet (V;). (24)

i

If hZT = Q;S; is a singular value decomposition, then the density can littewras

1-Kn N _ L.
F (W) = Byldet (s;8]) T emn(vitassial, (25)

It can be easily seen that ¥; = I, the matrices would be unitarily invariant [38, Definitiofi.Z] and therefore

asymptotically free [39]. Although in our casé; = % (diag(o;))*, we assume that the asymptotic freeness still
holds. Similar approximations have been already invest@ya an information-theoretic context, providing useful
analytical insights and accurate numerical results [48]].[In this context, the R-transform of each unit rank

matrix [18, Example 2.28] is given by

1 |[h]|*
RhiThi(w) =

= 26
KnyrN 1 —w||hy|? (6)

and the asymptotic R-transform ®1'H is equal to the sum of the R-transforms of all the unit rankrives [18,
Theorem 2.64]

]vh—I}looR%HTH(w) ~ lim Z Rhifhi(w)
&z |y

N—oo KTLUTN ; 1—w HhZHQ

(27)

Since the variance profile function of Equation (11) definmstangular block-circulant matrix with x K blocks
which is symmetric about, = Kwv, the channel matriH is asymptotically row-regular [18, Definition 2.10] and

thus the asymptotic norm df; converges to a deterministic constant for every BSYi.e

9 1 KNnuyr Knyr

. T 2 2

ngI(l)o h||” = 1\}2%0 N E 1 Sij = /0 ¢ (u,v)dv (28)
=
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11

whereg;; is the (¢, j)th element of theZys matrix. In addition, based on the row-regularity it can berséhatvv

Knyr nBs Knyr
nBs/ ¢(u,v)dv = / / ¢%(u, v)dudv. (29)
0 0 0

Therefore, Equation (27) can be simplified to [18, Theore&l 2Example 2.26]

1 /nBS 0KnUT cz(u,v)dv
0

lim Rigpig(w) ~

NSoo N Knyr 1—w fOK"UT ¢2(u,v)dv

_ 1 Jo Jo M S (w, v)dudv

- Knyr ngs —w OnBS OKnUT ¢2(u, v)dudv

1
N Q(EM)l — BT g(S)
= Rq(ZM)%GMTGM (w). (30)
where
a(m) 2 1Sul?/ (KN*nyrnps) (31)

is the Frobenius norm of thEy; matrix || Syl £ 4 /tr {EMTEM} normalized with the matrix dimensions and

I=al? = {=h 2y} = u{@en' zen)
=t {(T'eI)(Eed)}=u{=Z2eIJ}
=tr {212} tr {J'T} = - {Z'S} nprnps
= |21 nurnss. (32)
Using Equations (31) and (32), it can be seen that
o) = q(2) = IB)* / (KN?) (33)

In the asymptotic caseyX) is given by

N—o0

K
lim ¢(X%) = i/ ¢ (u,v)dv. (34)
K 0
The probability density function (p.d.f.) of the limitinggenvalue distribution of]lVHTH follows a scaled version

of the Martenko-Pastur law and hence the Shannon transbbriine limiting eigenvalue distribution O%HTH

can be approximated by

0 Kn
Vomm ( K;UT) ~ Vyp <Q(E)K;UT’ nBUST> , (35)

3) UT-side Correlated Cellular Channel : Assuming that there is no receive correlation at the BS sel@k = I,
the channel matrix of Equation (17) can be rewritten as fedto
1 1
\/—NH = (W (IKN ® RT2))

= (W (IKN@DT%)) (36)
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whereW = LNZ)M ® Gu and therefore

Nnps

T
NHTH 2; hih

Nnps

Z (IKN®DT%)W w; (IKN®DT )

X

I
S
~/~

-

=
Z
®
>
N~—"
©
z
N~—"
~~
~~
-
=
z
®
>
N~——
©
z
~——

(37)
=1
wherew; denotes théth 1 x K Nnyr row vector of W, 1y is al x KN row vector of ones andr is a row
vector containing the eigenvalues Bfr. Hence, the R-transform can be written as
Nngs

lim R = lim E R
N —oo WHTH NHOO hTh

N 2
> lIhi]

= lim

T Emrggq) Ry 4 Guian (W) (38)

2

! .
g [ el 3 / _ /
q(Q) = KiNnor KN = o u, v dv 7 u U dv (39)

It can be seen that the scaling of the MarCenko-Pastur ladeistical for the cases of uncorrelated and UT-side

correlated antennas, i.e(X) = ¢ (€2). As a result, the per-cell capacity for UT-side correlatisrgiven by (49)
which coincides with the case of uncorrelated multiple angs. Therefore, we can conclude for large value& of
(K > nyr) UT-side correlation has no effect on the system’s perforrea This ascertainment is expected, since
the capacity scaling is dictated by the rank of the channdtim®, which depends only on the nhumber of BS
antennas in a cellular scenario.
4) BS-side Correlated Cellular Channel: Assuming that there is no transmit correlation at the UT dide
R+t =1, the channel matrix of Equation (17) can be rewritten asoest
= (1 o) w)
i
= ((1v @ Dr¥) W) (40)

and therefore

nBs

N
%HTH ZHTH ZWTDRW ZAR )Zw}wi (41)

whereH,; and W; are submatrices df and W respectively with d|men5|0nﬁBS x KNnyr and \r is a row

vector containing the eigenvalues Bfg. Based on the previous analysis, the asymptotic eigendikigbution
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of A = Zfil w!w; follows a scaled version of the Martenko-Pastur law. Hetice R-transform ofA can be

written as

>
Raw) =Ry raralw) = 7= Ki(m)wq(E) *

whereG is a N x K Nnyr matrix distributed ag€ A (0,1) and

lwall* /
N — — d 43
o(D) = g — =3 [ (ww)dv 43)

The R-transform O%HTH is calculated based on [18, Theorems 2.31 and 2.64]

nBs

Rymm(w) =Y AR()RaOr(j)w). (44)
Jj=1

The asymptotic eigenvalue pdf (AEPDF) %fHTH is obtained by determining the imaginary part of the Cauchy

transformg for real arguments

Farn() = im =3 {0 e+ jy) ) (45)

y—0t+ T

considering that the Cauchy transform is derived from thigaRsform [42] as follows

_ 1
g%lHTH(w) = R%H*H(_w) “w (46)
The AEPDF of%HHJr can be also derived as follows:
nps 00 o nBs _ poo
Knor fNHTH(x) + (1 Knor )6(x) = f%HTH(‘T) (47)

since the matrice%HHT and NHTH have the same non zero eigenvalues, but their sizes diffex tactor of
nps/Knyr.

5) Double-side Correlated Cellular Channel: By combining the two previous cases, it can be easily sedrthiba
a.e.d. for the double-side Kronecker correlation modehcidies with the BS-side correlation case, since UT-side
correlation has no effect on the asymptotic eigenvalueidigton of %HTH. Figure 2 illustrates the AEPDF of
%HTH varying the level of correlation at the BS antenpas As it can be seen, by increasing the level of fading

correlation, the plot of the eigenvalue distribution isdyrally decomposing into two segments.
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C. Optimal Capacity
According to [18], the per-cell asymptotic Optimal Jointddeing sum-rate capacity,,; assuming a very large

number of cells and no CSI available at the UT-side (e.g.aumifpower allocation), is given by:

1
Copt(v, N,nps, K,nyr) = i NI(X;‘V |H)

1 Y
= lim —F |logdet [ I+ ——HH'
NLIgoN |:Og ¢ ( +TLUT >:|

Nnps
_ 1 T
_J\}LxgoEl Z log(l K (NHH))]
ZnBS/ 10g< ) L
0 N

— sy [ 1o (14 )f%HTHU 8)

wherey = KN« is the system transmit power normalized by the receiverenpmwer respectively angd; (X)

denotes the eigenvalues of matd Equation (48) can be utilized in combination with Equat{db) and (46) for

the case of correlated BS antennas. For uncorrelated B&ra#ethe optimal per-cell sum-rate capacity is given
by:
Copt(v: N, nps, K,nur) = npsV1ygnr (7/Knur)

=npsKnurVipig (7/Knyr)
v KnUT)
Knyr' nps )’

~npsKnyrVup (q (%) (49)

whereVyp is calculated based on Equation (21). It should be notedftk8I is available at the UT-side, multiuser

iterative waterfilling [43] can be employed to optimize thartsmitter input and thus the produced capacity.

D. MMSE Capacity

A global joint decoder will be extremely demanding in terni€omputational load as the complexity of symbol-
by-symbol multiuser detection increases exponentiallthasnumber of users to be detected in the system increases
[36]. However, for a coded system MMSE in combination withc&ssive Interference Cancellation(SIC) yields
linear complexity in the number of users, or at least polymmbihone considers that the computation of the MMSE
filters, matrix-vector multiplications and subtractiore ayuadratic or cubic in the number of users [44, Chap. 8].
Based on this argument, the following equations descrikestlb-optimal capacity achieved by a linear MMSE
filter followed by single-stream decoding. Based on the @argts in [18, Equation 1.9][36], [45], [46], the MMSE
and the Signal to Interference and Noise Ratio (SINR) forithedate stream, assuming no CSI available at the

UT-side (e.g. uniform power allocation), can be written as:

—1
(veve )

mimse, =
ur -
1 — 1
1+ SINR, =1+ o ek mmse, . (50)
mmsepg
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Considering single-stream decoding, the per-cell asytigghttMSE capacity is given by the mean individual stream

rate multiplied by the number of streams per cell:

NKnyr
1
Cramse(7, N,nps, K,nyr) = J\}Ego KnyrE llog <m Z (1+ SINRk))
k=1

(50) 1 NKnyr
50) .. _ ! H"H'H
= ]\;gnoo KTLUTE 10g NK?’LUT ; [(INKnUT + H ) ‘|
<~ lim Knprlog [ —— & |1 ? (1 +—HT
R e uT 108 NEnyr NKnyr
KNnyr 1
=~ lim Knyrlog [E | >
N=oo NKnyr < 14 =) (FH'H)
Knpros ([ (o)
= —Knyr _— XL
o 1+ KnUTx ~H'H
> 1 nBs
= —Knyrlo — z)dr +1 — 51
urT g</0+ 1—1—#[”:5 %H*H() KnUT) (51)

which can be utilized in combination with Equation (45) ardib)( for the case of correlated BS antennas. For

uncorrelated BS antennas, the asymptotic MMSE capacityvengdoy:
Ommsc('Ya Nv nps, Ka nUT) - —K’IIUT log (T]%HTH (ﬁ))

— —Knyrlog (nMP <q(z) v K"’”)) , (52)

Knyr' nps

wherenyp is calculated based on Equation (22). In this point, it sidag noted that MMSE filtering exhibits an
interference-limited behavior, when the number of trattars is larger than the number of receive antennas [4].
More specifically, in the previous transmission strateghiessignals of all system UTs have been superpositioned on
the shared time-frequency medium, which is sensible ifroatidecoding is in place. However, if MMSE filtering
is applied, the performance can be enhanced by orthogomalize intra-cell UTs so that only a single UT per
cell transmits using the shared medium. This scenario relemmo cellular systems employing intra-cell TDMA,

FDMA or orthogonal CDMA and its performance is evaluatedent®n V-A by means of Monte Carlo simulations.

V. NUMERICAL RESULTS

The analytical results (Equations (48),(49),(51),(529yvé been verified by running Monte Carlo simulations
over 100 random instances of the system and by averaging the prodiagmatity results. More specifically, for
each system instance the complex matiix ®RR%)GM is constructed by randomly generating correlated fading
coefficients according to the exponential model withbeing the BS-side correlation coefficient. UT-side cotiela
is not considered in the numerical results, since it doeshasé an effect on capacity for largé. Subsequently,
the variance profile matri¥ is constructed by randomly placing the UTs according to doumi distribution in

the planar coverage area and by calculating the variand#epcoefficients using Equation (11). It should be noted
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that the simulated system includds= 7 BSs, which is adequately large to converge with the asyrigpaoialysis
results. In the context of the mathematical analysis, ttstadted}™ can be calculated assuming that the UTs
are positioned on a uniform planar grid as in Fig. 1 [47]. Thenarical results presented in this section refer
to the optimal and MMSE per-cell sum-rate capacity averamedt a large number of fading realizations and UT
positions. After constructing the channel matix the optimal per-cell sum-rate capacity is calculated taleating
the formula in [20]

1
Copt = —E {logdet <1NnBS + LHH*)} , (53)
N nuyr

while the MMSE per-cell capacity is calculated by summirigfa individual stream rates and normalizing by the

number of cells [18]

1 NKHUT ’Y —1
Cmmse = _NE ; 10g [(IKNWUT + EHTH) ‘|k . 3 (54)

where [X]k’,C denotes thekth diagonal element of th& matrix. In this context, Figures 3 and 4 depict the
optimal and MMSE per-cell sum-rate capacity respectivadysus the normalized cell radius varying the level

of receive correlatiomr = [0,0.9,0.99, 1]. As it can be observed in both cases, the BS-side correldgoreases
the degrees of freedom due to the multiple receive antenméisheerefore compromises the capacity performance
of the system. In the no-correlation extremg = 0, the optimal capacity curve is identical to the curve detive
in [3] for multicell processing cellular systems with mplé antennas. In the full-correlation extremg = 1, the
capacity curve degrades to the single-antenna capacitywiffle no multiplexing gain is achieved by the multiple
BS antennas. In the MMSE-receiver case, it can be seen thaicthieved capacity in much lower than the optimal
due to the lack of interference-suppressing dimensiortsthisueffect of correlation is less grave especially for shor
cell radii. It should be noted that in Figures 3 and 4 the aialgurve and the simulation points are marked using
a solid line and circle points respectively in order to wetheir close agreement. Subsequently, Figure 5 illugtrate
the per-cell sum-rate capacity versus the level of BS-siteetation for a fixed cell size. It can be observed that the
optimal capacity degradation becomes detrimental for kiginelation levels, whereas the MMSE receiver appears
to be much more resistant to fading correlation. Finallguré 6 depicts the per-cell sum-rate capacity versus the
normalized cell radiug? varying the number of BS antennaggs for two values of correlatiopr = [0,0.8]. By
observing the figure, it becomes clear that the linear cpacaling with the number of receive antennasg

remains in spite of the degrading effect of fading correlati

A. Practical Results

This section aims at denormalizing the cellular system ipatars employed in the analysis in order to present
more practical numerical results. These results can be tseslaluate the capacity enhancement which BS
cooperation can provide in the context of real-world celtuhfrastructure. In this direction, it is the power loss

at the reference distane, the scaled variance profile function is given by

S(d(b)) = \/LO (1+d) /do)_". (55)
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The values ofL,, andn have been fitted to the path loss model defined in the “Urbanrdaacenario of [48].
Furthermore, the BS correlation level was selected acogrtti [48] assuming 2 degrees angle spread, 50 degrees
angle of arrival and an antenna spacing af where) is the communication wavelength. Table | includes a concise
list of the nominal parameter values used for producing #seilts in Figure 7.

In addition, this section evaluates the performance of MMiEring in combination with intra-cell UT or-
thogonalization, so that it can be compared with the afadistl wideband transmission cases. In this direction, a
UT is randomly selected for each cell and their channel veschoe concatenated in order to construct the square
Nnyr x Nnyp matrix Hyq,. Subsequently, the per-cell MMSE capacity is evaluatedcooedance to equation
(54):

Nnyr

—1
or 1 gl
Cmr;};e = _NE Z log [<INnUT + ElethHorth> ] . (56)
k=1 kk

It is interesting that in the considered parameter range effect of both BS-side correlation and cell density
on the MMSE capacity is negligible due to the interfereringtéd behavior which has also been observed in [4],
[29]. On the contrary, the optimal capacity performanceegrdded byl bit/sec/Hz due to correlation, which is
acceptable considering the high spectral efficiency erdrapat due to multicell processing. Furthermore, it can be
observed that fongs > nyr the performance of MMSE filtering combined with intra-cefttmgonalization is no

longer interference-limited, since there are sufficierdgrdes of freedom to suppress inter-cell interference.

VI. CONCLUSION

In this paper, we have considered a multicell processintesysvith MIMO links and distributed UTs. In this
context, we have investigated the effect of antenna cdiwelaon the capacity performance of the system. The
presented results has been derived considering that thangas of the Gaussian channel gains are scaled by
a generic variance profile which incorporates both path &®$ antenna correlation. In this direction, we have
presented two analytical approaches: a finite Random Matreory approach and an asymptotic Free Probability
approach. The former approach is useful for reducing thepbtexity of capacity calculation in finite systems,
whereas the latter provides closed forms and interestiamghits on the system performance. The main findings
can be summarized as follows: antenna correlation degri@esapacity performance of the system, especially
if it appears on the BS side. What is more, for large number ©§ Per cell, the effect of UT-side correlation
is negligible. Finally, it is shown that the MMSE performanis greatly suboptimal but more resilient to fading

correlation in comparison to optimal decoding.
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Fig. 1. Ground plan of the cellular system comprising of BSthwnultiple antennas and UTs distributed on a uniform hexad grid.
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Fig. 2. Asymptotic Eigenvalue Probability Distribution ration (AEPDF) of% HTH (omitting the zero eigenvalues) while varying the level

of correlation at the BS antennas;. ParametersK = 4, nyr = 2,nps = 2,n =2,y = 10.
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Fig. 3. Optimal per-cell sum-rate capacity vs. the nornealizell RadiusR varying the level of BS-side correlationg = [0,0.9,0.99, 1] in
a planar cellular system with uniformly distributed UTs.alysis curve and simulation points are marked using a sol& and circle points
respectively. Parameter& = 16,y = 10,ngs = 2,nyr = 1,7 = 2.
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Fig. 4. MMSE per-cell sum-rate capacity vs. the normalizeli RadiusR varying the level of BS-side correlationz = [0,0.9,0.99, 1] in
a planar cellular system with uniformly distributed UTs.alysis curve and simulation points are marked using a soli& and circle points
respectively. Parameter&’ = 16,7 = 10,npgs = 2,nyr = 1,71 = 2.
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Fig. 5. Optimal and MMSE per-cell sum-rate capacity vs. thel of BS-side correlatiopp for a fixed-radius cellular system with uniformly
distributed UTs. Parameter&’ = 16,y = 10,nps = 2,nyr = 1,7 = 2.

Fig. 6.
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Optimal per-cell sum-rate capacity vs. the nornealizell RadiusR varying the number of BS antennasszs for two values of

receive correlatiorpr = [0,0.8] (solid and dashed line respectively) in a planar cellulstey with uniformly distributed UTs. Parameters:

K=16,vy=10,nyr =1,n=2.
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Fig. 7. Optimal and MMSE per-cell sum-rate capacity vs. talt Radius R in Km considering the practical parameters in Table I.
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Parameter

TABLE |
PARAMETERS FOR PRACTICAL CELLULAR SYSTEMS

Symbol | Value/Range (units)

Cell Radius
Reference Distance
Reference Path Loss
Path Loss Exponent

Antennas per BS
BS Correlation Level
Antennas per UT

UTs per Cell

UT Transmit Power
Thermal Noise Density|
Channel Bandwidth

R 0.1—-3 Km

do 1m
Lo 34.5 dB
n 3.5
nps 2
PR 0.8624
nyT 2
K 16
Pr 200 mW
No —169 dBm/Hz
B 5 MHz
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