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1 Introduction

With two seminal articles published in the early fifties, Nash (1950, 1953) laid the
foundation of the Nash program, a research agenda that bridges the gap between the
cooperative and the non-cooperative side of game theory. Given a cooperative solution
concept, the aim in this program is to construct reasonable non-cooperative games such
that the payoffs realized in equilibriumyield, or somehowapproximate the correspond-
ing solution outcome. For any given cooperative solution concept, a successful Nash
program result thus provides an understanding of what type of strategic interactions
between rational, self-interested agents this concept subsumes.1

This paper focuses on the Nash program for bargaining solutions. In particular, it
provides an exact—i.e. approximation-free—support result for the continuous Raiffa
solution (Raiffa 1953). A discrete version of the Raiffa solution is defined as the limit
point of a sequence of intermediate agreements that is constructed by an iterative
random dictator procedure: taking the disagreement point as the first intermediate
agreement, the t + 1-th agreement is obtained by first giving all players the utilities
implied by the t-th agreement, and subsequently giving each player 1/n-th of the
maximal utility they could then still feasibly obtain. The continuous version of the
Raiffa solution—the one considered in this paper—is in the same spirit, but assumes
an infinitesimally small step size, i.e. rather than receiving 1/n-th of their maximal
claims (in excess of the previous intermediate agreement), the share players now
receive is infinitesimally small.2

Our support result for this solution is based on a non-cooperative bargaining game
in the tradition of Ståhl (1972) and Rubinstein (1982). Players make proposals that
are instantaneously and sequentially voted on by all players, including the proposer;
if there is unanimous agreement, the proposal is implemented, otherwise it is rejected
and the game continues. Apart from these common features, the game differs from the
classic models in several important ways: bargaining occurs in continuous time and
the game features a finite deadline that ends the negotiations with all players obtaining
zero payoffs. Moreover, the timing of the proposals is stochastic in the sense that they
are governed by player-specific Poisson processes: at the outset of the game, player
1’s process starts running until it produces an arrival, at which point she becomes
the proposer; whenever a proposal is rejected, the game continues, and the rejecter is
called to make the next proposal. While this game may have many subgame perfect
equilibria (SPE), it turns out that in SPE, the payoff functions are unique. The main
result of this paper is that the ex ante expectations of said payoffs converge to the
continuous Raiffa solution outcome as the deadline tends to infinity. In addition, a
simple extension of the game proposed by Trockel (2011) leads to an exact support
result: whenever player 1’s process produces an arrival, she proposes the continuous
Raiffa solution outcome, and this proposal is unanimously accepted.

1 See Serrano (2005) for a relatively recent survey on the Nash program.
2 If utilities are transferable, both the discrete and the continuous Raiffa solution divide the surplus equally
among the agents. Hence, these solutions are only of interest when utilities are non-transferable.
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A non-cooperative foundation for the continuous Raiffa solution 1117

The papers most closely related to the present work are Ambrus and Lu (2015) and
Diskin et al. (2011). A detailed discussion of these papers is deferred to Sect. 4. We
next discuss further related literature.

The Nash program: As previously mentioned, the origins of the Nash program lie in
two seminal papers of Nash (1950, 1953). In the first, Nash defines and axiomatically
characterizes the Nash solution, while in the second he provides the Nash solution’s
first non-cooperative support result. In particular, he constructs a non-cooperative game
in which two players simultaneously submit their respective utility demands while
facing uncertainty about the size of the surplus to be divided, and inwhich incompatible
demands lead to zero payoffs for both players; as the uncertainty vanishes, a particular
Nash equilibrium outcome of this game converges to the Nash solution outcome.

A second support result for the Nash solution originates from the work of Rubin-
stein (1982), who constructs a dynamic non-cooperative bargaining game in which
two players take turns to make proposals until one is accepted, and in which utilities
are exponentially discounted. Rubinstein shows that this game has a unique subgame
perfect equilibrium; Binmore et al. (1986) subsequently proved that the correspond-
ing payoffs converge to the Nash solution outcome as the discount factor tends to
one. There is a broad literature on n-player variations on these results, implementing
the Nash solution or its asymmetric generalization (Harsanyi and Selten 1972; Kalai
1977).3 Anbarci and Sun (2012) provide another implementation of the asymmetric
Nash solution for two-person problems.

The Nash program for the Raiffa solution has primarily focused on its discrete ver-
sion.Myerson (1991, pp. 393–394) describes a two-player non-cooperative bargaining
game in the spirit of Rubinstein, but differing in three main respects: rather than tak-
ing turns to make proposals, it is assumed that at each round a proposer is randomly
selected by a fair coin toss; there is a finite deadline T that ends negotiations; and
there is no discounting of utilities. The unique SPE of this game implements the (dis-
crete) Raiffa solution, as T goes to infinity. Sjöström (1991) proposes a similar game
in which actions take place at T equidistant time points within a fixed time interval,
and in which payoffs are exponentially discounted with discount factor r ≥ 0; as the
partition of the bargaining interval becomes more refined (i.e., T → ∞), the unique
subgame perfect equilibrium of this game implements an outcome within distance r
from the discrete Raiffa solution outcome. Tanimura and Thoron (2008) construct a
game inwhich two risk averse players divide a perfectly divisible unit good by a partic-
ular procedure that generalizes the notion of final offer arbitration. The discrete Raiffa
solution outcome is obtained in the unique subgame perfect equilibrium of this game.

The rejecter-proposes protocol: The dynamic bargaining games that implement the
Nash and Raiffa solutions are set in discrete time, and typically adopt one of three
bargaining protocols: either (i) players get to make proposals in a fixed rotating order
(e.g. Rubinstein 1982; Haller 1986; Krishna and Serrano 1996); (ii) at each round
a proposer is randomly selected in accordance with a given probability distribution

3 See for instance Chae and Yang (1994), Krishna and Serrano (1996), Huang (2002), Suh andWen (2006),
Miyakawa (2008), Laruelle and Valenciano (2008), Kultti and Vartiainen (2010), or Britz et al. (2010,
2014).
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1118 B. Driesen et al.

(e.g. Myerson 1991; Sjöström 1991; Laruelle and Valenciano 2008; Britz et al. 2010);
or (iii) one player makes the first proposal, and in the continuation of the game, the
rejecter of each proposal gets to propose in the next round.

In this paper, we assume the last bargaining protocol. Selten (1981) was the first to
study a bargaining game where proposers are selected in this way. While it is usually
interpreted as an alternating offers game (and thus one with a fixed rotating order of
proposers), in Rubinstein’s (1982) game too, the player who gets to propose at any
time t + 1 is the one who rejected the time-t proposal. The games proposed by Chae
and Yang (1994) and Suh and Wen (2006) are generalizations of Rubinstein’s game
along these lines. The rejecter-proposes protocol has been most widely adopted in the
context of coalition formation games; examples include Chatterjee et al. (1993), Bloch
(1996), Ray and Vohra (1999), Imai and Salonen (2000), and Bloch and Diamantoudi
(2011). Kawamori (2008) and Britz et al. (2014) study more general action-dependent
bargaining protocols that include the rejecter-proposes protocol as a special case.

Bargaining with non-convex feasible sets: The Nash program with non-convex
bargaining problems has received relatively little attention in the literature. Notable
exceptions include Herrero (1989) and Conley and Wilkie (1994, 1996), who extend
the definition of the Nash solution to the non-convex domain, and provide non-
cooperative support for their respective solution concepts.

The rest of the paper is organized as follows. Section 2 details all relevant definitions
and notations, Sect. 3 contains our main result, an exact non-cooperative support result
for the continuous Raiffa solution, and Sect. 4, as indicated above, further discusses
the related literature.

2 Preliminaries

2.1 The bargaining problem

A bargaining problem—in short, problem—is defined by a finite set of players N :=
{1, . . . , n} with n ≥ 2, and a subset S of R

n , that is closed and strictly comprehensive
(i.e. y ∈ S and x ≤ y implies x ∈ S; if in addition x �= y, then z > x for some
z ∈ S),4 that contains an outcome z > 0̄ := (0, . . . , 0), and is such that S ∩ R

n+ is
bounded. It is further assumed that S satisfies the following condition:5

(A1): There exists a finite K > 0 such that for all i, j ∈ N , and for all x, y ∈
∂(S) ∩ R

n+ with x−{i, j} = y−{i, j} : |xi − yi | ≤ K |x j − y j | (See Fig. 1).
Note that we do not insist on convexity of S. Fixing the set of players N , a bargaining
problem is henceforth denoted by the set S. The class of all bargaining problems S
is denoted by B. A bargaining solution—in short, solution—is a map ϕ : B → R

n

that assigns to each problem S ∈ B a unique outcome ϕ(S) ∈ S.

4 For x, y ∈ R
n , x ≥ y is taken to mean xi ≥ yi for all i ∈ N ; the vector inequalities >, ≤ and < are

similarly defined.
5 For a closed set S ∈ R

n , ∂(S) := S\int(S), where int(S) denotes the interior of S.
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S

(a)

S

(b)

Fig. 1 An illustration of condition (A1)

The interpretation of the bargaining problem is as follows. An outcome x ∈ R
n

represents a utility allocation, in that each xi represents the utility obtained by player i ;
S represents the set of all utility allocations players in N can jointly realize, and is thus
also called the feasible set; players must find agreement on an outcome x ∈ S, and
failure to do so leads to the unfavorable outcome 0̄; the latter is therefore also called the
disagreement outcome. The outcome ϕ(S) is interpreted as the compromise reached
by the players in N when faced with the problem S, and is thus also referred to as the
solution outcome. Condition (A1) says that if a player i gives up any small amount
ε > 0 of his utility, then there is an upper bound K ε on the associated compensation
other players (i.e., j ∈ N\i) can feasibly realize from this concession. This is a
rather mild assumption: for instance, if the problem is a utility representation of an
economic division problem, then (A1) already holds if the players’ utility functions
are continuously differentiable.

2.2 A family of continuous Raiffa solutions

Given a problem S ∈ B and an outcome x ∈ S ∩ R
n+, define m(x, S) :=

(m1(x, S), . . . ,mn(x, S)), where

mi (x, S) := max{yi |(x1, . . . , xi−1, yi , xi+1, . . . , xn) ∈ S}

for all i ∈ N . Each mi (x, S) is the maximal claim player i holds over the surplus that
remains of S, given that an intermediate agreement has been reached on the outcome
x . Note thatm(·, S) is a well-defined vector function by compactness of S∩R

n+. When
it is no cause for confusion, we will write m(x) rather than m(x, S).

Given a convex problem S ∈ B, the discrete Raiffa solution (Raiffa 1953) is
defined as the limit of the sequence {xt }∞t=0, where x

0 := 0̄ and

xt+1 := xt + 1

n
(m(xt ) − xt ) (1)

123



1120 B. Driesen et al.

S

R(S)

S

Fig. 2 An illustration of the continuous Raiffa solution

for all t ∈ N0 := N∪{0}. It is based on the intuitive notion that agreement is found on
the midpoint of all the maximal claims players hold over the surplus. If this midpoint
is not efficient, then players again stake out maximal claims over the surplus that
remains, and reach a next compromise on the midpoint of those claims. The solution
outcome is reached by iteratively applying this reasoning, until the entire surplus is
allocated.

The problem described by the difference Eq. (1), and as a consequence also the
discrete Raiffa solution, discards much of the information that is contained in the bar-
gaining problem. Therefore, Raiffa (1953) proposed the continuous Raiffa solution,
which is obtained in similar fashion to its discrete version, but reduces the step size in
problem (1) from 1/n to 0. More precisely, problem (1) is turned into an initial value
problem, so that its solution is no longer given by a series of intermediate agreements
{xt }kt=0 with x0 = 0̄, but by a continuous intermediate agreement curve x(t) with
x(0) = 0̄. The continuous Raiffa solution outcome then coincides with the limit point
of this curve as t tends to infinity Fig. 2. For two-player convex problems, it has been
axiomatically characterizedbyLivne (1989), Peters andvanDamme (1991), andPeters
(2010) among others; in these studies, the intermediate agreement curve is obtained as
the solution of the initial value problem dx1/dx2 = (m1(x) − x1)/(m2(x) − x2) with
the initial condition x1(0) = 0. In a multilateral setting, the intermediate agreement
curve could similarly be obtained by parametrizing the utilities of players i ∈ N\n in
terms of the utility of player n. Diskin et al. (2011) explicitly use the continuous version
of (1). The following generalizes their definition to a family of weighted continuous
Raiffa solutions.

Definition. Let � be the set of all strictly positive vectors in the n-dimensional unit
simplex, i.e., � := {λ ∈ R

n++ | ∑
i∈N λi = 1}. For λ ∈ �, the λ-weighted con-

tinuous Raiffa solution Rλ : B → R
n is defined as Rλ(S) := limt→∞ x(t), where

x : [0,∞) → S is the unique solution of the Initial Value Problem6

x ′(t) = λ[m(x(t), S) − x(t)] and x(0) = 0̄. (2)

The solution familyR := {Rλ | λ ∈ �} contains all such solutions.

6 For x, y ∈ R
n , we define xy := (x1y1, . . . , xn yn).
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A non-cooperative foundation for the continuous Raiffa solution 1121

If λi = 1/n for all i ∈ N , then Rλ is the unique symmetric solution inR; this solution
is also denoted R. Diskin et al. (2011) show that in the convex domain,R is a family of
well-defined solutions. To extend their result to non-convex problems, we first prove
the following useful lemma.

Lemma 2.1 For all S ∈ B and λ ∈ �, λ[m(x, S) − x] is Lipschitz continuous, with
Lipschitz constant K + 1.

By this lemma and the Picard–Lindelöf theorem, it follows that for all S ∈ B and
λ ∈ �, the corresponding problem (2) has a unique solution.

Proposition 2.2 For all S ∈ B and λ ∈ �, problem (2) has a unique solution
x : [0,∞) → R

n, which has the property that x(t) ∈ int(S) ∩ R
n+ for all finite

t . Furthermore, limt→∞ x(t) exists and is contained in ∂(S) ∩ R
n+.

Proof See Theorem 5 of Diskin et al. (2011). ��

3 A non-cooperative support result

3.1 The non-cooperative bargaining game

We consider a continuous-time bargaining game with stochastic timing of proposals
and a finite deadline, similar to the game proposed by Ambrus and Lu (2015).7 The
underlying framework of this game is a bargaining problem S ∈ B, as defined in the
previous section. Bargaining occurs in a continuous time interval [0, T ], where the
deadline T is finite and known to all players. For each player i ∈ N , when she is
called to make the next proposal, the opportunity to do so is produced by a Poisson
process with the player-specific arrival rate λi > 0. We further assume

∑
i∈N λi = 1,

so that λ ∈ �; this is without loss of generality since the interval [0, T ] can always be
rescaled.

If at a time t ′ ∈ [0, T ], a player i is called to be the next proposer, then i’s pro-
cess, and i’s alone, starts running until it produces an arrival, say at time t ≥ t ′.
At this point i becomes the proposer, and thus puts an allocation x ∈ S on the
table. All players, including i herself, subsequently make instantaneous and sequen-
tial accept/reject decisions on this offer. The order in which they do so is given by
[i, i + 1 (mod n), . . . , n, 1, . . . , i − 1].8 If all players accept, then bargaining ends
with the implementation of i’s proposal. If no unanimous agreement is obtained, then
voting stops at the first rejection, and the above procedure is repeated from time t
onward, now with the rejecter of i’s proposal in the role of designated next proposer.
Without loss of generality, we assume that player 1 is the designated next proposer at
time 0. If prior to the deadline T no agreement is reached, or infinitely many arrivals
occur, then bargaining ends and all players realize their disagreement value 0.

7 Ambrus and Lu’s (2015) game is discussed in Sect. 4.
8 While the subsequent response order is irrelevant, it is important that the proposer responds first to her
own proposal. See Remark 1 below.
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1122 B. Driesen et al.

A particular game of this form is described by � = {S, λ, T }, where S ∈ B is the
underlying bargaining problem, λ the vector collecting the arrival rates of players’
processes, and T the deadline ending negotiations.

3.2 Histories, strategies, and equilibria

The payoffs players (expect to) realize at any point in the game, which proposals to
make when proposing, and which offers to accept or reject when responding, may all
depend on the history of play of the game. Fix a game � = {S, λ, T }, and consider
a player i ∈ N . If she is the proposer at some time t ∈ [0, T ], then the relevant
history—also called proposer history— specifies the times t1 ≤ · · · ≤ tk ≤ t of
all previous offers (if any), and for each l, l = 1, . . . , k, the rejected proposal and
the identity of the proposer.9 If i is the designated next proposer, then the preceding
history contains the same information as a proposer history. If i is a responder, then the
responder history contains all information of a proposer history, but further includes
the proposal to which she is responding.

Denote the set of all histories after which player i must make a proposal by H p
i ,

the set of all histories after which she is the designated next proposer by Hd
i , and

the set of all histories after which she is responding by Hr
i . Player i’s strategy is

described by a pair of functions ( fi , gi ), where fi : H p
i → S maps histories of H p

i
into feasible proposals x ∈ S, and gi : Hr

i → {accept, reject} maps histories of
Hr
i into an accept/reject decision on the current offer. A strategy profile is a tuple

( f, g) ≡ ( fi , gi )i∈N .
ANash equilibrium is a strategy profile ( f, g) fromwhich noplayer has a unilateral

profitable deviation: if all players j ∈ N\i play ( f j , g j ), then the optimal strategy
of player i is to play ( fi , gi ). A Subgame Perfect Equilibrium (SPE) is a strategy
profile ( f, g) that constitutes a Nash equilibrium at every node of the game. A weak
SPE (WSPE) is a strategy profile that is a Nash equilibrium at every node of the game
at which Nash equilibria exist.

3.3 Subgame perfect equilibria

Fix a game � = {S, λ, T }, let x(t) be the unique solution to the initial value problem
(2) associated with S, and for t ∈ [0, T ], define r(t) := x(T − t) and p(t) := m(r(t)).
It is demonstrated that in any SPE of this game, the payoff functions of a player i in
the role of proposer and in the role of responder are respectively given by pi (t) and
ri (t). First consider the following useful lemma.

Lemma 3.1 The system of equations

θi (t) =
∫ T

t
λi e

−λi (s−t)mi (θ(s))ds for all i ∈ N and t ∈ [0, T ] (3)

has a unique solution given by θ(t) = r(t).

9 Note that the identities of the rejecters at all times tl , l = 1, . . . , k − 1, can be inferred from the identity
of the proposer at tl+1; the proposer is the rejecter of the time-tk proposal.
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A non-cooperative foundation for the continuous Raiffa solution 1123

Proof Problem (3) can be reformulated as an initial value problem. In the first place,
θ(T ) = 0̄ = x(T − T ). Furthermore, for all i ∈ N and t ∈ [0, T ],

θ ′
i (t) = 0 − λi e

−λi (t−t)mi (θ(t)) + λi

∫ T

t
λi e

−λi (s−t)mi (θ(s))ds

= −λi [mi (θ(t)) − θi (t)]

Then by Proposition 2.2, θ(t) = x(T − t) is the unique solution to (3). ��
Proposition 3.2 In any SPE, if a player i is the proposer at t ∈ [0, T ], then she offers
r j (t) to all j �= i , claims pi (t) for herself, and this proposal is unanimously accepted.

Proof Let T be some time in (0, T ], and assume that the proposition is true in the
interval [T , T ]—i.e., for all SPE, if player i is the proposer at t ∈ [T , T ], then she
offers r j (t) to all j �= i , claims pi (t) for herself, and this proposal is unanimously
accepted. The aim of the proof is to show that this then also holds true on a non-
degenerate time interval that precedes T , in particular, the interval I := [T − τ, T ]
where τ := min

{
T ,− ln

(
1 − 1

n(1+K )

)}
. To this end, let {(θk(t), θk(t))}k∈N0 be two

sequences of functions on I , defined as

θ0(t) := r(T ) and θ
0
(t) := r(T ) + (1 − e−(T −t))(p(T ) − r(T )),

and for all k ∈ N0, for all t ∈ I , and for all i ∈ N ,

θ
k+1
i (t) :=

∫ T

t
λi e

−λi (s−t)mi (θ
k(s))ds + e−λi (T −t)ri (T )

θk+1
i (t) :=

∫ T

t
λi e

−λi (s−t)mi (θ
k
(s))ds + e−λi (T −t)ri (T )

The following two claims show that these functions describe paths in int(S) ∩ R
n+.

Henceforth, whenever the argument t is omitted, the claim is assumed to hold for all
t ∈ I .

Claim 3.3 θ
0 ∈ int(S) ∩ R

n+.

Claim 3.4 For all k ∈ N0, θ
k ≥ θ

k+1 ≥ θk+1 ≥ θk .

For all t ∈ [0, T ] and for all i, j ∈ N , let q j
i (t) and q

j
i (t) respectively be the supremum

and the infimum over all SPE and all histories in Hd
j , of player i’s time-t expected

payoff in the game. Furthermore, for all i ∈ N , define r i := qii and r i := qi
i
.

Claim 3.5 r ≥ θ0 and for all j ∈ N , θ
0 ≥ q j .

It follows that θ
k ≥ r ≥ r ≥ θk for k = 0. We want to prove that these inequalities

hold for all k ∈ N0. To this end, assume that θ
k ≥ r ≥ r ≥ θk for some k ∈ N0.

Furthermore, let pi (t) and p
i
(t) be the supremum and the infimum of i’s (expected)

payoff at t , over all SPE and histories in H p
i .
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1124 B. Driesen et al.

Claim 3.6 m(θk) ≥ p ≥ p ≥ m(θ
k
).

Since p ≥ m(θ
k
) ≥ m(θ

0
) > θ

0 ≥ q j for all j , this claim implies that any SPE
proposal in I is immediately accepted. It further implies that for all t ∈ I ,

r i (t) ≤
∫ T

t
λi e

−λi (s−t)mi (θ
k(s))ds + e−λi (T −t)ri (T ) = θ

k+1
i (t)

r i (t) ≥
∫ T

t
λi e

−λi (s−t)mi (θ
k
(s))ds + e−λi (T −t)ri (T ) = θk+1

i (t)

That is, θ
k+1 ≥ r ≥ r ≥ θk+1. This leads to the following result.

Claim 3.7 θ
k ≥ r ≥ r ≥ θk for all k ∈ N0.

By Claims 3.3 and 3.4, there are functions θ and θ , defined on I and bounded within

S∩R
n+, such that limk→∞ θ

k = θ and limk→∞ θk = θ . By Claim 3.7, θ ≥ r ≥ r ≥ θ ,
and by continuity, m(θ) ≥ p ≥ p ≥ m(θ).

Claim 3.8 θ = θ = r and m(θ) = m(θ) = p.

Suppose that player i is the proposer at t ∈ I . Since her proposal is accepted, all j �= i
must be offered at least r j (t). However, since i’s payoff is given by pi (t), all j �= i
are offered exactly r j (t). In other words, player i offers r j (t) to all j �= i , claims pi (t)
for herself, and this proposal is unanimously accepted.

Assume that T = T , and note that the proposition holds on the degenerate interval
[T, T ]. By repeating the above argument, it may then be iteratively established on the
intervals [T − τ, T ], [T − 2τ, T ], and so on. Since T is finite, and since τ is strictly
positive and independent from T , the entire interval [0, T ] is covered in a finite number
of iterations. ��
Corollary 3.9 In SPE, the game � is concluded when player 1’s process produces an
arrival, say at time t; player 1 offers r j (t) to all j �= 1, claims p1(t) for herself, and
this proposal is immediately accepted.

Remark 1 The assumption that the proposer is the first to respond to her own proposal
is used in the proof of Claim 3.5 to determine an initial lower bound ri (T ) on the
expected payoff a player i realizes in SPE when she is the designated next proposer.
In particular, in the interval I, i can unilaterally secure ri (T ) by consistently rejecting
her own proposals. If the response order were fixed, say at [1, . . . , n], then for i to be
the rejecter, these proposals would first have to be accepted by all of i’s predecessors.
Since at that point in the argument nothing guarantees the existence of such proposals,
it is necessary to assume that the proposer has no predecessors in the response order.

Proposition 3.2 implies that for each role in the game, the payoffs players realize
are the same in all SPE. This regularity in the payoffs is helpful in establishing SPE
existence. Consider the strategy profile ( f̂ , ĝ) defined as follows. For all i ∈ N and
t ∈ [0, T ]:
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A non-cooperative foundation for the continuous Raiffa solution 1125

• If i is the proposer at time t , she offers r j (t) to all j �= i , and claims pi (t) for
herself.

• If i is responding to a proposal v at time t , she accepts if and only if two conditions
are satisfied: (i) i has no successor in the response order who rejects; and (ii)
vi ≥ ri (t).

By the same reasoning as in Claim 3.5 in the proof of Proposition 3.2, q j
i (t) ≤ ri (t)

for all i, j ∈ N and t ∈ [0, T ]. SPE existence is then easily established.

Proposition 3.10 The profile ( f̂ , ĝ) is an SPE.

There may be other SPE besides ( f̂ , ĝ). To see this, note that rejection in case of indif-
ference is only excluded if the proposer makes the correct offer. Suppose for instance
that at time t an outcome v ∈ S is proposed by player i , with v �= (pi (t), r−i (t)) and
v j = r j (t) for some j �= i ; if j gets to respond, and all of her successors accept, then
also rejection is a best reply, and may thus be (the action implied by) an SPE strategy.

3.4 The limit behavior of expected SPE payoffs

Lemma3.1 andProposition 3.2 already hint at a connection between theRaiffa solution
and the above-described game. The purpose of this section is to make this connection
precise. To this endwe consider players’ ex ante expected payoffs at time0 as a function
of the deadline T . Consider a game � = {S, λ, T }, and note that by Corollary 3.9,
expected payoffs are given by

u1(T ; S, λ) :=
∫ T

0
λ1e

−λ1sm1(x(T − s), S)ds (4)

u j (T ; S, λ) :=
∫ T

0
λ1e

−λ1s x j (T − s)ds for j = 2, . . . , n (5)

We next show that these expected payoffs converge to the continuous Raiffa solution
outcome as the deadline tends to infinity.

Theorem 3.11 For all S ∈ B and λ ∈ �, limT→∞ u(T ; S, λ) = Rλ(S).

Proof Fixing S and λ, u(T ; S, λ) may be written as u(T ), and m(·, S) as m(·). Fur-
thermore, let z := Rλ(S). Applying the transformation τ = T − s to the right hand
sides of (4) and (5) yields

u1(T ) =
∫ T

0
λ1e

λ1(τ−T )m1(x(τ ))dτ (4’)

u j (T ) =
∫ T

0
λ1e

λ1(τ−T )x j (τ )dτ for j = 2, . . . , n (5’)

First consider the expected payoff of player 1, u1(T ). Differentiating on both sides
w.r.t. T yields u′

1(T ) = λ1[m1(x(T ))−u1(T )], and thus by Proposition 2.2, u′
1(T ) =
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1126 B. Driesen et al.

x ′
1(T ) + λ1[x1(T ) − u1(T )]. Defining φ(T ) := u1(T ) − x1(T ), this yields φ′(T ) =

−λ1φ(T ). With the initial condition φ(0) = 0, this solves to φ(T ) = 0 for all T . Then
by continuity of φ, and by the definition of Rλ,

lim
T→∞ u1(T ) = lim

T→∞ x1(T ) = z1.

Next consider j ∈ N\{1} and let ε > 0 be given. Since x j (T ) is strictly increasing in
T and since limT→∞ x j (T ) = z j , z j − x j (T ) ≥ 0 for all T ≥ 0. It further implies
that there is a T0 such that z j − x j (T ) ≤ ε for all T ≥ T0. Since for all a ∈ R+,
limT→∞

∫ T
a λ1e−λ1(T−τ)dτ = 1,

z j − lim
T→∞ u j (T ) = lim

T→∞

∫ T

0
λ1e

λ1(τ−T )[z j − x j (τ )]dτ

= lim
T→∞ e−λ1T

∫ T0

0
λ1e

λ1τ [z j − x j (τ )]dτ

+ lim
T→∞

∫ T

T0
λ1e

λ1(τ−T )[z j − x j (τ )]dτ

≤ 0 + lim
T→∞

∫ T

T0
λ1e

λ1(τ−T )εdτ = ε.

Furthermore, since z j − x j (T ) ≥ 0 for all T , the first equation above implies
z j − limT→∞ u j (T ) ≥ 0. Since 0 ≤ z j − limT→∞ u j (T ) ≤ ε for all ε > 0,
limT→∞ u j (T ) = z j . In conclusion, limT→∞ u(T ) = z, as desired. ��

There are three potential criticisms of Theorem 3.11. In the first place, since Propo-
sition 3.2 only holds when the deadline is finite, the above result only provides
approximate non-cooperative support for the Raiffa solution. Secondly, it remains
silent on the payoffs players realize ex post; if the game is concluded close to the
deadline, they will in fact deviate substantially from the Raiffa solution outcome.
Finally, there is a strictly positive probability that bargaining ends before player 1
has the opportunity to make a proposal, in which case players realize zero payoffs
without an action ever being played. Using the approach of Trockel (2011), these
three criticisms may be tackled at once. In particular, consider an extension of the
game � in which the deadline T is not exogenously specified, but rather, chosen
by the rejecter of the first proposal. This provides exact support for the continuous
Raiffa solution in WSPE—i.e., the game does not conclude before player 1 gets to
make a proposal, she proposes exactly the (weighted) Raiffa solution, and this offer
is immediately accepted by all players. For the specifics of this result, see Trockel
(2011).
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4 Related literature

4.1 Ambrus and Lu (2015)

Ambrus and Lu (2015) consider a bargaining game that is similar to the one presented
in this paper.10 However, rather than a pure bargaining problem, they assume that the
underlying (cooperative) game is a monotonic TU game.11 While their strategic game
too is set in continuous time and takes place in a fixed time interval, they assume this
interval to be [−T, 0] where −T represents the starting point, and 0 is the deadline
ending negotiations. As in our version of the game, each player i’s opportunity tomake
proposals is governed by a Poisson process with player-specific arrival rate λi > 0,
all processes are independent, and arrival rates sum up to a constant λ̂ that can be
normalized to one. While we assume that throughout the game only one process is
active, Ambrus and Lu assume that all processes run concurrently at all times until the
game is concluded, either because the deadline is attained or because a proposal has
been accepted.When an arrival occurs and the corresponding player makes a proposal,
then in a fixed order, all players except the proposer either accept or reject; in case
of unanimous acceptance the game ends with the implementation of the proposal, in
case of rejection all processes start up again until the first next arrival occurs. Payoffs
are exponentially discounted with discount factor r ∈ (0,∞); furthermore, as in our
game, utilities have zero worth after the deadline.

For this game, Ambrus and Lu prove a number of results: they show that expected
payoffs in Markov Perfect Equilibrium (MPE) are unique, that MPE are the only SPE
that can be approximated by SPE in discrete versions of the game, and that as the
deadline tends to infinity, the game implements, for each profile of arrival rates, a
particular element of the core. However, closer to this paper, Ambrus and Lu also
focus on a special case of their model in which only the grand coalition generates a
positive value, so that the underlying cooperative game is a pure bargaining problem
with transferable utility. Normalizing the worth of the grand coalition to one, they
prove the following result.

Claim 3. (Ambrus and Lu 2015) In any SPE, the n-player group bargaining game
ends at the first realization of the Poisson process for any player as follows: an offer
is made to N and all players accept. SPE payoff functions are unique, with player i

receiving (λi + r)/(λ̂+ r)+ (λ̂− λi )/(λ̂+ r)e(λ̂+r)t when she is the proposer at time

t , and (λi/(λ̂ + r))(1 − e(λ̂+r)t ) when she is not.

This result is the analogue of Proposition 3.2. Both results imply that in SPE, if a player
i makes an offer at time t , the realized payoffs are (the equivalents of) pi (t) for i , and

10 The addendum to this paper provides a more elaborate discussion of Ambrus and Lu’s (2015) results
than presented here, in particular, of their Claim 3. Specifically, we draw the distinction between this result
and our Proposition 3.2, and motivate more carefully the different approach by which we prove our result.
11 A monotonic TU game is defined by a set of players N = {1, . . . , n} with n > 1, and a characteristic
function V : 2N → R+, where V (C) denotes the worth of the coalition C ⊆ N , and is such that for all
C1 ⊆ C2 ⊆ N , V (C1) ≤ V (C2).
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r j (t) for j �= i . However, with the arrival process(es) running at time t , the expected
payoffs in the two models differ: in the present paper, because only the process for
one player—say, player i—is running, the time-t expected payoffs of players i and
j �= i are respectively pi (t) and r j (t), multiplied by the probability of an arrival
before the deadline (that is, ri (t) and qij (t)); in the model of Ambrus and Lu, every
player j’s expected payoff is r j (t). In other words, in this paper, an arrival is good
news for everyone, while in Ambrus and Lu’s model, it is good news only for the
proposer.

The difference in bargaining protocol also means that the proofs of Proposition 3.2
and of Claim 3 follow different strategies. We follow the approach of Ma and Manove
(1993),who through an iterative process find increasingly tight upper and lower bounds
on players’ expected SPE payoffs in their game, and subsequently show that in the
limit these bounds coincide. In contrast, Ambrus and Lu construct for each player two
SPE—one yielding the supremum, the other the infimum of that player’s expected
SPE payoff—and use this to set up 2n equations with supremum and infimum SPE
expected payoffs as the 2n unknowns; solving these equations, they find that these
suprema and infima coincide, and are as specified in the theorem. Since constructing
SPE requires comparing the payoffs a player realizeswhen she is the rejecterwith those
she realizes when some other player rejects, this approach does not work under the
rejecter-proposes protocol. Consider for instance an SPE in which a player i realizes
the expected payoff r i . If she is offered less than r i , she should be rewarded for
rejecting by having the game move to an SPE in which her expected payoff is r i ;
under the random-proposer protocol of Ambrus and Lu, r i is at least as high as any
payoff i realizes when another player j rejects, whereas under the rejecter-proposes
protocol this cannot be asserted without further assumptions on i’s expected payoff in
subgames where j is the designated next proposer.

We adopted the rejecter-proposes protocol because it avoids a particular technical
issue that arises in Ambrus and Lu’s version of the game. In particular, Ambrus and
Lu take for granted that the supremum payoff a player i obtains from an accepted SPE
proposal is equal to r i , the supremum expected payoff she realizes in the continuation
of the game. While at first glance this seems intuitive, it is in fact possible for an
SPE proposal to be unanimously accepted, while giving i a payoff vi ≥ r i . The
reason is that the SPE strategy of a player j �= i could be to reject any proposal that
gives a player i less than vi ; this is optimal for j as long as her rejection of such
proposals moves the game to an SPE in which her expected payoff is r j . While Claim
3 remains true, using the correct bounds on expected payoffs does make its proof more
involved, and more importantly, requires notation that is rather heavy in nature. We
therefore chose to adopt the rejecter-proposes protocol. Since under this protocol, the
supremum expected SPE payoff the designated next proposer realizes does not depend
on the supremum payoff she can realize as a responder in the game, this simplifies the
argument, and considerably declutters the notation.

The one loss of generality we have to accept when adopting the rejecter-proposes
protocol, is that the proposer responds to her own proposal, and that she does so first.
Suppose that on [T , T ], the expected SPE payoffs of designated next proposers are
given by the function r(t); then one way in which a player who is designated next
proposer at a time t < T can secure her r(T )-payoff, is to give her the option to remain
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A non-cooperative foundation for the continuous Raiffa solution 1129

the designated next proposer throughout the interval [t, T ]. As explained in Remark
1, this is achieved by assuming that the proposer responds to her own proposal first,
and that the rejecter becomes designated next proposer. Under the random-proposer
protocol of Ambrus and Lu, no assumptions on the response order are required: if
expected payoffs in [T , T ] are uniquely given by r(t), then any player can at any time
t < T unilaterally secure her r(T )-payoff by rejecting all proposals in the interval
[t, T ].

Other differences between Ambrus and Lu’s framework and the one in the present
paper are immaterial. Ambrus and Lu assume that utilities are discounted, but this
plays no role in the proof of Claim 3, other than the influence it has on SPE payoffs.
They further assume that bargaining takes place in the interval [−T, 0] rather than
[0, T ], but this only serves the purpose of simplifying their notations. Finally, they
assume that all players (except the proposer) vote on amade proposal, whilewe assume
that voting stops at the first rejection. This difference is unimportant: with only minor
modifications to our argument, Proposition 3.2 could be proven assuming all players
respond to each proposal, and as easily, Claim 3 of Ambrus and Lu could be proven
assuming that voting stops at the first rejection.

4.2 Diskin et al. (2011)

For convex n-person bargaining problems, Diskin et al. (2011) define and axiomati-
cally characterize generalized Raiffa solutions, a family of solutions that bridge the
gap between the discrete and the continuous Raiffa solution. Given p ∈ (0, 1] and a
convex problem S ∈ B, the corresponding generalized Raiffa solution is defined as
ϕ p(S) := limt→∞ xt where x0 := 0̄ and

xt+1 := xt + p

n
(m(xt , S) − xt ) (6)

for all t ∈ N0. When p = 1, this solution corresponds to the discrete Raiffa solution,
and as p → 0 it approaches the continuous Raiffa solution (see Theorem 6 of Diskin
et al.). Like these two solutions, a generalized Raiffa solution is obtained as the limit
point of a series (or path) generated by a particular difference (or differential) equation.
As indicated in Sect. 2, Diskin et al. were the first to parametrize this series (or path)
in terms of time, rather than the utility of a numeraire player. It is this innovation that
makes the connection between the continuous Raiffa solution and our non-cooperative
bargaining game intuitive.

Based on the game ofMyerson (1991), Diskin et al. further provide non-cooperative
support for their solutions. Let p ∈ (0, 1], let S be a convex problem in B, and let
{xt }t∈N0 be the series generated by (6). Then for each k ≥ 0, they define a game Gk

with k rounds, as follows. In the game G0, no actions occur, and players realize zero
payoffs. In the first round of the game Gk with k ≥ 1, the game moves to G0 with
probability 1 − p, and with probability p a random order is drawn. The first player
in this order makes a proposal x ∈ S, which all subsequent players in this order, one
after the other, either accept or reject. In case of rejection, the game moves to Gk−1.
In case of unanimous acceptance, the proposal is implemented.
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1130 B. Driesen et al.

Theorem 4.1 (Diskin et al. 2011) For each k ≥ 0, there exists a unique SPE in
Gk. In this equilibrium, if i is selected as proposer in the first round she proposes
(mi (xk, S), xk−i ) and all players accept it. The expected payoff in Gk is xk .12

From this result it follows that as k → ∞, the unique expected SPE payoffs in Gk

converge to the generalized Raiffa solution associated with the probability p. Then
using the approach of Trockel (2011), this leads to exact support for the generalized
Raiffa solutions.While the continuousRaiffa solution is approached by the generalized
Raiffa solutions as p → 0, it is itself not a generalized Raiffa solution. Hence, Diskin
et al. do not provide an exact support result. To the best of our knowledge, we are not
aware of any exact support results for the continuous Raiffa solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

5 Proofs

5.1 Proof of Lemma 2.1

Consider S ∈ B, and let ‖ · ‖ denote the taxicab metric—i.e., for x ∈ R
n , ‖x‖ :=∑n

i=1 |xi |. Let v,w ∈ S ∩ R
n+ with v ≥ w be given, and let {zk}nk=0 be a sequence

in R
n+, iteratively defined by z0 := v and zk := (wk, z

k−1
−k ) for each k = 1, . . . , n. In

other words, z1 is obtained by decreasing the first entry of z0 = v from v1 to w1, z2 is
obtained by decreasing the second entry of z1 from v2 to w2, and so on. Since w ≥ 0̄
and v ∈ S it follows by comprehensiveness of S that each zk is an element of S ∩ R

n+.
By construction, zk and zk−1 only differ in the k-th coordinate, if at all. For k ∈ N and
i ∈ N\k, (mi (zk), zk−i ) and (mi (zk−1), zk−1

−i ) are in ∂S ∩ R
n+. Since S ∈ B, it then

follows from condition (A1) that

|mi (z
k) − mi (z

k−1)| ≤ K |zkk − zk−1
k | = K |wk − vk |.

Moreover, |mk(zk) − mk(zk−1)| = 0 ≤ K |wk − vk |. Then for all i ∈ N ,

|mi (w) − mi (v)| =
∣
∣
∣
∣
∣

n∑

k=1

mi (z
k) − mi (z

k−1)

∣
∣
∣
∣
∣

≤
n∑

k=1

|mi (z
k) − mi (z

k−1)|

≤
n∑

k=1

K |wk − vk | = K‖w − v‖.

12 Note that this result is not entirely correct—i.e., there is a multiplicity of SPE. However, also here the
expected SPE payoffs are unique, and as indicated, in Gk given by xk .
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Therefore, ‖λm(w) − λm(v)‖ = ∑n
i=1 λi |mi (w) − mi (v)| ≤ K‖w − v‖.

Now consider any v,w ∈ S ∩ R
n+, and let u ∈ R

n with ui := min{vi , wi } for all
i ∈ N . Note that u ∈ S∩R

n+, and that for all i ∈ N , |wi − vi | = |ui −wi |+ |ui − vi |.
Then by the above,

‖λm(w) − λm(v)‖ ≤ ‖λm(u) − λm(w)‖ + ‖λm(u) − λm(v)‖
≤ K‖u − w‖ + K‖u − v‖
= K‖w − v‖.

Then since λi ≤ 1 for all i , ‖λ(m(w) − w) − λ(m(v) − v)‖ ≤ (K + 1)‖w − v‖, as
desired. ��

5.2 Proposition 3.2: Proofs of Claims

Proof of Claim 3.3 Let y := r(T )+α∗(p(T )− r(T )) where α∗ := max{α | r(T )+
α(p(T ) − r(T )) ∈ S}. By the arguments in Lemma 2.1 and the fact that m(y) = y,

‖p(T ) − r(T )‖ ≤ ‖m(y) − m(r(T ))‖ + ‖y − r(T )‖
≤ (1 + nK )‖y − r(T )‖ = α∗(1 + nK )‖p(T ) − r(T )‖ (7)

Then since ‖p(T ) − r(T )‖ > 0 and n > 1, α∗ ≥ 1/(1+ nK ) > 1/n(1+ K ). By the

choice of τ , θ
0 ≤ r(T )+ (1− e−τ )(p(T )− r(T )) < r(T )+α∗(p(T )− r(T )) = y.

Since y ∈ S, the claim follows by comprehensiveness of S. ��
Proof of Claim 3.4 Observe that

p(T ) = m(θ0) ≥ m(θ
0
) > θ

0 ≥ θ0 = r(T ).

Furthermore, λi ≤ 1 for all i ∈ N . Then for all i ∈ N and t ∈ I ,

θ
0
i (t) ≥ ri (T ) + (1 − e−λi (T −t))(pi (T ) − ri (T ))

=
∫ T

t
λi e

−λi (s−t)mi (θ
0(s))ds + e−λi (T −t)ri (T ) (= θ

1
i (t))

≥
∫ T

t
λi e

−λi (s−t)mi (θ
0
(s))ds + e−λi (T −t)ri (T ) (= θ1i (t))

≥ (1 − e−λi (T −t))θ0i (t) + e−λi (T −t)ri (T ) (= θ0i (t))

Assume that θ
k ≥ θ

k+1 ≥ θk+1 ≥ θk for some k ∈ N0. Then for all i ∈ N and t ∈ I ,

θ
k+1
i (t) =

∫ T

t
λi e

−λi (s−t)mi (θ
k(s))ds + e−λi (T −t)ri (T )

≥
∫ T

t
λi e

−λi (s−t)mi (θ
k+1(s))ds + e−λi (T −t)ri (T ) (= θ

k+2
i (t))
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≥
∫ T

t
λi e

−λi (s−t)mi (θ
k+1

(s))ds + e−λi (T −t)ri (T ) (= θk+2
i (t))

≥
∫ T

t
λi e

−λi (s−t)mi (θ
k
(s)) + ds + e−λi (T −t)ri (T ) (= θk+1

i (t))

Hence, θ
k ≥ θ

k+1 ≥ θk+1 ≥ θk for all k ∈ N0. ��
Proof of Claim 3.5 Since in the interval I , any player i who is the designated next
proposer can unilaterally secure ri (T ) by rejecting all proposals she may get to make
in I , r i (t) ≥ ri (T ) for all t ∈ I . Hence, r ≥ r(T ) = θ0, establishing the first part of
the claim.

Suppose that at time t ∈ [T , T ], player j is the designated next proposer. By
Lemma3.1 and the initial assumption that the proposition holds on [T , T ], i’s expected
payoff is then given by ri (t) if j = i , and by

q j
i (t) =

∫ T

t
λ j e

−λ j (s−t)ri (s)ds

otherwise. Since ri is a strictly decreasing function, q j
i (t) ≤ ri (t) for all t ∈ [T , T ].

Suppose now that at t ∈ I , player j is the designated next proposer. If j’s process does
not produce an arrival in [t, T ]—an event that occurs with probability e−λ j (T −t)—i’s
expected payoff is atmost ri (T ), regardlesswhether j = i or j �= i . If j’s process does
produce an arrival within [t, T ], say at s, then i’s (expected) payoff at s is bounded
from above by pi (T ), again, regardless whether j = i or j �= i . To see this, note that
any proposal in I that gives i strictly more than pi (T ) gives some j ′ �= i strictly less
than r j ′(T ), and is thus rejected. Then since λ j ≤ 1,

q j
i (t) ≤

∫ T

t
λ j e

−λ j (s−t) pi (T )ds + e−λ j (T −t)ri (T )

= ri (T ) + (1 − e−λ j (T −t))(pi (T ) − ri (T )) ≤ θ
0
i (t)

for all t ∈ I . Hence, q j ≤ θ
0
for all j ∈ N . ��

Proof of Claim 3.6 Let a player i be the proposer at t ∈ I . It is first shown that

p
i
(t) ≥ mi (θ

k
(t)). Suppose, contrary towhat wewant, that there is an SPE and a time-

t history in H p
i , such that i’s (expected) payoff at time t—say p̃i—is strictly below

mi (θ
k
(t)). Then (mi (θ

k
(t)), θ

k
−i (t)) ∈ S and ( p̃i , θ

k
−i (t)) � (mi (θ

k
(t)), θ

k
−i (t)).

Hence, by strict comprehensiveness of S there exists a v ∈ S with vi > p̃i and

v j > θ
k
j (t) for all j �= i . It is next argued that i can profitably deviate by proposing

v, which is in contradiction with SPE.
Thus suppose that i proposes v. If the last player in the response order, player i −1,

gets to respond, then she accepts, since by the induction hypothesis, rejecting yields

at most r i−1(t) ≤ θ
k
i−1(t), while accepting yields vi−1 > θ

k
i−1(t). Thus, if i − 1’s
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predecessor in the response order, player i − 2, gets to respond, and she accepts, i’s
proposal will be unanimously accepted. Then i − 2 realizes vi−2 by accepting, and at

most θ
k
i−2(t) by rejecting, which by the induction hypothesis means that i −2 accepts.

In general, if a player j gets to respond, then by accepting she induces all of her
successors in the response order to accept as well. Since unanimous acceptance gives

her a payoff of v j , while rejection yields at most θ
k
j (t), j accepts.

To see that pi (t) ≤ mi (θ
k(t)), assume that there is an SPE and a time-t history in

H p
i , such that i’s (expected) payoff at time t—say p̂i—is strictly higher thanmi (θ

k(t)).

By Claim 3.5, a rejection proposal would give player i at most θ
0
i (t); since

p̂i > mi (θ
k(t)) ≥ mi (θ

k
(t)) ≥ mi (θ

0
(t)) > θ

0
i (t),

player i realizes p̂i by means of an accepted proposal. But then there is a player j �= i
who is offered strictly less than θkj (t), and accepts. This player could profitably deviate
by rejecting, which contradicts SPE. ��
Proof of Claim 3.8 By the Lebesgue monotone convergence theorem and its reverse,

θ i (t) =
∫ T

t
λi e

−λi (s−t)mi (θ(s))ds + e−λi (T −t)ri (T )

θ i (t) =
∫ T

t
λi e

−λi (s−t)mi (θ(s))ds + e−λi (T −t)ri (T )

for all i ∈ N and t ∈ I . Define the function h(t) := ‖θ(T − t) − θ(T − t)‖ on I ,
where ‖ · ‖ is again the taxicab metric. Observe that

h′(t) =
∑

i∈N
[θ ′

i (T − t) − θ
′
i (T − t)]

=
∑

i∈N
λi [mi (θ(T − t)) − θ i (T − t) − mi (θ(T − t)) + θ i (T − t)]

≤ ‖λm(θ(T − t)) − λm(θ(T − t))‖ + ‖θ(T − t) − θ(T − t)‖
≤ (1 + K )h(t)

By Grönwall’s lemma, h(t) ≤ h(0)e(1+K )t for all t ∈ I . Since h(0) = 0 and h(t) ≥ 0
for all t ∈ I , θ = θ . By Lemma 3.1 and the observation that θ(T ) = θ(T ) = r(T ),
it then follows that θ = θ = r . That m(θ) = m(θ) = p then follows by continuity of
m. ��
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