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Sequential importance sampling for
online Bayesian changepoint
detection
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Abstract. Online detection of abrupt changes in the parameters of a generative model for a
time series is useful when modelling data in areas of application such as finance, robotics, and
biometrics. We present an algorithm based on Sequential Importance Sampling which allows
this problem to be solved in an online setting without relying on conjugate priors. Our results
are exact and unbiased as we avoid using posterior approximations, and only rely on Monte
Carlo integration when computing predictive probabilities. We apply the proposed algorithm to
three example data sets. In two of the examples we compare our results to previously published
analyses which used conjugate priors. In the third example we demonstrate an application where
conjugate priors are not available. Avoiding conjugate priors allows a wider range of models to
be considered with Bayesian changepoint detection, and additionally allows the use of arbitrary
informative priors to quantify the uncertainty more flexibly.

Keywords. Changepoint Detection, Bayesian Inference, Sequential Importance Sampling, Se-
quential Monte Carlo, Online Problems

1 Introduction

Identifying abrupt changes in the parameters of a generative model for a time series {xt}thl is
a problem widely known as changepoint detection. A wide spectrum of changepoint detection
methods has been developed with a Bayesian perspective [1,3,6,8,17,18,19,20]. Some of these
methods are retrospective, and require complete observation of a time series. In this paper
we focus on problems where the data are obtained incrementally over time, so called online
problems. In an online context, inferences about changepoints need to be updated each time an
observation is made. An effective online Bayesian changepoint detection method was developed
using conjugate priors to the exponential family of models by [1].

[20] proposed using variational approximations to expand this approach to a wider class of
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models. Similarly, approximations using Gaussian processes were employed by [17] to expand the
utility of the online Bayesian changepoint detection algorithm. However, these two modifications
are approximate, and exact inference is often desirable in critical fields. [6] developed an approach
very similar to [1] which was published the same year. Although [6] extended the algorithm
with direct simulation from the posterior of the number and position of the changepoints using
Sequential Monte Carlo, they are still using conjugate priors.

In this paper, we extend the method developed by [1] and [6] to a wider range of models by
removing the requirement for conjugate priors, and perform inference using Sequential Impor-
tance Sampling [14]. Unlike the approach of [6], we consider a sequence of filtering distributions
along posteriors of generative model parameters. This choice of filtering distributions allows us
to completely avoid the conjugacy requirement, which, as aforementioned, limits model choice.
Our method, in contrast to approaches of [20] and [17], performs exact inference, while sampling
errors can be easily monitored and controlled. The complexity of the proposed algorithm grows
linearly with new data, similarly to the methods proposed by [1] and [6].

The outline of the paper is as follows: in Section 2 we introduce the changepoint model
for the proposed approach. Section 3 defines a Sequential Importance Sampling scheme for
the online Bayesian changepoint detection algorithm. Experimental results from applying the
proposed algorithm to a variety of changepoint detection problems are given in Section 4. The
paper concludes with a discussion. The source code for the proposed algorithm and all our
experiments are provided in the supplementary material.

2 Changepoint Model

We begin by adopting the changepoint model proposed by [1]. Assuming that a series of obser-
vations x1, Zg,...2zp may be divided into non-overlapping product partitions [2], data within
each partition p are considered i.i.d. and follow a distribution P(z¢|6,). A prior 7(6,) is assigned
to the model parameters. The parameters ¢, are considered i.i.d. between partitions. We will
use the following notation for a sequence of observations from time point a to time point b:

Tap ={xt:t=a,...,b}.

Our goal is to estimate the posterior probability of current run lengths that correspond to
the time since the last changepoint, given the data so far observed. The length of the current
run at time point ¢ is denoted r;. We will use the notation x;,, for a set of data corresponding
to a run length r4:

z _ Tt—ri+1:ty if Ty > Oa
bt 0, if 1y = 0.

As run length is unknown, the predictive density for the next coming datum can be calculated

as the following:
t

P(zi11]z1:4) = Z P(zip1l|zer, ) P(reene), (1)

Tt =0
where

Platsalei) = [ Ploralby) POyl )b
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and the posterior run length probability is defined as

P(ry, 1)
P g) = —2—"2,
(Tt|331.t) P(Zﬂlzt)

The joint distribution P(r¢,x1.) is defined recursively

t—1
P(ri,z10) = Y P(ridric)P(zi|zi—1y, ) P(rio1, 21e1), (3)

rt_1=0

where P(z¢|x¢—1,r,_,) is the predictive probability based on the current run, and the changepoint
prior P(r¢|r;—1) is defined by a hazard function H (r):

H(ryq1+1) if r, =0,
P(T’t‘T’t_l) = 1-— H(T’t_l + 1) lf re = Te—1 =+ 1, (4)
0 otherwise.

The marginal probability P(z;1.) in (2) is calculated as

t

P(z14) = Z P(re, z1:4). (5)

=0

Two possible options may be considered for the current run length at the beginning of
observations rq. If it is appropriate to say that the first observation x is the very first observation
of the first partition of the data, we assume P(rg = 0) = 1. In a more complex scenario, when
we need to consider that the process may have been running for some time before x1, the prior
for rg can be defined using a survival function:

Plro=7) = 2 F(r),

where Z is an appropriate normalisation constant, and

F(r)= Z P(run length is t).
t=7+1

[1] as well as [6] rely on conjugate priors to calculate the predictive probability P(z¢|xt—1,, ,)
in (3). We propose estimating these probabilities with Monte-Carlo integration based on weighted
samples from a generative model posterior:

P(ae|tiipe ) = / P(ail6,) POy l1-1.50, ), (6)

wiP(a:t|S§?_1), (7)

Q
NE

1

<.
I

where Sﬁfll are sampled from P(6p|z;—1,, ,) with weights w;, such that Zf\il w; = 1.

This estimator is known to be unbiased with variance decreasing asymptotically to zero at
the rate 1/M when w; are approximately equal [7]. At time ¢, this approach requires ¢ samples
Sy, , corresponding to all possible previous run lengths from zero to t-1.

Q@ COMPSTAT 2016
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With every new datum z; becoming available, the Online Bayesian Changepoint Detection
algorithm updates a vector of probabilities P(r¢|z1.¢),7: = 0,...t according to (2). The recur-
sive nature of (3) allows us to evolve samples S, from one stage of the algorithm to the next
using importance sampling, establishing a Sequential Importance Sampling scheme [14] along a
sequence of generative model parameter posteriors as explained in Section 3.

3 Changepoint Detection Algorithm

In Algorithm 3.1 we modify the Online Bayesian Changepoint Detection algorithm proposed
by [1] and [6] using the Monte-Carlo estimation of the predictive probabilities (6).

Algorithm 3.1.
Online Bayesian Changepoint Detection Algorithm based on Sequential Importance Sampling.

Step 1 Initialise sample Sy containing M samples from the prior of the generative model pa-
rameters with equal weights

S ~r0,), Wi =1/M, i=1,...,M,
and assign
Pro=0)=1, or Pro=1)==F(7).
Step 2 Observe new datum x;.

Step 3 For every possible value of rs—1 from 0 to t — 1, evaluate predictive probabilities
M . .
P(t|zi-1r ) = Y wi Plai] S,
i=1

Step 4 Calculate growth probabilities for values of ry from 1 to t
P(ri=mr—1+1,214) = P(re—1, 1:4—1) P(@¢| 21,0 ) (1 — H(1—1)).

Step 5 Calculate changepoint probability

t—1
P(Tt 207$1:t) = Z P(Tt—lyxl:t—l)P($t|$t—1,m_1)H(Tt—l)-

r¢—1=0

Step 6 Calculate marginal probability

¢
P(z1:4) = Z P(re, x1.4).
r¢=0

Step 7 Determine run length distribution

P(Tt|l‘1;t) = P(Tt,i’l;t)/P(ﬂj‘l;t).

COMPSTAT 2016 Proceedings
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Step 8 Update samples S; and corresponding weights w;, for i from t down to 1, using impor-
tance sampling
(Siswi) = IS(Si—1,Wi—1, T(t—i41):t)-

The importance sampling procedure IS is described in Algorithm 3.2.

Step 9 Sample Sy from the prior of generative model parameters
S~ r6,), W’ =1/M, i=1,..., M.

Step 10 Go to Step 2.

Algorithm 3.2.

Procedure IS(Soid,wold, Ttr) takes a sample Syq weighted with weq, and a non empty subset
of data xt, as arguments and produces a new sample S from the generative model parameter
posterior for data x;, weighted with new weights w.

Step 1 Sample with replacement a population of M particles S* from sample Syq according to
weights weiqg.

Step 2 Set a new sample S to S* perturbed with a Gaussian perturbation kernel
SO~ N(S* D o Var(Sad)),
where o > 0 s a variance scaling parameter.
Step 3 Calculate new weights
e P(a1,$9)m(59) |
Sl W (S(i)§ Sia - Va?“(Sozd)>

(o]

Step 4 Calculate the Effective Sample Size of the new population according to [12]
1

ESS= ————.

S (@)’

Step 5 If the Effective Sample Size is smaller than M /2, resample S with replacement according
to weights w, and assign new particles equal weights W) = 1/M.

Step 6 Return the obtained sample and corresponding weights (S,w).

Calculating the predictive probabilities in Step 3 of the algorithm requires a sample S;,_,
from the posterior of the generative model parameters P(6p|z:,, ,). We propose obtaining such
a sample with importance sampling procedure. A success of such approach relies on selec-
tion of the proposal distribution in importance sampling that is relatively close to the target
distribution. The structure of Algorithm 3.1 utilises the posterior conditioned on the data
{xt—p,...,x4_1} as the proposal distribution when sampling from the posterior conditioned on
data {x¢—p,...,z4—1,2¢}. The latter data set includes only one new datum, x;. This relation-
ship establishes a typical Sequential Importance Sampling scheme along a sequence of generative
model parameter posteriors for datasets {z1}, {1, x2}, {1, 22,23} and so on.

Q@ COMPSTAT 2016
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Figure 1. Changepoint detection results for the Well Log data. (A) A subset of data analysed
with Online Bayesian Changepoint Detection algorithm. (B) The results obtained with our
proposed method based on Sequential Importance Sampling. (C) The results obtained with [1]
and [6] algorithms using conjugate priors. Both (B) and (C) depict the posterior run length over
data observed so far, P(ri|z1). Darker points suggest run lengths with higher probability.

To minimise the effect of population degeneration issues, we use a Gaussian mixture approx-
imation to the previous posterior as the proposal distribution. This mixture model prevents
direct reusing of old samples from one generation to the next one. The variance scaling param-
eter o in Algorithm 3.2 controls the scale of the kernel for a smoothing approximation of the
proposal distribution with a Gaussian mixture model. It is usually chosen in the range of 0.1
— 1 and can be tuned individually to every application to obtain more effective proposal. We
also measure the Effective Sample Size [12] of the obtained sample, and force resampling with
replacement of the population when this metric drops below an arbitrarily selected threshold of
M /2. This resampling allows us to drop low weight particles in the tails of the posterior, and
focus more on high posterior density regions.

In practice we observed that the largest divergence between the proposal and the target
distributions is frequently observed when sampling for the very first datum in the sequence
using a prior sample as the proposal. In our case studies the resulting Effective Sample Size in
such cases drops to about 20% of the Effective Sample Sizes observed later along the sequence
of posteriors. We found it was better to use larger sample size M when the target posterior is
conditioned on only one datum. In more complex cases a partial rejection control strategy [13]
may be implemented to address the issues of large mismatch between the proposal and the target
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distributions.

4 Experimental Results

We apply the proposed algorithm to three data sets. In the first two examples, we replicate
results of [1] and analyse the data sets with our method for comparison. In the third example,
our method is applied to a new data set to demonstrate how it performs with models without
conjugate priors.

Well Log Data

A sequence of measurements of nuclear magnetic response was taken during the drilling of a
well. The data are used to interpret geophysical structure of the rock surrounding the well.
The variations in mean reflect the stratification of the earth’s crust. These data were earlier
considered by [15] and [5].

A normal model with fixed variance o2 = 4000? is used as an underlying generative model
for the data. The model is parametrised by single parameter p that corresponds to the mean of
the normal distribution. To compare our results to those of [1] we use the same normal prior for
i, with hyperparameters po = 1.15 x 10°, and 0(2) =1 x 10%. A memoryless changepoint prior
was chosen using the geometric distribution and corresponding hazard function H(r;) = 1/,
where A = 250.

A subset of the data is depicted in Figure 1. Panel A shows the original data values. Panel
B shows the results obtained using the Sequential Importance Sampling approach proposed in
this paper. Panel C shows the results obtained with the original Online Bayesian Changepoint
Detection algorithm using conjugate priors. Notice that the drops to zero run length correspond
well with the abrupt changes of the mean of the data. The differences between the results in
Panel B and Panel C are very small and correspond to Monte-Carlo approximations in Sequential
Importance Sampling and evaluation of the predictive distributions in (6), the mean square error
between these results is 1.14 x 1075, Samples of 1024 particles were used in this example for
larger data sets, while samples of 4096 particles were used for samples from the prior and samples
for the run lengths of 1. The smallest Effective Sample Size [12] is 351, which demonstrates that
there were no population degeneracy problems in the sampler. Slightly lower effective sample
sizes are observed immediately after a sudden change in the mean of the data, as these cases
correspond to significant updates of the parameter posteriors.

Coal Mining Disasters

To demonstrate how our method works with count data and large data sets, we applied it to
a data set containing the dates of coal mining explosions that killed ten or more men between
March 15, 1851 and March 22, 1962 [11]. Following [1], the data were modelled with a Poisson
process by weeks, with Gamma(1,1) prior on the rate. A geometric prior on the frequency of
changepoints was selected with corresponding hazard function H(r;) = 1/1000.

The results are plotted in Figure 2. The top panel shows the cumulative number of accidents.
The middle panel shows the results obtained with the proposed algorithm using Sequential
Importance Sampling. The bottom panel shows the results with the original Online Bayesian
Changepoint Detection algorithm using conjugate priors. The results are again very similar,

Q@ COMPSTAT 2016
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Figure 2. Changepoint detection results for the Coal Mining Disasters data. (A) The cumulative
number of significant coal mining accidents between 1851 and 1962. (B) The results obtained
with our proposed method based on Sequential Importance Sampling. (C) The results obtained
with [1] and [6] algorithms using conjugate priors. Both (B) and (C) depict the posterior run
length over data observed so far, P(ri|x14). Darker points suggest run lengths with higher
probability.

with only minor differences caused by Monte-Carlo estimation of predictive probabilities, the
mean square error between the two results is 3.02 x 1078, A significant changepoint in the rate
of coal mining disasters is usually attributed to the Coal Mines Regulations Act 1887 [16] that
commenced as law on January 1St, 1888. This date corresponds to week 1930 in our data set
and is marked in the plots with a dashed line.

As the data set contains 6000 time points, 6000 run length updates need to be performed
in an online setting, and importance sampling procedure had to be performed N(N — 1)/2 =
17,997,000 times. To keep the algorithm execution time reasonable, we were using small sample
sizes of only 256 particles. The smallest effective sample size in these populations was 47, this
demonstrates that we avoided population degeneracy problems [12].

Gold Prices

To demonstrate how our proposed method works with models without conjugate priors, we
applied it to a new data set containing the closing prices of gold measured in USD/oz from

16th July 2014 to 16th July 2015. The data are available in the supplementary material to this
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paper. The data were modelled with a stochastic differential equation,
dG = pGdt + oGdW,

where G is the price of gold, p and o2 are the drift and stochastic volatility parameters re-
spectively, and W is a Wiener process. This equation is often used in financial modelling to
describe asset prices under the assumption that prices only depend on the present and not on
the past states of the market. This model belongs to a class of stochastic processes known as
It6 processes [10]. A significant result for such processes, known as the It6 lemma [9], allows
us to derive an expression for the functions of G(t). Using this lemma, logarithms of G(¢) are

given as
2

dlog G = (u - ‘;) dt + cdW.
Integrating this equation over the interval [t,¢ + 1] gives
2

logG(t+ 1) —log G(t) = <u - 02> + oZ;,

where Z; ~ N(0,1). Using the properties of the normal distribution we can write

log G(t +1) — log G(t) ~ N (1t — %,gz),
G(t+1) 9 B o?
logwmaa N(p =507

Hence, we can model daily returns using a lognormal distribution with location y — 02/2 and
scale .

The parameters p and o? were considered unknown random variables, and were assigned
weakly informative prior distributions based on previous knowledge of gold prices. Using data
for gold prices from 1968 to 2013, it was concluded that the rate of daily returns changes slightly
from day to day at a maximum of +0.7%. The mean rate of returns is expected to have higher
density closer to zero, and lower density for larger deviations. As a result, we assigned a normal
prior to p with mean pp = 0 and variance o3 = 0.005%2 = 2.5 x 107°. Based on the observed
volatility of the historic prices, we selected an exponential prior for the volatility parameter
o2 with mean 2.5 x 107°. A memoryless changepoint prior was chosen using the geometric
distribution and corresponding hazard function H(t) = 1/\, where A = 100.

Figure 3 shows the result of changepoint analysis performed using the proposed algorithm.
The most likely outcome is that the observations begin in a state with negative drift and a
relatively low volatility of the prices, then some time between 8 October 2014 and 5 November
2014 the market switches to approximately zero drift with high volatility, finally, in the second
half of May 2015 the market goes back to a negative drift and low volatility regime.

Significant changes in the distribution of parameter posteriors with more data becoming
available required using larger populations in Sequential Importance Sampling to tackle popula-
tion degeneracy problems. After a few trials with smaller populations and observing low effective
sample sizes, we ended up using a population of 32768 particles for the posteriors corresponding
to run length from 0 to 30, and populations of 2048 particles for posteriors corresponding to
longer run lengths. The minimal effective sample size achieved with this configuration is 426,
which shows no evidence of population degeneracy problems.

Q@ COMPSTAT 2016
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Figure 3. Changepoint analysis of the gold prices during 2014-2015. The closing market price
of gold in USD/oz is plotted in the top panel. The lower panel depicts posterior run length
probabilities at different dates.

5 Discussion

The main structure of the proposed algorithm is similar to the one published by [1] and [6].
Sampling from the posterior of model parameters with Sequential Importance Sampling, instead
of using conjugate prior updates, enables our method to perform changepoint detection with
models that do not have conjugate priors. Avoiding conjugate priors also allows informative
priors based on existing knowledge or observations of similar data to be used for changepoint
detection in a truly Bayesian way.

[6] suggested the idea of numerical integration, and earlier gave an example of such ap-
proach using MCMC in [4]. The proposed Sequential Importance Sampling approach provides a
different sampling scheme to aid such numerical integration which does not suffer from common
MCMC convergence problems and can be easily implemented in high performance computing
environment.

The computational complexity of processing one more data point grows linearly as new data
arrive, as with every datum one more run length needs to be considered. The requirements
for data storage in computer memory also grow linearly. The computational complexity of
the proposed algorithm is on the same order as for the algorithms of [1] and [6]. It must be
noted that performing importance sampling is more computationally expensive in comparison to
updating conjugate parametrisation. Updating conjugate parametrisation typically takes just a
small constant number of arithmetic operations. Resampling the parameter posterior with SMC
for a sample size M takes O(M?) operations and therefore produces large complexity scaling
constants. Therefore the proposed algorithm is slower than the one that uses conjugate priors
with a constant complexity proportion. For example, performing the last round of updates
in the Well Log example takes the original Online Bayesian Changepoint Detection algorithm
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0.000155 seconds, while our algorithm requires 5.64293 seconds. This shows that our algorithm
is almost 40,000 times slower. However, Sequential Monte Carlo methods are well suited for
parallel implementation using high performance computational resources, as all of the particles
in the population are sampled independently and therefore can be processed at the same time.
The source code provided in the supplementary material implements Sequential Importance
Sampling for the three examples described in this paper using three approaches: a traditional
sequential implementation, a multiprocessor parallel algorithm using OpenMP framework, and
a massively parallel implementation running on a graphics processor via CUDA framework.

The examples considered in this paper use models with a small number of parameters. Un-
fortunately, it is well known that importance sampling is usually inefficient in high-dimensional
spaces [7]. So, as the number of model parameters increases, the problem with arise in this
setting. However, the number of parameters needed to observe these problems is quite high, and
in many practical applications medium sized models will still be feasible.

In real world applications some heuristic simplifications can be made to limit the computa-
tional complexity of the problem. Only limited run lengths may need to be considered when
monitoring some data. For example, processing the Well Log data set, we could have limited
the maximal run length time to the order of a few hundred as we expect changepoints to occur
on average every 250 time points. Another example would be monitoring fast changing financial
markets, where the possibility of a run that goes over several years is practically zero.
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