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Abstract

Casein kinase 2 (protein kinase CK2) is a conserved eukaryotic serine/theronine kinase with multiple substrates and roles in
the regulation of cellular processes such as cellular stress, cell proliferation and apoptosis. Here we report a detailed analysis
of the Plasmodium falciparum CK2, PfCK2, demonstrating that this kinase, like the mammalian orthologue, is a dual
specificity kinase able to phosphorylate at both serine and tyrosine. However, unlike the human orthologue that is auto-
phosphorylated on tyrosine within the activation loop, PfCK2 shows no activation loop auto-phosphorylation but rather is
auto-phosphorylated at threonine 63 within subdomain I. Phosphorylation at this site in PfCK2 is shown here to regulate the
intrinsic kinase activity of PfCK2. Furthermore, we generate an homology model of PfCK2 in complex with the known
selective protein kinase CK2 inhibitor, quinalizarin, and in so doing identify key co-ordinating residues in the ATP binding
pocket that could aid in designing selective inhibitors to PfCK2.
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Introduction

Despite the fact that protein kinases constitute an important

target in the development of drugs to treat human disease [1], in

particular cancer [2], progress in targeting protein kinases in

malaria has been slow [3]. One reason for this is the paucity of

basic understanding of parasite protein kinases. Bioinformatic

studies have identified 85–99 protein kinases in the Plasmodium

falciparum kinome. Although many of the Plasmodium protein

kinases fall into established kinase groups such as AGC and

CMGC (Hanks 2003), they tend to show significant diversity from

mammalian species reflecting the fact that malaria parasites in the

Apicomplexan phylum branched very early in the eukaryotic

lineage [4,5]. Despite this diversity it is possible to identify some P.

falciparum protein kinases that do have counterparts in the

mammalian kinome. One example of this is the P. falciparum

orthologue to protein kinase CK2, PfCK2 [4,5].

Mammalian protein kinase CK2 is a pleiotropic serine/

threonine protein kinase know to act on hundreds of cellular

substrates involved in crucial cellular processes such as differen-

tiation, proliferation, apoptosis, stress response, DNA damage and

circadian rhythm [6]. The mammalian enzyme is a tetramer

consisting of two catalytic subunits, for which two different genes

(a and a9) are present in the genome, and two regulatory b-

subunits, derived from a single gene [7]. In the case of P.

falciparum a single a-subunit catalytic gene has been identified

and two genes encoding the regulatory subunits (b1 and b2) [8].

Reverse genetic studies have determined that not only the catalytic

subunit for PfCK2, but also each of the regulatory b-subunits, are

essential for the survival of P. falciparum through the erythrocytic

life cycle [8] [9]. It seems likely that the essential nature of PfCK2

reflects a broad regulatory role similar to that of the mammalian

orthologue. This is supported by the wide distribution of PfCK2 in

the cytoplasm and nucleus of the parasite [9]. A more detailed

analysis of the potential role of PfCK2 in the nucleus has identified

a number of interacting partners and substrate nuclear proteins

involved in chromatin assembly and dynamics [9].

Here we extend these early studies and define that PfCK2 is a

dual specificity protein kinase able to phosphorylate both serine

and tyrosine residues. Furthermore, we demonstrate that PfCK2

undergoes auto-phosphorylation and that this event regulates

kinase activity, albeit through a mechanism that diverges from that

operating with the mammalian CK2. We thus demonstrate

features of PfCK2 that are similar to those of its mammalian

orthologue and features that are specific to P. falciparum.

Experimental Procedures

Materials
Human casein kinase II, 106 CK2 kinase buffer and CK2

peptide substrate RRRADDSDDDDD were purchased from New

England Biolabs and ZipTip from Millipore (Waltford, UK).

Quinalizarin was purchased from CHEMOS GmbH (Regenstauf,

Germany), Radioisotope [32P]-ATP (specific activity 3000Ci/

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e85391

http://creativecommons.org/licenses/by/4.0/


mmol) was purchased from Perkin Elmer Life Science. For GST

fusion protein purification, Amintra glutathione resin was

purchased from Expedeon (Haxton, UK).

Expression and purification of the GST-proteins
Synthetic DNA encoding for the PfMCM2 1–159 protein

fragment from P. falciparum (clone3D7A) carring BamI 59end

and EcoRI 39 end restrinction sites was provided by Eurofins

MWG Operon (Ebersberg, Germany). The cDNA was inserted

into pGEX-4T3 vector (GE Healthcare) to generate N-terminal

glutathione S-transferase (GST) fusions. GST-MCM2 mutants

were obtained by site-directed mutagenesis by overlap extension

PCR using the following primers: for S13A mutant: Forward:

59-GAAGATCTGGAAGCCAACAAATATGATATTG-39, Re-

verse: 59-CAATATCATATTTGTTGGCTTCCAGATCTTC-

39; for Y16A mutant: Forward: 59-CTGGAAAAGCAACAA-

ATTCGATATTGATGAAGAAGATCTGCTGG-39, Reverse:

59-CCAGCAGATCTTCTTCATCAATATCGAATTTGTTG-

CTTTCCAG-39; for S13A-Y16F double mutant: Forward: 59-

GAAGATCTGGAAGCCAACAAATTCGATATTG-39, Reverse:

59-CAATATCGAATTTGTTGGCTTCCAGATCTTC-39. A

pGEX-4T3 vector containing P. falciparum CK2 in frame

with an N-terminal GST tag was kindly provided by Prof.

Christian Doerig. The pGEX4T3 constructs were expressed in

Escherichia coli BL21 cells for 20 h at 20uC with 0.1 mM

isopropyl-D-thiogalactopyranoside (IPTG). GST-tagged proteins

were purified on glutathione-agarose beads, following the

manufacturer’s recommendations.

In vitro PfCK2 protein kinase assay
Standard kinase reactions (25 ml) occurred in kinase buffer

(20 mM Tris-HCl [pH 7.5], 20 mM MgCl2, 50 mM KCl)

containing 50 mM [c-32P]-ATP (500–1000 c.p.m./pmol), 1 mg of

recombinant kinase, and substrate (5 mg). Reactions were carried

out at 37uC for 15 min and terminated by the addition of Laemmli

buffer. Samples were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). The gels were

dried and exposed for autoradiography. For PfCK2 autophos-

phorylation assay reactions were carried out following the same

protocol in the absence of substrate. For quantification gel bands

were cut and quantified by scintillation counting. For LC-MS/MS

analysis the reaction was carried out in the absence of [c-32P]-

ATP, pellets were run on an SDS-gel and bands cut and analysed

as reported below.

Phospho-proteomic LC-MS/MS analysis of tryptic
peptides

Bands of interest were excised and in-gel trypsin digestion

carried out. The digests were then analysed by LC-MS/MS using

an LTQ Orbitrap-Velos mass spectrometer (Thermo Scientific).

Samples were loaded at high flow rate onto a reverse-phase trap

column (0.3 mm i.d.61 mm), containing 5 mm C18 300 Å

Acclaim PepMap media (Dionex) maintained at a temperature

of 37uC. The loading buffer was 0.1% formic acid/0.05%

trifluoroacetic acid in water. Peptides were eluted from the trap

column at a flow rate of 0.3 ml/min and through a reverse-phase

capillary column (75 mm i.d.6250 mm) containing Symmetry C18

100 Å media (Waters, UK) that was manufactured in-house using

a high pressure packing device (Proxeon Biosystems, Denmark).

The output from the column was sprayed directly into the

nanospray ion source of the LTQ-Orbitrap-Velos mass spectrom-

eter. The LTQ-Orbitrap-Velos mass spectrometer was set to

acquire a 2 microscan FTMS scan event at 30000 resolution over

the m/z range 400–1800 Da in positive ion mode. Obtained data

were processed with Mascot (version 2.2.04, Matrix Science Ltd.,

UK) and Scaffold (version 4.0.5, Proteome Software).

PfCK2 inhibition assay
To test the effect of quinalizarin on PfCK2, kinase activity was

measured in the presence of increasing concentrations of this

molecule, stocks solutions were prepared in dimethyl sulfoxide,

and negative controls for the reactions contained dimethyl

sulfoxide without the small molecule inhibitor. Kinase reactions

were performed by the phosphocellulose method. Briefly, CK2

activity was tested in a final volume of 25 ml containing 20 mM

Tris/HCl (pH 7.5), 50 mM KCl, 10 mM MgCl2, 200 mM

synthetic peptide substrate RRRADDSDDDDD and 0.1 mM

[c-32P]-ATP (500–1000 c.p.m./pmol), 0.5 mg enzyme, and incu-

bated for 10 min at 37uC. Assays were stopped by addition of 5 ml

of 0.5M orthophosphoric acid before spotting 15 ml aliquots on to

phospho-cellulose filters. Filters were washed in 0.05%orthophos-

phoric acid (5–10 ml each) four times then once in methanol and

dried before scintillation counting.

In silico homology model of PfCK2
Amino acid sequences of CK2 catalytic subunits from Homo

sapiens (CAB65624), and Plasmodium falciparum (AAN35684;

PF3D7_1108400) and other CK2 orthologs were aligned using

ClustalW [10] and adjusted manually. A series of homology

models for the P. falciparum CK2 catalytic subunit was built in

Modeller 9.10 [11] using the human CK2 crystal structure (PDB

code: 1JWH) [12] and the CK2 structure from Zea mays (PDB

code: 3FL5) as templates [13]. Alternative models which include a

structurally conserved water molecule relevant for the inhibitor

binding mode were built following the same procedure.

In silco docking simulation of quinalizarin with PfCK2
A docking simulation with the inhibitor quinalizarin was

performed with the calculated homology model for P. falciparum
CK2, using the programme GOLD116 and GoldScore as a

scoring function. Hydrogen atoms were introduced in the protein

structure with the default GOLD command and in the ligand

molecule with the programme HyperChem. To strictly validate

the model generated and to calibrate the docking protocol, a

docking analysis was first performed using the apo structure of the

co-crystal model of CK2 (PDB code: 3FL5), with the CK2

inhibitor quinalizarin. Superimposition images were obained using

Pymol.

Results

PfCK2 is a dual specificity kinase
Bioinformatic analysis of the P. falciparum kinome revealed

there are no member of the tyrosine kinase (TK) group in the

parasite genome [4,5]. Despite this, phosphoproteome studies [14–

16] have demonstrated that parasite tyrosine phosphorylation can

be detected. This derives in part from the activity of protein

kinases such as PfCLK3 and PfGSK3, where auto-phosphoryla-

tion on tyrosine is an intrinsic mechanism of kinase activation [15].

However, tyrosine phosphorylation can also be detected on

proteins that appear to be substrates for parasite protein kinases

that can phosphorylate on tyrosine [14–16]. One such putative

substrate protein is the minichromosome maintenance (MCM)

complex subunit, PfMCM2 (PF3D7_1417800), a protein likely to

be involved in the initiation of genome replication [15]. Our

analysis, and that of others, have indicated that PfMCM2 is

phosphorylated in vivo at serine 13 (S13) and possibly on tyrosine

Malaria Protein Kinase CK2
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16 (Y16) [15,16]. These residues are within an acidic region that

resembles the consensus sequence for protein kinase CK2 ((S/T-x-

x-E/D/pS) [6]. Thus, we tested if P. falciparum PfCK2

(PF3D7_1108400) could phosphorylate S13 and/or Y16 on

PfMCM2 by conducting an in vitro kinase assay using recombi-

nant PfCK2 a-subunit [8] and a glutathione-s-transfera-

se:PfMCM2 fusion protein (GST-MCM2) containing the first

159 amino acids of PfMCM2 as a substrate (Figure 1A). The GST-

MCM2 fusion protein acted as a substrate for PfCK2 a-subunit

(Figure 1A). Mutation of either S13 or Y16 on the PfMCM2

portion reduced the phosphorylation status of the GST-MCM2

fusion protein whereas the removal of both of these residues

eliminated phosphorylation completely (Figure 1A), indicating that

PfCK2 a-subunit could phosphorylate both at serine-13 and

tyrosine-16 within the GST-MCM2 fusion protein. The ability of

PfCK2 a-subunit to act as a tyrosine kinase in this in vitro reaction

was confirmed by mass spectrometry analysis that identified

PfCK2-mediated Y16 phosphorylation of a GST-MCM2 fusion

protein (Figure 1B,C).

Characterisation of the auto-phosphorylation of PfCK2
Purified recombinant PfCK2 a-subunit was seen to undergo

auto-phosphorylation (Figure 2A), as previously reported [Holland

2009]. Mass spectrometry analysis determined that threonine 63

was the site of auto-phosphorylation (Figure 2B). Mutation of

threonine 63 to alanine abolished auto-phosphorylation

(Figure 2A), indicating that this residue is likely to be the only

site of auto-phosphorylation. This is important since previous

studies on human protein kinase CK2a had reported auto-

phosphorylated on tyrosine 182 in the activation loop of the kinase

[17]. Despite the fact that this activation loop tyrosine is conserved

in PfCK2 (tyrosine 189) we could not detect any evidence of auto-

phosphorylation at this residue. This is illustrated not only by the

fact that all auto-phosphorylation was lost following mutation of

threonine 63 to alanine in PfCK2, but also by the fact that mass

spectrometry analysis identified the peptide LIDWGLAEFYHPG-

QEYNVR (Y189 underlined and bold) but this peptide was

observed only in the non-phosphorylated state.

These studies established T63 in sub-domain I of the PfCK2a as

the site of auto-phosphorylation. Importantly, mutation of this site

to an alanine not only abolished auto-phosphorylation, but also

reduced the kinase activity of PfCK2 a-subunit on exogenous

substrate by ,60% (Figure 3A,B). Furthermore, recent analysis of

the phospho-proteome of the schizont stage of P. falciparum
identified a phosphorylation of T63 in the a-subunit of PfCK2,

demonstrating that this phosphorylation event occurs in vivo

(Figure 3C).

Characterisation of the inhibition of PfCK2 by quinalizarin
To improve our understanding of PfCK2 and to gain important

structural information that might guide the design of new parasite

kinase inhibitors, we decided to test quinalizarin, the most potent

and selective inhibitor of human protein kinase CK2 commercially

available [13], in in vitro kinase assays with PfCK2. We found that

quinalizarin inhibited both parasite and human CK2 with similar

potency and efficacy, where the IC50 values were 2 mM and

0.8 mM respectively (Figure 4A). These data suggested that

quinalizarin interacted with the ATP binding pocket of human

and P. falciparum protein kinase CK2 similarly. To investigate

this further we created an in silico model of quinalizarin in

complex with PfCK2. In order to do this we based the in silico
structure of the PfCK2 a-subunit on the reported crystal structure

of Zea mays protein kinase CK2 (65% sequence identity to

PfCK2) in complex with quinalizarin (PDB code 3FL5, resolution

2.3 Å). Figure 4B shows the superimposition of the crystal

structure of protein kinase CK2 from Z. mays with the in silico
model of PfCK2. In these structures the binding mode for

quinalizarin in the ATP binding pocket of protein kinase CK2

from Z. mays and P. falciparum is essentially identical

(Figure 4C). Interestingly, not all of the residues forming the

binding site are fully conserved. Residues V40, V90 and V111 in Z.
mays protein kinase CK2 correspond to more bulky isoleucine

residues in PfCK2 (Figure 4C). In human protein kinase CK2 the

corresponding residues are leucine, valine and isoleucine, respec-

tively. This suggests that the binding site for quinalizarin in the

ATP binding pocket of protein kinase CK2 from the three species

investigated is subtly different, with PfCK2a being the most

spatially restricted.

Discussion

Recent kinome wide analysis of the protein kinases in the

asexual blood stage of P. falciparum [15] and sexual/insect stages

of Plasmodium berghei [18] have identified essential protein

kinases throughout the parasite life cycle as validated targets for

drug discovery aimed at both curative treatments and transmission

blockers [3,19,20]. One of the barriers to pursuing these protein

kinase targets is the paucity of basic information regarding the

fundamental mechanisms of action of the essential parasite kinases.

We address this issue here by focusing on PfCK2, a close

orthologue to the mammalian protein kinase CK2, which is known

to be essential for the blood stage of the parasite [8,9]. We show

that PfCK2, like its mammalian orthologue, is capable of

catalyzing both tyrosine and serine phosphorylation, and this at

least partly explains the presence of tyrosine-phosphorylated

proteins (such as MCM2) in the parasite phosphoproteome.

However, unlike mammalian protein kinase CK2, PfCK2 is not

autophosphorylated on a conserved tyrosine within the activation

loop but rather is autophosphorylated on a unique threonine in

domain I (T63) of the catalytic subdomain in a manner that

regulates PfCK2 enzymatic activity.

The tyrosine kinase group of eukaryotic protein kinases is

generally thought to have evolved as a metazoan-specific family to

meet the demands of development, differentiation and intercellu-

lar communication [21]. Hence, worms (e.g. Caenorhabditis
elegans), flies (e.g. Drosophilia melanogaster) and mammals have

extensive tyrosine kinase groups [21]. In contrast, although there

are some rare exceptions such as the Choanoflagellates, a group of

aquatic flagellate unicellular eukaryotes considered to be the

closest relatives to the animals (metazoans), which have an

extensive tyrosine kinase family [22,23] generally protozoans such

as yeast (Saccharomyces cerevisiae) [21] and human parasites

including Trypanosoma brucei (causative agent of sleeping

sickness) [24,25] and Giardia lamblia (human gut parasite) [26]

as well as parasites of the Apicomplexa phylum including

Toxoplasma gondii [27] and P. falciparum [4,5] do not contain

any recognizable member of the tyrosine kinase group. Despite the

absence of members of the TK group, many protozan phospho-

proteomes have been reported to contain proteins phosphorylated

on tyrosine residues. This includes the phospho-proteomes of yeast

[28], Trypanosoma brucei [24], Giardia lamblia [26,29],

Toxoplasma gondii and P. falciparum [14–16,30,31]. Important-

ly, in P. falciparum the tyrosine phosphorylation sites detected

with the highest confidence are those associated with kinase auto-

phosphorylation [15,32] particularly of kinases that behave as

DYRKs, such as PfCLK3 [15,30,33], where tyrosine phosphor-

ylation is an important process during translation, occurring at

translational intermediates, after which the mature kinases have

Malaria Protein Kinase CK2
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serine/threonine kinase activity [34–36]. Although rare, there are

tyrosine phosphorylated proteins other than kinases which have

undergone autophosphorylation. That this is the case in P.

falciparum is evident in phospho-proteomic [15,30,33], western

blot [31], pharmacological [30,37,38] and biochemical studies

[15] and points to the possibility that there exist dual specificity

kinases able to trans-phosphorylate on tyrosine as well as serine/

threonine residues. The finding here that PfCK2, like its

mammalian homologue, has dual specificity kinase activity in

vitro suggests that PfCK2 might contribute to tyrosine phosphor-

ylation in the malaria parasite.

Although PfCK2 shares the characteristic of having dual kinase

specificity with its mammalian orthologue, the parasite kinase

appears to be regulated in a unique manner. Mammalian protein

kinase CK2 is autophosphorylated in a trans intermolecular

mechanism on tyrosine in the activation loop, and this appears to

Figure 1. PfCK2 phosphorylates MCM2 on Ser13 and Tyr16 in vitro. A: In vitro kinase assay using a GST fusion protein containing a N-
terminal portion of MCM2 (GST-MCM2) or the same fusion protein but where residue Y16 is mutated to an phenylalanine (Y16F) or where residue S13
is mutated to an alanine (S13A) or where both S13 and Y16 are mutated to an alanine and phenylalanine respectively (S13A/Y16F). Top panel:
autoradiograph, bottom panel: Coomassie stain. B: LC-MS/MS trace of the fusion protein GST-PfMCM2 containing the S13 to alanine mutation
following phosphorylation with PfCK2 indicating the phosphorylation of residue Y16. Also shown is the fragmentation table (detected b-ions and y-
ions are represented respectively in bold red and bold blue). C: N-terminal sequence of PfMCM2 protein showing the phospho-peptide identified in
the LC-MS/MS analysis that contains the tyrosine phosphorylated residue (in red).
doi:10.1371/journal.pone.0085391.g001
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regulate the enzymatic activity [17]. Despite PfCK2a possessing a

tyrosine in an analogous position, this autophosphorylation has not

been detected either in vivo or with the recombinant enzyme, in

this study or in the previously published data bases [14–16]. It is

possible that the mass spectrometry approaches used here were not

sensitive enough to detect this phosphorylation event and that

more focused approaches, such as Multiple Reaction Monitoring

or Selected Reaction Monitoring, might have detected this

phosphorylation event. What is certain, however, is that PfCK2

is autophosphorylated on threonine 63 in subdomain I of the

catalytic domain. Mutation of this site to alanine results in

decreased enzymatic activity, indicating that this may be a

mechanism of regulating PfCK2 activity in vivo. This is the first

report of threonine 63 phosphorylation on PfCK2a [14–16] and

importantly this phosphorylation event which we first detected in

vitro is also seen our most recent in vivo global phosphorylation

analysis.

The role of human protein kinase CK2 in the regulation of cell

proliferation and apoptosis, together with the fact that this kinase is

up-regulated in cancer, has led to efforts to target protein kinase

CK2 in the treatment of cancer [39,40]. Generating selective

inhibitors with high potency and drug-like pharmacokinetic

properties has however been challenging (see for examples refs

[41,42]), although a protein kinase CK2 inhibitor, CX-4945, has

been tested in clinical trials for the treatment of cancer [43,44].

Any anti-malarial treatment based on the inhibition of parasite

PfCK2 would have to be highly specific for PfCK2, as interaction

with the human orthologue would likely cause serious adverse

affects. Thus, here we made an initial analysis of the binding mode

of a well characterized inhibitor of protein kinase CK2,

quinalizarin [13] to PfCK2. We based our homology model on

Figure 2. PfCK2 auto-phosphorylates in vitro on threonine 63. A: In vitro kinase assay for GST-PfCK2 autophosphorylation, top panel:
autoradiograph, bottom panel: Coomassie stain. B: LC-MS/MS trace identifying phosphorylation of PfCK2 at T63; right: Also shown is the hypothetical
fragmentation table where the b-ions and y-ions detected in the LC-MS/MS spectra are shown in red and bold, respectively. C: Sequence of PfCK2
showing the phosphopeptide identified in the LC-MS/MS analysis (underlined) and the threonine 63 phosphorylation site (in red).
doi:10.1371/journal.pone.0085391.g002
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the available crystal structure of quinalizarin in complex with the

a-subunit of protein kinase CK2 from Z. mays. . Our analysis

suggests that the ATP binding pocket of PfCK2, Z. mays and

human are very similar to each other. This is reflected in the fact

that quinalizarin has very similar inhibitor properties between

PfCK2 and human protein kinase CK2. However, three residues

of the binding pocket are overall more bulky in the case of PfCK2,

suggesting that the inhibitor binding pocket is more restricted in

PfCK2 than is the case for protein kinase CK2 from Z. mays and

from human. Whether these subtle differences are sufficient to be

exploited in the development of novel, selective, inhibitors to

PfCK2 is currently being considered.

Figure 3. Autophosphorylation of PfCK2 regulates kinase activity. The activity of PfCK2a and a mutant PfCK2a where threonine 63 was
mutated to alanine (T63A) was tested in in vitro kinase assays using a-casein as a substrate. A: Example of the in vitro kinase assay with PfCK2a and
the T63A mutant. Top panel: autoradiograph, bottom panel: Coomassie stain. B: kinase activity quantification. Date represents the mean 6 S.E.M
(n = 3) C: LC-MS/MS trace of PfCK2 identifying T63 phosphorylation from a shizont stage lysate of P. falciparum. Indicated are the b-ions and b-ions
(298daltons) that were identified in the LC-MS/MS spectra. Also shown is the hypothetical fragmentation table where the ions that were identified in
the LC-MS/MS spectra are shown in red.
doi:10.1371/journal.pone.0085391.g003
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