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MOTIVIC DONALDSON–THOMAS THEORY AND THE ROLE OF

ORIENTATION DATA

BEN DAVISON

1. Introduction

The purpose of this expository paper is to introduce the reader, in a gentle way, to orientation
data, as it appears in the work of Kontsevich and Soibelman [23]. We do this while keeping
things as simple as possible by focusing on a single simple example and also explaining the broad
motivations behind motivic Donaldson–Thomas theory in as down to earth a way as possible.

In motivic Donaldson–Thomas theory, the central foundational result states that, given a
fixed category C, assumed to be Abelian and also 3-dimensional Calabi-Yau in some appropriate
sense (see [23, Sec.3.3]), we may form an integration map, which is a ring homomorphism

(1) DT : st(Ob(C))→ M̃ot
µ̂
(SpecC)[[xα|α ∈ K(C)]].

Here st(Ob(C)) is some version of Joyce’s motivic Hall algebra [17], spanned as a group by
symbols [X → Ob(C)]. These are certain finite type morphisms from Artin stacks into Ob(C),
the stack of objects of C; but one shouldn’t be put off at this stage by the presence of stacks,
since in this paper, they will be relegated to the background. The coefficients of the target
ring are a modification of Mot

µ̂(SpecC), the naive Grothendieck ring of µ̂-equivariant complex
varieties, where µ̂ := lim←−µn, spanned by symbols [X → SpecC] (we will often omit the structure

morphism and just write [X]), for X a µn-equivariant reduced variety with µ̂-action given by
the surjection µ̂ → µn. The multiplication on this ring is the convolution product defined by

Looijenga in [25]. We form M̃ot
µ̂
(SpecC) by adding inverses to the motives of all the general

linear groups, considered as varieties with trivial µ̂-action, and a formal square root L1/2 to L,
the class of the affine line A1

C, again with the trivial action. On both sides we impose the cut
and paste relations1, i.e. for general Y we identify

(2) [X
f−→ Y ] = [U

f |U−−→ Y ] + [V
f |V−−→ Y ],

where U ⊂ X is Zariski open, with complement V . We consider M̃ot
µ̂
instead of Mot

µ̂ since, in
order to deal with the presence of stacks on the left hand side of the map DT we have to invert
the motives corresponding to stabilisers of closed points of these stacks (in fact one operates
under the assumption that these stabilisers can always be taken to be subgroups of general linear
groups, from which it follows that this localisation can be simply described by the addition of

1For technical reasons, there is an extra relation on M̃ot
µ̂
(SpecC); if p : V → Y is a µn-equivariant rank m

vector bundle on the µn-equivariant scheme Y , we identify [V ] = [Y × Am
C ], where the µn-action on Y × Am

C is
the product of the µn-action on Y and the trivial action on Am

C .

1



2 BEN DAVISON

a formal inverse to the motive of each general linear group). Finally, we set K(C) to be some
finite rank free Abelian group obtained as a quotient of the Grothendieck group of C, and for
M ∈ C we write [M ]K for the class of M in K(C).

In general, a morphism from a finite type scheme Y to Ob(C) should be thought of as a family
of objects of C parameterised by the scheme Y , and the general principle behind defining any such
map DT is that one associates to each closed point y ∈ Y representing an object My a motivic

weight mw(My) ∈ Mot
µ̂(SpecC), i.e. mw(My) should be some linear combination

∑
ai[Xy,i →

y]. These motivic weights are required in fact to form a family, i.e. there should be some linear
combination of symbols

∑
ai[X

′
i → Y ] such that restriction to each fibre y gives mw(My). Then

we ‘integrate’ across Y , by simply forgetting the maps into Y , or equivalently pushing forward
along the structure morphism, i.e. we take

∫ ∑
ai[X

′
i → Y ] :=

∑
ai[X

′
i]. Finally, we assume

that all the points My satisfied [My]K = α, which we may do after decomposition, and define
DT([Y → Ob(C)]) := ∑

ai[X
′
i]x

α.

The fact that, no matter what motivic weight mw we choose, the map DT is a group homo-
morphism, is a direct consequence of the definition, using the cut and paste relation (2). The
real goal is to show that DT preserves also a product, and so is a ring morphism. On the left
hand side, the product is the Hall algebra product, for which, if Y1 → Ob(C) and Y2 → Ob(C)
are two families of objects in Ob(C), we define [Y1 → Ob(C)] ⋆ [Y2 → Ob(C)] to be the family of
short exact sequences 0→M ′ →M →M ′′ → 0 in Ob(C), with M ′ in the family parameterised
by Y1, and M

′′ in the family parameterised by Y2. This is considered as a family of objects of C
via the forgetful map that remembers only M . To be a lot more rigorous, using the language of
stacks, there are three projections πi : SES(C)→ Ob(C) from the stack of short exact sequences
in C to the stack of objects in C, taking a short exact sequence to its first, second or third term,
and one can take the Cartesian product of stacks

Y3

��

h
// SES(C)

π1×π3

��

Y1 × Y2
f1×f2

// Ob(C)×Ob(C).

Then [Y1 → Ob(C)] ⋆ [Y2 → Ob(C)] := [Y3
π2◦h−−−→ Ob(C)].

The product on the right hand side of (1) is given by a twisted version of Looijenga’s con-
volution product. To explain what this is, let us first concentrate on the coefficient ring and
define the convolution product itself. Given a µn-equivariant variety Y , form the mapping torus

[Y ×µn G×
C

(y,z)7→zn−−−−−−→ G×
C ] ∈ Mot

G×
C
,n(G×

C ), a G×
C -equivariant variety over G×

C , with G×
C given

the weight n action on itself. There is an embedding Mot
G×

C
,n(G×

C ) → Mot
G×

C
,n(A1

C) induced

by the embedding G×
C → A1

C, and a complement is provided by the embedding Mot(SpecC)→
Mot

G×
C
,n(A1

C) taking [Y ] to [Y ×A1
C

(y,z)7→z−−−−−→ A1
C]. If we denote the image of this second embed-

ding by I, we obtain an isomorphism Mot
µn(SpecC) ∼= Mot

G×
C
,n(A1

C)/I. On Mot
G×

C
,n(A1

C) there
is a natural associative product

[Y1
f1−→ A1

C] · [Y2
f2−→ A1

C] = [Y1 × Y2
+◦(f1×f2)−−−−−−→ A1

C]
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for which I is an ideal, so this product descends to a product on Mot
µn(SpecC). This defines

the product on the coefficient ring on the right hand side of (1). The product on the whole ring
of formal power series is given by decreeing that the coefficients commute with the variables xα,

and defining2 x[M ]K · x[N ]K := L
1
2

∑

i(−1)i dim(Exti(M,N)) x[M ]K+[N ]K .

We have described the associative product on each of the Abelian groups of (1). The central
foundational result, then, for any candidate for the integration map DT, is that it commutes
with these products. The reason this is a desirable feature for an integration map is that there
are a plethora of identities in the Hall algebra that we can apply the integration map to in order
to obtain product descriptions of motivic generating series. Perhaps the archetypal example is
the situation in which we have some stability condition θ on the elements of C, for which every
object F admits a unique filtration 0 = F0 ⊂ . . . ⊂ Fn = F such that each subquotient Fi+1/Fi is
θ-semistable and the slopes θ(Fi+1/Fi) are strictly descending – a Harder–Narasimhan filtration.
This translates to the statement in the Hall algebra that the stack of all objects is some ordered
product of the stacks of θ-semistable objects of fixed slope. As we perturb the stability condition
θ, the terms in this infinite product, the stacks of θ-semistable objects, change, while the product
(the stack of all objects in C) stays the same. Applying the integration map to this statement,
one obtains an equality of infinite products, that is the famous wall crossing formula (see [18]
and [23]).

In this paper we will describe how one builds a map like DT that respects these products, and
in particular, how one constructs the motivic weight mw. The idea is to work through a simple
example, in order to see the natural candidate for a motivic weight in action. The endpoint is to
motivate the introduction of orientation data: we will see how the natural choice for the motivic
weight fails to define a map preserving the product of (1), and describe the kind of modification
that must be made to fix this defect.

2. Some background: The numerical Donaldson–Thomas count

Let X be a smooth projective 3-fold. Then for a given Hilbert polynomial p we may consider
Mp, the moduli space of semistable coherent sheaves F on X that have Hilbert polynomial
p. In order to get a reasonable space we impose some kind of stability condition (Gieseker
stability or slope stability), and under suitable conditions (e.g. if there are no strictly semistable
objects) this space will be a finite type fine moduli scheme, which we will denote by M (see
for example Huybrechts and Lehn’s book [15]). It is an important feature of the scheme M
that it is proper: the Donaldson–Thomas count for M is the degree of some cycle class of
zero-dimensional subschemes ofM, and in the proper case this is just given by the count of the
points in this class, with multiplicity. In the non-proper case this breaks down somewhat.

We arrive at this zero-dimensional class by next assuming that our 3-fold X was, all along, a
Calabi-Yau 3-fold. This implies, in particular, that the expected dimension ofM is zero. More
precisely,M comes equipped with a perfect obstruction theory L• := [E1 → E0] which satisfies
the condition rank(E1) = rank(E0). In [2] Behrend and Fantechi show that from such data
one can construct a virtual fundamental class of the correct dimension in A∗(M), i.e. a class
[M]vir ∈ A0(M). Finally, the Donaldson–Thomas count is given by deg[M]vir.

2For this definition to make sense we must make the obvious additional assumption on K0(C)
π
−→ K(C).
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The justification for taking this virtual fundamental class is the fact that, since our moduli
scheme M ‘should’ be zero-dimensional, there is an intuition that the correct number (the
Donaldson–Thomas count) should be obtained by perturbation. So ifM has a component that
is smooth, with an obstruction bundle over it that is just a vector bundle, the contribution
from that component should be the Euler class of that vector bundle. Similarly, if M has a
component that has underlying topological space a point, but structure sheaf of length n, then
its contribution to the DT invariant should be n, as this component ‘should’ generically deform
to give n points (the inverted commas here are on account of the fact that we remain vague as
to where these deformations are taking place). The taking of a virtual fundamental class is a
way of using excess intersection theory to make all of this precise.

The perfect obstruction theory L• constructed by Richard Thomas in [30] has the extra
property that it is symmetric, in the sense of [3, Def.1.10], that is there is an isomorphism
θ : L• → (L•)∨[1] in the derived category of coherent sheaves on M satisfying θ∨[1] = θ. So,
returning to the situation in which a componentM1 ofM is smooth, the obstruction bundle is
automatically a vector bundle, and isomorphic to the cotangent bundle, and in this case we can
say exactly what we think the contribution to the Donaldson–Thomas count of the component
should be: (−1)dim(M1)χ(M1). This is the first indication that in fact the contribution of every
component should be (and actually is, in the case in which the perfect obstruction theory with
which we calculate our Donladson–Thomas count is symmetric) a weighted Euler characteristic,
with the weighting of smooth points given by the parity of the dimension, and the weight of
isolated points given by the length of their structure sheaves.

The goal, then, is to associate to an arbitrary finite-type scheme Y a constructible function
νY , with image lying in the integers, such that, in the event that Y is compact and is equipped
with a symmetric perfect obstruction theory, there is an equality

(3) deg[Y ]vir =
∑

n∈Z

n · χ(ν−1
Y (n)),

where the class on the left hand side is the virtual fundamental class constructed from the
symmetric perfect obstruction theory. For schemes defined over C, this is achieved by Kai
Behrend in [1], and this function νY is Behrend’s microlocal function for Y . Note that in the
case in which Y is a noncompact scheme with a symmetric perfect obstruction theory, the
machinery of [2] still gives us a virtual fundamental class [Y ]vir, for which (3) does not make
sense, since deg[Y ]vir will be undefined. In this case, however, we can take the right hand side
as our definition of the Donaldson–Thomas count.

Recall the moduli space M we started with. For gauge-theoretic reasons (see [18, Sec.5.1]),
a complex analytic neighborhood of an arbitrary sheaf F , considered as a point inM, is given
by the following setup. Let Ct be some affine space, and let f be the germ of an analytic
function defined and equal to zero at the origin. Then a complex analytic neighborhood of F is
isomorphic to a neighborhood of the origin in the critical locus of f . This becomes an important
observation given the following fact regarding the microlocal function νM: if a scheme Y is given
by the critical locus of some function f on some smooth d-dimensional scheme, at least analytic
locally around some point y ∈ Y , then

(4) νY (y) = (−1)d(1− χ(mf(f, y))),
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where mf(f, y) is the Milnor fibre of f at the point y (see [1, Sec.1.2] for a discussion of this
point, and more generally of the definition of νY , or [27, Cor.2.4] for a proof of (4)).

3. Motivic vanishing cycles and Milnor fibres

If X is a finite type scheme, we may equip X with the trivial µ̂-action, and define Mot
µ̂(X), as

a group, to be generated by µ̂-equivariant maps [Y → X], where the µ̂-action on the finite type
reduced scheme Y is induced from some µn-action, for n ∈ N. We impose the further technical
assumption on these generators that each closed point of Y lies in a µn-equivariant open affine
subscheme of Y . If we make Mot(SpecC) into a ring via the product structure [Y1] × [Y2] =

[Y1×Y2] then Mot
µ̂(X) is a Mot(SpecC)-module via the action [Y ]·[Z g−→ X] := [Y ×Z g◦πZ−−−→ X].

Let h : X1 → X2 be a finite type morphism of schemes. Then we obtain a morphism
h∗ : Mot

µ̂(X1) → Mot
µ̂(X2) by sending [f : Y → X1] to [h ◦ f : Y → X2]. The pullback

morphism h∗ : Mot
µ̂(X2)→ Mot

µ̂(X1) is defined by sending [f : Y → X1] to [Y ×X1 X2 → X2].

The motive

(5)
∑

n∈Z

n[ν−1
X (n)] ∈ Mot(SpecC)

is in some sense a motivic refinement of the Donaldson–Thomas count, but it is a somewhat
unnatural halfway point. For we have replaced the measure χ with a motivic measure, without
replacing the weight by a motivic weight. The natural refinement of our weight, from a number
to a motive, is given by taking the motivic vanishing cycle, instead of Behrend’s constructible
function. So we next recall some of the definitions and formulae regarding motivic vanishing
cycles and nearby fibres – the proper background for this material is to be found in [25] and
[12].

Let f be a regular function from a smooth complex finite type scheme X to C. Let

Y

h
��

X

be an embedded resolution of the function f . Then the motivic nearby cycle [ψf ], as defined
by Denef and Loeser in [12], in terms of arc spaces, has an explicit formula in terms of this
embedded resolution, which we will now describe. The level set (fh)−1(0) consists of a set
of divisors, indexed by a set forever denoted J , with each divisor Di meeting every other one
transversally. We use the symbol ai to denote the order of vanishing of fh on Di. Given I ⊂ J ,
a nonempty subset, let D0

I be the complement in the intersection of all the divisors in I of the
union of the divisors that are not in I. So the D0

I form a stratification of (fh)−1(0), with deeper
strata coming from larger subsets I ⊂ J .

Let I ⊂ J be a subset. The function fh defines a section of OY (−
∑

i∈I aiDi), and so a regular
map, fI , linear along the fibres, from the total space of OY (

∑
i∈I aiDi) to C. The restriction

of this bundle to D0
I is just ⊗i∈IN

⊗ai
Di|Y

, so that the restriction fI |D0
I
becomes a G×

C -equivariant
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function, where G×
C acts by rescaling each copy of NDi|Y , and acts on the target C with weight∑

i∈I ai. We define D̃I = f−1
I |D0

I
(1), and via the natural projection we obtain étale covers

D̃I

pI
��

D0
I .

The scheme D̃I over D0
I carries the obvious action under the group of aIth roots of unity, and so

we obtain an element of Mot
µ̂(X) by pushforward from D0

I to X along h. Finally, the formula
is

(6) [ψf ] =
∑

∅6=I⊂J

(1− L)|I|−1[D̃I
h◦pI−−−→ X] ∈ Mot

µ̂(X).

Let T be a constructible subset of X. Restriction to T defines a map from µ̂-equivariant
motives over X to µ̂-equivariant motives over T . Pushforward from T to a point gives us an
absolute µ̂-equivariant motive. We let

∫
T denote the composition of these two maps. Explicitly,∫

T [Y
g−→ X] := [g−1(T )].

Let f be as above, and let p ∈ X be a point in f−1(0). Then the motivic Milnor fibre of f at
p is defined to be

MF(f, p) :=

∫

p
[ψf ] ∈ Mot

µ̂(SpecC).

If X is affine space, and f is a function vanishing at the origin, then we define

MF(f) := MF(f, 0).

Finally, define the motivic vanishing cycle:

(7) [φf ] := [ψf ]− [f−1(0)→ X] ∈ Mot
µ̂(X).

In the equation (7), [f−1(0)] carries the trivial µ̂-action.

We close this section with a fundamental theorem regarding motivic vanishing cycles.

Theorem 3.1. (Motivic Thom-Sebastiani)[11] Let V and V ′ be vector bundles on smooth schemes
X and X ′ respectively. Let π and π′ be the projections from X ×X ′ to X and X ′ respectively.
Let f and f ′ be algebraic functions on the vector bundles V and V ′ respectively. Denote by f⊕f ′
the sum of the pullbacks of f and f ′ to the vector bundle π∗(V ) ⊕ π′∗(V ′). Then there is an
equality

(8) [−φf⊕f ′ ] = π∗([−φf ]) · π′∗([−φf ′ ]) ∈ Mot
µ̂(X ×X ′).

The product structure on the right hand side of (8) is defined as in the introduction via the

natural product structure on Mot
G×

C
,n(X ×X ′ × A1

C):

[Y1
g1−→ X ×X ′ × A1

C] · [Y2
g2−→ X ×X ′ × A1

C] := [Y1 ×X×X′ Y2
+◦g1×g2−−−−−→ X ×X ′ × A1

C].

Given a moduli spaceM, in order to refine the weight with which we integrate from νM to
φf , we should first find a way to express M, at least Zariski locally, as the critical locus of a
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regular function f on a smooth ambient variety Y . Recently there has been significant progress
in this direction, through the work of Ben–Bassat, Brav, Bussi, Dupont, Joyce, Szendrői and
Meinhardt, see the papers [6], [7], [4] and [5]. The first of these is most relevant for the geometric
applications above, for it guarantees that moduli spacesM of coherent sheaves on X a Calabi–
Yau 3-fold are Zariski locally modelled on critical loci of regular functions. The second and
fourth provide a detailed description of the way in which one cooks up a motivic weight onM
from a sheaf theoretic version of orientation data in the sense of Kontsevich and Soibelman.

There are, broadly speaking, two stages to the motivation of orientation data. The first is
most clearly stated in the context of the work of Joyce et al., and comes to the fact that the
bare knowledge that a scheme can be expressed Zariski locally as the critical locus of a regular
function f on a smooth ambient variety Y is not enough to fix a motivic weight, since there
may be more than one such pair (Y, f), and different choices will give rise to different motivic
weights. A very simple example is given by letting Y1 = Y2 = C × C∗ = Spec(C[x, y±1]),
letting f1 = xn, and letting f2 = yxn. One can express essentially the same problem in the
language of the current paper by saying that the knowledge that a family of objects come from
a cyclic Calabi–Yau category is not enough to fix the motivic weight from their (non-minimal)
potentials, as this weight will not be invariant under changing the quasi–isomorphism class of C.
In the framework of this paper the problem of fixing a motivic weight, will be less prominent,
as in the motivic context there is a canonical choice, given by taking the minimal potential
– see Section 8. This solution is not available in the sheaf theoretic context, as it relies on
passing to a constructible decomposition – see Section (6). The second stage of motivation for
the introduction of orientation data is most easily expressed in the categorical framework, and
is expressed by saying that even though one has a canonical choice for the motivic weight given
by taking minimal potentials, this is the wrong one for obtaining a ring homomorphism, so that
we must modify this canonical choice in a coherent way – this modification is the orientation
data. It is this second point that we will focus on, with the aid of the main example of this
paper.

4. A basic example

Let B = C[x]/〈x3〉. We will study B -mod, the moduli space of finite-dimensional modules
over B. We will let the class of a B-module M in K(B -mod) ∼= Z be the dimension. In fact
B is a special example of a ‘Jacobi algebra’, or a ‘superpotential’ algebra. Let Q be the quiver
with one vertex and one loop. Then CQ ∼= C〈a〉, where CQ denotes the free path algebra of
the quiver Q. Let W be the cyclic word in this quiver given by W = a4. Then, in forming the
Jacobi algebra that this data defines, we are meant to form the ‘noncommutative differentials’
of W by differentiating it with respect to each of the arrows in Q (see [14, Sec.1.3] or [9] for
an explanation of what this means). Here, this noncommutative generalization of differential
calculus reduces to familiar calculus, since CQ is commutative. So the only noncommutative
differential we need to think about is

∂

∂a
W = 4a3.
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The statement that B is a Jacobi algebra amounts to saying that

B ∼= CQ/〈 ∂
∂a
W 〉.

This puts us in a special situation, noted by Ginzburg and E. Segal in [14, Sec.2] and [28] and
exploited by Szendrői in his study of the noncommutative conifold in [29], in which we have a
way of coherently embedding the representation spaces of B-modules as subschemes of smooth
schemes. The word ‘coherently’ doesn’t yet have a precise meaning here, but has to do with
the problem of comparing the motivic weight associated to extensions of modules to the motivic
weights of those modules themselves, which in turn will be the central difficulty when it comes
to checking that putative integration maps from families of B-modules to motives (as in (1))
preserve associative products. This in turn is the central problem motivating the introduction
of orientation data.

How this works out in our case is as follows. Define

Repn(B) := Homalg(B,Matn×n(C)),

the set of homomorphisms of unital algebras. This is a scheme, the points of which correspond
to representations of B. In general the more natural object to study is perhaps the stack formed
under the conjugation action of GLn(C), but for the time being we will really just be looking at
the above scheme. Similarly, we define

Repn(CQ) := Homalg(CQ,Matn×n(C)).

Then since a representation of B is just a representation of CQ satisfying some relations, Repn(B)
is defined as a Zariski closed subscheme of this smooth scheme. There is a map

eva : Repn(CQ)→ Matn×n(C)

that sends
θ 7→ θ(a).

In fact this is clearly an isomorphism. It turns out (and this is a general fact about Jacobi
algebras) that

(9) Repn(B) = crit(tr((eva)
4)),

where the object on the right hand side of (9) is the scheme-theoretic critical locus. For a
general Jacobi algebra we replace (eva)

4 with a function of evaluation maps built from W , and
the corresponding statement remains true.

The goal of this subject is to define motivic Donaldson–Thomas counts, that soup up the old
one, which was just the Euler characteristic weighted by a microlocal function ν. Recall that
the microlocal function of a scheme at a point x, at which the scheme is locally described as
crit(f) for some f on a d-dimensional ambient smooth scheme, is just (−1)d(1 − χ(mf(f, x))).
Consider just

Rep1(B) ∼= Spec(B).

The fact that we have an explicit presentation of our space as a critical locus enables us to go
ahead and refine the microlocal function νRep1(B) to a motivic weight, which is given by minus

the (absolute) motivic vanishing cycle of the function x4. Here and elsewhere we will adopt
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the shorthand that where a function f(x1, . . . , xn) appears without reference to a space that
it is a function on, that space will always be assumed to be affine n-space, and the motivic
vanishing/nearby cycle of it is the motivic vanishing/nearby cycle of the function on affine
n-space. We define3

DT(Rep1(B)) :=

∫

Rep1(B)
[−φx4 ]x .

In order to establish uniform notation with what follows we rewrite this as

(10) DT(Rep1(B)) :=

∫

Rep1(B)
[−φtr(T 4)]x,

where tr(T 4) is considered as a function on C by identifying C with the ring of 1× 1 matrices.
Since Rep1(B) is just a point, in this case we have

DT(Rep1(B)) = (1−MF(x4))x .

The unique closed point of the space Rep1(B) is given by a 1 × 1 matrix, the zero matrix.
Call this representation M . Considered as a module for the quiver algebra CQ/〈a3〉, this is the
one-dimensional simple module killed by all the arrows of Q. In this example it is easy enough
to explain what we mean by ‘preservation of the ring structure’. Define

Rep1(B) ⋆ Rep1(B)

to be the stack of flags M ⊂ N with N/M ∼=M . This stack is defined and its properties studied
by Joyce in [16, Sec.10]. The stabilizer at any point is given by Hom(M,M) ∼= C, and in fact
this stack can be described explicitly as a group quotient of the space Matsut,2×2(C) of strictly
upper-triangular 2 by 2 matrices by the trivial action of the additive group C ∼= Hom(M,M).
So we write the motive of this stack as

(11) [Rep1(B) ⋆ Rep1(B)] = [Matsut,2×2(C)]/L.

Now what we want is the identity, in M̃ot
µ̂
(SpecC)[[x]]:

(12) DT[Rep1(B) ⋆ Rep1(B)] = DT[Rep1(B)] · DT[Rep1(B)] = (1−MF(x4))2 x2,

where on the right hand side we use Looijenga’s product on the ring of motives. From the
motivic Thom-Sebastiani Theorem 3.1, we deduce that

DT[Rep1(B)] · DT[Rep1(B)] = (1−MF(x4 + y4))x2 .

Proposition 4.1. Denote the representation ring of Z4 by Z[α]/α4, where α is the 1-dimensional
representation sending 1 ∈ Z4 to multiplication by i. There is an equality of motives

MF(x4 + y4) = [C1]− 4L,

where C1 is a genus 3 curve with the representation 2(α + α2 + α3) on its middle cohomology.

We defer the proof of this proposition to the start of Appendix B.

3The attentive reader will wonder what has happened to the sign (−1)d of (4). The answer runs as follows.
In order to fix, once and for all, the contribution of a module M to the numerical DT count of moduli spaces it
occurs as a closed point of, we always pull back the microlocal function, and the motivic weight, from the stack

of finite-dimensional B-modules. This stack is in fact zero-dimensional, so we can safely forget about signs.
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By using Proposition 4.1 and the motivic Thom-Sebastiani theorem we can calculate the right
hand side of equation (12). What, then, of the left hand side? Well, first we should define it!
This we do as follows: the coarse moduli space Matsut,2×2(C) of our stack Matsut,2×2(C)/A1 is
a subscheme of Rep2(B). Let

ι : Matsut,2×2(C) →֒ Rep2(B)

be the inclusion. Then recall that we want a motivic refinement of the weighted Euler charac-
teristic ∑

n∈Z

n · χ(ι∗(νRep2
(B))−1(n)).

It is clear enough what this should be. The space Rep2(B) occurs again as a critical locus of a
function on a smooth space, the function tr(T 4) on the space of 2×2 matrices, and so a refinement
of the pullback of the microlocal function is already at hand, we can just pull back the motivic
vanishing cycle of the function tr(T 4) along the inclusion ι, i.e. take

∫
Matsut,2×2(C)

[−φtr(T 4)]. In

terms of the weight mw from the introduction, the general idea here is to set mw(M ′) =
∫
x φtr(W ),

where M ′ is any n-dimensional B-module, and x is a closed point of Repn(B) representing it.
The content of the word ‘coherently’ in the statement that a Jacobi algebra presentation enables
us to coherently express different representation spaces as critical loci will amount to the claim
that this naive pulling back actually gives a good answer, one that gives the equality (12). Let
us unpick this particular case.

We follow, then, the natural suggestion for defining the left hand side of (12), that is we write

(13) DT[Rep1(B) ⋆Rep1(B)] :=

∫

Matsut,2×2(C)
[−φtr(T 4)]L

−1 x2 .

The L−1 term here comes from the L in the denominator of (11). Working out what the right
hand side of (13) is will occupy the next section.

5. Verifying preservation of ring structure: an example

To start with, we should work out an embedded resolution of

tr(T 4) : Mat2×2(C)→ C.

The function tr(T 4) has its worst singularity at 0, and is homogeneous, so a good start would
be to blow up at the zero matrix. Write X = Mat2×2(C) and let

X̃

h
��

X

be the blowup at the zero matrix. The strict transform of (tr(T 4))−1(0) in X̃ , intersected with
the exceptional P3, is the projective surface cut out by the homogeneous equation tr(T 4). Call
this projective variety V (tr(T 4)).



MOTIVIC DONALDSON–THOMAS THEORY AND THE ROLE OF ORIENTATION DATA 11

Let
Y

hp
��

P3

be an embedded resolution of the singular projective variety V (tr(T 4)). Then we have a diagram

X̃1
h1

//

π1

��

X̃

π
��

h
// X

Y
hp

// P3

with the leftmost square a pullback (in fact this is a pullback of a vector bundle, since X̃ is
the total space of the tautological bundle for P3, and π is the projection). It is not hard to see
that h′ := h ◦ h1 is an embedded resolution for tr(T 4). It follows from the fact that tr(T 4) ◦ h
vanishes to order 4 on P3 that there is an equality of divisors

(14) (tr(T 4) ◦ h′)∗(0) = (hp ◦ π1)∗(V (tr(T 4))) + 4Y

where Y is considered as a divisor on X̃1, the zero section of the vector bundle X̃1 → Y .

So we just need to work out an embedded resolution of V (tr(T 4)). Note that PSL(2,C) acts
on X by conjugation, tr(T 4) is invariant under this action, the action lifts to X̃, and V (tr(T 4))
is also invariant under the action. There are exactly three orbits of the PSL(2,C)-action in
V (tr(T 4)). Define

(1) S1 to be the orbit consisting of matrices whose eigenvalues differ by a factor of eiπ/4,

(2) S2 to be the orbit consisting of matrices whose eigenvalues differ by a factor of e3iπ/4,
(3) S3 to be the orbit of nilpotent matrices.

Proposition 5.1. In the ring Mot
µ̂(SpecC) there are equalities

(15) [S1] = [S2] = [P1 × C],

where all of these motives carry the trivial µ̂-action.

Proof. Fix two nonzero numbers a and b differing by a factor of eiπ/4. Then to pick a matrix with
these two numbers as eigenvalues is the same as to pick two distinct vectors (up to rescaling) to
be the respective eigenvalues. So pick the eigenvector for a first, this gives us a P1 of choices,
then pick the eigenvector for b, giving a C of choices, one can in fact see that S1 is a line bundle
over P1. The motive of any line bundle is the same as the motive of the trivial line bundle – any
ordered open cover underlying a trivialization induces a stratification on which each restriction
of the line bundle is trivial. �

Proposition 5.2. There is an isomorphism S3 ∼= P1.

Proof. Give P3 coordinates (X : Y : Z : W ) by writing matrices as
(
X Z
W Y

)
.



12 BEN DAVISON

Then the nilpotent matrices are precisely those satisfying trace = det = 0. So they are the
ones satisfying

X = −Y,
XY =WZ,

giving a P1 inside P3. �

The singular locus of V (tr(T 4)) is precisely S3. Since S3 is a PSL(2,C)-orbit, the singularity is
the same all along this P1. We restrict to an affine patch U by setting W 6= 0. On this patch
we use the coordinates

(x, y, z) 7→
(
x z
1 y

)
.

There is an isomorphism U ∩ S3 ∼= C, and U ∩ S3 can be parameterised as follows

C→ U ∩ S3(16)

t 7→
(
t −t2
1 −t

)
.(17)

We can extend this to a coordinate system (t, a, b) for U , given by

(t, a, b) 7→
(
t+ a b− t2
1 −t

)
.(18)

In these coordinates the local defining equation for tr(T 4) becomes

tr(T 4) = a4 + 4a3t+ 4a2b+ 2a2t2 + 4abt+ 2b2,

or, after rearranging,

tr(T 4) = −a4 + 2(at+ b+ a2)2.

After replacing b with b′ = b+ at+ a2 we get that the local defining equation for tr(T 4) is

tr(T 4) = −a4 + 2b′2,

and so we have a P1 of A3 singularities along S3. If we blow up S3 we replace this with an
exceptional divisor (the projectivization of the normal bundle of S3), on which there is another
P1 of singularities, this time of type D4. Blowing up this new P1 gives our embedded resolution

Y

hp
��

P3.

Let J be the set of divisors in (tr(T 4)◦h′)−1(0). We wish to calculate the absolute equivariant
motive

(19)

∫

Matsut,2×2(C)
[ψtr(T 4)] =

∑

∅6=I⊂J

(1− L)|I|−1

∫

h′−1(Matsut,2×2(C))
[D̃I ].
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We abuse notation a little, and leave out the maps D̃I → X̃1, since we are only interested in the
absolute motive anyway. Consider the decomposition

Matsut,2×2(C) = {0} ∐H,
where {0} is the zero matrix, and H ∼= C∗ is the complement. This decomposition induces a
decomposition of the sum (19): if we define

Mnt =

∫

H
[ψtr(T 4)] =

∑

∅6=I⊂J

(1− L)|I|−1

∫

h′−1(H)
[D̃I ](20)

Mt =

∫

{0}
[ψtr(T 4)] =

∑

∅6=I⊂J

(1− L)|I|−1

∫

h′−1({0})
[D̃I ],(21)

then ∫

Matsut,2×2(C)
[ψtr(T 4)] =Mnt +Mt.

Since H is just the complement to the zero section in the fibre π−1

((
0 1
0 0

))
, and V (tr(T 4))

has an A3 singularity at this matrix, i.e. the singularity defined by the singular curve x4 + y2,
the following proposition follows from equation (14).

Proposition 5.3. There are equalities of absolute motives

Mnt = (L − 1)MF(x4 + y2)(22)

= (L − 1)([C2]− 2L)(23)

where C2 is a torus with the representation α+ α3 on its middle cohomology.

Proof. Only the second equality needs proving. This is implied by Proposition B.1. �

Proposition 5.4. There is an equality of absolute motives

Mt = (1− L)MF(x4 + y2) + LMF(x4 + y4).

Proof. One of the terms in the sum (21) comes from setting I = {Ys}, the proper transform of

the copy of P3 ⊂ X̃ we obtained by blowing up at the zero matrix. Now fh′ vanishes to order 4
on Ys, and so D̃I is a 4-sheeted étale cover over the complement of V (tr(T 4)) in P3. It follows
from Proposition B.2 that

∫

h′−1({0})
[D̃{Ys}] = [D̃{Ys}] = LMF(x4 + y4) + (L− 1)LMF(x4 + y2) + 2L(L2 − 1).

The subvariety of Mat2×2(C) cut out by tr(T 4) has two components, the cones over the divisors
S1 ∪ S3 and S2 ∪ S3, and we denote the strict transform of these divisors in the embedded
resolution X̃1 by F1 and F2, respectively. These divisors occur with multiplicity 1. Since we
only blow up along S3, there is an isomorphism D̃{Fi,Ys}

∼= Si for i = 1, 2. So these two subsets
of J each contribute

(1− L)
∫

h′−1({0})
[D{Ys,Fi}] = (1− L)[P1 × C]
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to Mt, by Proposition 5.1. All the other contributions to (21) come from the modifications
made to the singular locus of V (tr(T 4)), i.e. from subsets I ⊂ J that contain Y and at least
one divisor occurring as the cone over an exceptional divisor of

Y

hP
��

P3.

At the first blowup, along the P1 of A3-singularities S3, we introduce a P1-bundle, along with
a P1 of new singularities. Since we are working in the motivic ring, we can assume that the
bundle in question is trivial. The same is true for the second blowup. The result is the equation

∑

∅6=J⊂D|J*{Ys,F1,F2}

(1− L)|J |−1

∫

h′−1({0})
[D̃J ] = (1− L)[P1]MF(x2 + y4).

Putting all this together gives the result. �

It turns out, then, that we have exactly what we want:

Proposition 5.5. There is an equality of µ̂-equivariant motives

(24) L−1

∫

Matsut,2×2(C)
[−φtr(T 4)] = 1−MF(x4 + y4),

and so there is an equality in M̃ot
µ̂
(SpecC)[[x]]

(25) DT[Rep1(B) ⋆ Rep1(B)]x2 = DT[Rep1(B)] · DT[Rep1(B)]x2,

where these ‘DT counts’ are as defined in (10) and (13).

Remark 5.1. We have shown this equality directly, but also it turns out to be a comparatively
simple application of the Kontsevich–Soibelman integral identity (see Section 4.4 of [23] for a
discussion of this identity, and see [31] for a proof). This motivic identity implies that this
motivic refinement of the Donaldson–Thomas count preserves ring structure for more general
moduli spaces of objects in the Abelian category of B-modules, and more general Jacobi algebras.

6. Towards motivic Donaldson–Thomas counts

The above calculations show that a ‘naive’ motivic refinement of the Donaldson–Thomas
count preserves ring structure, at least in our basic example. It will turn out that the key
ingredient for achieving this was the extra data provided by a realisation of our algebra as a
superpotential algebra, which in turn enables us to realise the representation spaces of finite
dimensional modules for our Jacobi algebra B as critical loci in such a way that the integration
map defined via the associated motivic weight −φtr(W ) preserves the ring structure. The question
is: can we do without this extra data?

Question 6.1. If we are handed a ‘Calabi-Yau 3-dimensional category’, whatever

that may turn out to be, can we construct a motivic integration map from the Hall

algebra of stack functions, preserving the product?
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There is a notion of quasi-equivalence of Calabi-Yau categories (see, for example, [19]), that
in particular induces quasi-isomorphisms of homomorphism spaces and quasi-isomorphisms of
endomorphism spaces as cyclic A∞-algebras. Again, we needn’t worry at the moment about what
that means precisely, but already an implication for a satisfactory theory of motivic Donaldson–
Thomas counts follows from the fact that quasi-equivalences of Calabi-Yau categories induce
isomorphisms of derived categories:

Requirement 6.2. The motivic Donaldson–Thomas count associated to a stack func-

tion should be invariant under pullback along quasi-equivalences of Calabi-Yau 3-

dimensional categories.

Consider again our archetypal Donaldson–Thomas setup in Section (2): producing numbers
‘counting’ sheaves F in fine moduli spacesM. Recall that if F is a coherent sheaf on our Calabi-
Yau 3-fold X, the constructible function νM(F) depends solely on the scheme structure of the
moduli spaceM, where we use the common abuse of notation whereby F also denotes the point
ofM representing it. The fact that the scheme structure ofM tells us what kind of contribution
F should make to the Donaldson–Thomas count is explained by the fact that we assumed that
M is a fine moduli space, and so carries information about infinitesimal deformations of F .

The idea is that the contribution of an object F need not be calculated from the local structure
around F in some moduli schemeM. In the example above we used a particular way of realising
our moduli spaces as critical loci in order to give a motivic refinement of the Donaldson–Thomas
count, but of course this application of extra data means that we have not provided an affirmative
answer to Question 6.1.

The contribution of an object F , sitting inside a fine moduli space M, to the ordinary
Donaldson–Thomas count is a function of the Euler characteristic of the Milnor fibre of a function

f : Ct → C,

for some t, satisfying the condition that crit(f) looks (locally) like a formal neighborhood of the
point x representing F in M. The crucial observation is that some version of a critical locus
description around F can be read off straight from the formal deformation theory of that object,
which can be expressed purely in terms of category theory. So we try to refine the Donaldson–
Thomas contribution to a motive by building such an f directly from the category, and as a
preliminary step we should find somewhere for f to live, e.g. as a function on a vector bundle on
a stack of objects. It turns out that a reasonable candidate for f , at x, is a function defined on
Ext1(F ,F). Now our aim was to write down motivic Donaldson–Thomas counts for arbitrary
families, at which point we are confronted by the fact that the dimension of Ext1(F ,F) is liable
to jump as we vary F , so we cannot hope that our f will be a function on a vector bundle. The
appropriate sheaf (which we will call EXT 1 here) will, rather, be a constructible vector bundle.

7. Some remarks on constructible vector bundles

LetX be a locally Noetherian scheme. By a constructible decomposition ofX we will hereafter
mean a decomposition of X into locally closed subschemes such that there is a cover of X
by open affine schemes Ui for which the restriction of the decomposition of X to each Ui is
a finite constructible decomposition. A constructible vector bundle V on X is given by a
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constructible decomposition of X, and a vector bundle on each component of the decomposition.
There is, in principle, no reason why one must impose any kind of finite-dimensionality of V in
the definition, but we will see shortly that doing so makes the category of such constructible
vector bundles much better behaved. We identify a constructible vector bundle with the one
obtained, by restrictions, on a subordinate constructible decomposition. A morphism between
two constructible vector bundles V1 and V2 is given by taking a constructible decomposition
subordinate to the two decompositions defining V1 and V2, and giving a morphism, for each
Xi in the decomposition, from V1|Xi to V2|Xi . We identify a morphism f with the morphism
obtained by restricting f to a constructible decomposition subordinate to the one defined by f .
Every constructible vector bundle V on a scheme X defines a constructible function dimV : x 7→
dim(Vx). We will only work with locally finite constructible vector bundles V, meaning that
X can be covered by affine open subschemes on which this function is bounded. Constructible
vector bundles are to a large extent all trivial:

Proposition 7.1. Let V be a locally finite dimensional constructible vector bundle. Then

V ∼=
∐

n∈N

O⊕n
dim−1

V (n)
.

Proposition 7.2. Let X be a locally Noetherian scheme, and let Vfin be the full subcategory of
the category of constructible vector bundles on X consisting of locally finite-dimensional vector
bundles. Then Vfin is a semisimple Abelian category.

We define the (ordinary) category of constructible differential graded vector bundles on X
as the category with objects given by pairs of a constructible decomposition of X, and on each
subscheme of the decomposition a differential graded vector bundle. Morphisms are given by
morphisms of such objects that preserve degree and commute with the differential, and we make
the obvious identifications of objects and morphisms under subordinate decompositions.

Corollary 7.3. (Formality) Let V • be a constructible differential graded vector bundle on a
locally Noetherian scheme X such that each fibre of V • is finite-dimensional in each degree,
and on each of the subschemes Xi of X defined by the constructible decomposition associated
to V •, the homology Hi(V •), considered as a constructible vector bundle on Xi, is nonzero for
only finitely many i. Then there is a quasi-isomorphism from a constructible differential graded
vector bundle with zero differential to V •.

Proof. We can define the ith homology of V •, in the category of constructible vector bundles,
since the category Vfin of Proposition 7.2 is Abelian. Then the formality follows from the fact
that Vfin is semisimple, and our local finiteness assumption on the homology. �

Remark 7.1. Kernels in the category Vfin above are maybe a little surprising. For instance,
the homomorphism of C[x]-modules

C[x] ·x
// C[x]

is of course an injection of coherent sheaves on the scheme C. Considered as a morphism of
constructible vector bundles, however, one readily verifies that the kernel consists of a rank
1 vector bundle over the origin. The same example shows that the homology of a differential
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graded vector bundle, considered as a constructible differential graded vector bundle, can be very
different from the homology of the vector bundle considered as a complex of coherent sheaves.

8. Formal deformation theory

Since we are working in the ring of motives, we may treat the constructible vector bundle
EXT 1 (once it is properly defined) as though it were a vector bundle. In the original setup,
in which we were working out Donaldson–Thomas counts associated to fine moduli spaces, this
constructible vector bundle played an important role: it is naturally identified with the Zariski
tangent space of our schemeM (see [15] for example).

Given an object F in a Calabi-Yau 3-dimensional category C, we obtain an A∞-algebra
A = Hom•(F ,F). Such an algebra is like a differential graded algebra, in that it has two
operations m1 : A → A[1] and m2 : A ⊗ A → A, but it also has countably many higher
operations

mn : A⊗n → A[2− n]
which are required to satisfy some compatibility conditions (see Keller’s introduction [20] or
Lefèvre-Hasegawa’s thesis [24] for a longer exposition). Given such a set of mn we define a set
of bn making the following diagram commute

A⊗n

S⊗n

��

mn
// A[2 − n]

Sn

��

A[1]⊗n bn
// A[2],

where S is the degree -1 map sending a ∈ A to a in A[1]. Clearly these bn contain the same
information as the mn, so we may just as well describe an A∞-algebra using them. Here begins
the constant tension in this subject between the mn, which naturally extend our notions of
ordinary algebras and differential graded algebras, but have increasingly awkward sign rules,
and the bn, which do not.

We can describe the formal deformation theory of F , using the functor

DefF : Artinian nonunital algebras→Sets
m 7→{γ ∈m⊗Hom1(F ,F)|MC(γ) = 0}

where MC : Hom1(F ,F)→ Hom2(F ,F) is given by the formal sum of the degree n functions

MCn(a) = bn(γ, . . . , γ),

and bn are the higher multiplications of Hom1(F ,F). We have shifted from the usual maps
mn : A⊗n → A[2− n] to maps bn : A[1]⊗n → A[2] just to make the signs trivial here.

The fact that C is supposed to be a Calabi-Yau 3-dimensional category over some ground field
k enables us to make some extra assumptions on our A∞-Yoneda algebra End•(F), namely we
assume that it has a cyclic structure. What exactly this means is spelt out in detail elsewhere,
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for example in Kajiura’s paper [19], but for the present purposes it is sufficient to note that this
extra structure implies that we have a nondegenerate antisymmetric pairing

〈•, •〉 : Hom1⊗Hom2 → k

and that if we define

Wn(x) =
1

n
〈bn−1(x, . . . , x), x〉

and let W be the formal sum of these degree n functions, we have that dW =MC. This makes
sense once one views End2(F) as the vector dual of End1(F) via the pairing 〈•, •〉 and identifies
each fibre of the cotangent space of End1(F) with the vector dual of End1(F) in the natural
way.

It follows, then, that we are given a formal critical locus description for F without any
reference to a moduli space, directly from the structure of a 3-dimensional Calabi-Yau category.

The W we have here, though, is in some sense not yet intrinsic to the category – it changes
as we vary the representative we take of the quasi-equivalence class of the category C, varying
by quasi-isomorphisms the representative we take of the A∞-algebra End•(F). Help is at hand
though: it turns out (see Theorem 5 and Corollary 2 of [23], as well as [22], [19]) that we
can always find a (noncanonical!) minimal cyclic model for our category, at least around a
neighbourhood of our object F , after constructible decomposition of the space of objects in the
category. So there is a quasi-isomorphism (at least after we replace C by the full subcategory
whose objects are a constructible neighborhood of F):
(26) C ∼

// C′

to a Calabi-Yau A∞-category C′ where the morphism spaces have zero differential, and so we
have the identification End1C′(F) ∼= Ext1C(F). This is good, since the graded vector space of
Exts between two objects, as opposed to the differential graded vector space of Homs, is a true
invariant under quasi-isomorphisms of A∞-categories. In addition, since we have taken this
minimal model in the category of cyclic A∞-categories, this new End1C′(F) comes also with its
potential function, denotedWmin. Finally, the really good news is that thisWmin doesn’t depend
on the choice of minimal model (up to some changes that have no effect on motivic Milnor fibres).
So Wmin, considered as a formal function on the constructible vector bundle EXT 1, presents
itself as a likely candidate for our intrinsic critical locus description of the category.

9. An example in the general framework

Let us see how some of this theory works in our specific example. First we fix some data.
We will start by defining A, an A∞-algebra. Such an algebra has an underlying graded vector
space, which in our case is just going to be

A = C⊕ C[−1]⊕ C[−2]⊕C[−3].
Such an algebra comes also with a countable collection of operations

mn : A⊗n → A[2− n],
for n ≥ 1, satisfying some compatibilities (see e.g. Keller’s [20, Sec.3]). For example, in the case
where mn = 0 for all n ≥ 3 the algebra can be thought of (and indeed really is) just a differential
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graded algebra, with m2 equal to the multiplication and m1 giving the differential; in this case,
the compatibility conditions say exactly that our algebra satisfies the conditions required of a
differential graded algebra. The A we are going to consider is slightly different. We first set
m1 = 0, i.e. the differential is zero – this puts us in the ‘minimal’ situation of (26). Next, we
set the thing to be unital. So there is some 1 ∈ A0 = C which functions just like the identity
under m2, and such that mi(. . . , 1, . . .) = 0 for all i ≥ 3. Let us extend this unit to a basis

{1 ∈ A0, a ∈ A1, a∗ ∈ A2, w ∈ A3}
so that we have a graded basis for the whole of A. Next, set

m2(a, a
∗) = m2(a

∗, a) = w

m2(a, a) = 0.

For degree reasons, this and the unital property determine m2 entirely. We define mi = 0 unless
i ∈ {2, 3}. We let m3(a, a, a, ) = a∗, and set m3 to be zero on all other 3-tuples of basis elements.

This algebra was not plucked from nowhere: it is the A∞ Koszul dual (as in [26]) of the
Ginzburg differential graded algebra Γ(Q,W ) associated to the quiver with potential we con-
sidered in Section 4. This is a differential graded algebra with cohomology concentrated in
negative degrees, with zeroeth cohomology isomorphic to our algebra B as defined in Section
4 – one should consult Ginzburg’s paper [14, Sec.5] for a full definition of this algebra. So
the Abelian category of B-modules sits inside the derived category of Γ(Q,W )-modules as the
heart of the natural t-structure, and A is the Yoneda algebra Ext•Γ(Q,W ) -mod∞

(M,M) of the

1-dimensional simple module M of Section 4. Note that this algebra is very different from the
Yoneda algebra Ext•B -mod∞

(M,M), which is concentrated in infinitely many degrees.

Under Koszul duality, the B-module M gets sent to the free (right) A-module. But it is
maybe worth forgetting that for now, and just taking some category of modules over A to be
our Calabi-Yau category, and seeing what the programme sketched above, involving Wmin, does
in this case.

As in Section 4 we will be interested in some very simple spaces of modules over A (indeed the
same spaces, under Koszul duality). First we need to write down our version of the superpotential
coming from the structure of our category. To this end we introduce the symmetric pairing

〈•, •〉 : A⊗A→ C[−3]
given by letting 〈a, a∗〉 = 〈1, w〉 = 1. This gives us our W : if we let x be a coordinate on
Ext1(M,M) ∼= A1, then

W = x4.

(Recall thatW is actually defined in terms of the bn, maps fromA[1]⊗n to A[2], but up to sign this
makes no difference to our W .) The only modules we will be interested in are A and extensions
of A by itself. Denote by N the free left A-module. We denote by Nα the cone of a morphism
α : N [−1]→ N . Such a module is really just the extension determined by α ∈ Ext1(N,N), but
souped up to an object in an A∞-category. Such an extension has, as underlying A-module,
N1⊕N2, where we have labelled the two copies of N merely for convenience. Nα has a differential
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determined by α:

(27) d

(
a1
a2

)
= m2

((
0 α
0 0

)
,

(
a1
a2

))
=

(
m2(α, a2)

0

)
.

By a slight abuse of notation we denote the 2 by 2 matrix appearing in (27) simply by α. By a
slightly larger abuse of notation we have used the same mi as appear in the definition of A to
denote the natural extension to matrix calculus. What we are really interested in is End•(Nα).

Proposition 9.1. The A∞-algebra End•(Nα) has a model whose underlying graded vector space
is

H :=End•(N1, N1)⊕ End•(N1, N2)⊕ End•(N2, N1)⊕ End•(N2, N2)

=A11 ⊕A12 ⊕A21 ⊕A22

=M2×2(A)(28)

where the subscripts do not change the mathematical object denoted by the terms they are sub-
scripts to, and are just added for notational convenience. This algebra carries natural higher
products coming from A, which we denote by m2×2,n, or the shifted version by b2×2,n, and twist
by setting

(29) bα,i(a1, . . . , ai) =
∑

n≥i

b2×2,n(α, . . . , α, a1, α . . . α, a2, α, . . . , α, ai, α, . . . , α).

See [20, Sec.7] for an explanation of where this model is coming from, or Kontsevich’s original
paper [21]. Note that the sum in (29) is actually finite: any term in which α appears in
consecutive places is automatically zero, from the definition of b2×2,n. So, for example

(30) bα,1(a) = b2×2,2(a, α) + b2×2,2(α, a) + b2×2,3(α, a, α).

Let δN be the scheme consisting of a single closed point, which we make into a parameter
space of A-modules by decreeing that the module over the point is just N . In the language
of stack functions, this is just the map SpecC → Ob(C) sending the point to N . The stack
function/parameter space δN ⋆ δN is, as in Section 4, just Ext1(N2, N1)/A1, where the point
α ∈ Ext1(N2, N1) parameterises the module Nα.

Definition 9.2. We define a graded vector bundle END over the vector space Ext1(N2, N1),
given by the trivial bundle with fibre H as defined in (28). This differential graded vector bundle
has operations

mEND,i : END⊗i → END
as defined fibrewise in (29).

While END is a useful object, it isn’t quite right for our purposes, since it isn’t minimal. In
particular, if we build the functionW using it, as it is, it has quadratic terms, sincemEND1,1 6= 0

(as in (30)). Consider the decomposition

Ext1(N2, N1) = Et ∐Ent

where Et = 0 and Ent
∼= C∗ is the complement of Et. Consider first the part Et. Here α = 0,

and so END•|Et is minimal, and there is nothing for us to do.
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Now take the part Ent. The vector bundle END0|Ent is spanned by sections

1ij ∈ Ext0(Ni, Nj) ∼= Aij ,

where as before the subscripts are being used to distinguish the two copies of N , not to pick out
degrees, and our differential acts on these as follows:

d(111) =a21α,

d(112) =− a11α+ a22α,

d(121) =0,

d(122) =− a21α,

where α denotes a coordinate on Ext1(N2, N1) and the vector bundle END1|Ent is spanned by
sections

aij ∈ Ext1(Ni, Nj),

which in turn are acted on as follows

d(a11) =0,(31)

d(a12) =α
2a∗21,(32)

d(a21) =0,(33)

d(a22) =0.(34)

So the section a11 gives us an embedding of EXT 1|Ent into END1|Ent . In fact we can almost
realise EXT •|Ent as a sub A∞-vector bundle of END|Ent , by writing

EXT •|Ent = {111 + 122, 121, a11 + a22, a
∗
11 + a∗22, w11 + w22, w12}.(35)

The identity (35) isn’t quite right though, since this sub-bundle isn’t closed under the operations
mEND•,i. The fix involves tweaking the inclusion i : EXT •|Ent → END•|Ent - we are working
with A∞-morphisms - with ‘higher’ parts that can be modified to counteract the failure of
our sub-bundle to be closed under the A∞-operations mEND,i; this is the process of taking
a minimal model. None of this technicality matters to us at the moment, since the thing
we really care about, mEXT •,i, is unchanged by these modifications, and so we can read off our

functionWEnt,min – it is just the function x4 (after rescaling) on the 1-dimensional vector bundle

EXT 1|Ent .

We are working with the idea that our motivic refinement, which we will denote “DT ” for
now, looks something like

“DT ” : stack functions for A -mod→Mot
µ̂(SpecC)(36)

S 7→
∫

S
(1−MF(Wmin)).

There will in general be some twists by powers of L1/2, a formal square root of the motive of
the affine line, but we have conveniently picked our example so that these powers are all trivial,
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in the end. Let us work out what this map does in our example. It turns out we have already
done most of the work. Firstly one can easily check that

“DT ”([Et]L
−1) = (1−MF(tr(T 4)))L−1

and so
“DT ”([Et] · L−1) = L−1−(1− L)L−1

MF(x4 + y2)−MF(x4 + y4)

by Proposition 5.4. Secondly, we have that

“DT ”([Ent]L
−1) = (L−1)L−1−(L− 1)MF(x4)L−1.

In order for the map “DT ” to preserve the ring structure, then, we need

(37) (MF(x4)−MF(x4 + y2)) = 0.

While equalities in the ring of motives can perhaps be a little elusive, there are certain realisations
from the ring of motives to more manageable rings that make inequalities easier to identify. For
example, from the functoriality of the weight filtration of the mixed Hodge structure of a scheme
X, it follows that if a finite group G acts on X we may form an equivariant version χeq,q of the
Serre polynomial for X. Using Propositions 4.1 and B.1 one can show

χeq,q(MF(x4)−MF(x4 + y2)) = (α+ α2 + α3 − 2(α+ α2 + α3)
√
q − q)

from which we deduce that our map “DT ” does not preserve the ring structure, as it stands.
At a first approximation, this is because we have left out powers of L1/2, a formal square root
of the element L ∈ Mot

µ̂(SpecC). The correct integration map looks more like

DTL1/2 : stack functions for A -mod→Mot
µ̂(SpecC)[L−1/2](38)

S 7→
∫

S
(1−MF(Wmin))L

∑

i≤1(−1)i dim(Exti(•,•))/2 .

Over Et this makes no difference, but over Ent an extra L1/2 factor appears, as the nontrivial
self-extension of N has 2-dimensional endomorphism ring, but only 1 nontrivial self-extension.
Then, in order to demonstrate that DTL1/2 preserves the ring structure, we end up instead
having to prove

MF(x4)L1/2 = MF(x4 + y2),

where the right hand side contains this formal square root of L, while the left hand side doesn’t.
At least without making some kind of identification of L1/2 with something truly belonging to
Mot

µ̂(SpecC), this doesn’t improve the situation much (see Appendix A for more on why such
a move doesn’t work).

Let us compare the case where things looked better, Section 4, with what has happened here.
The following basic observation makes this easier.

Proposition 9.3. Let α ∈ Ext1(M2,M1). Define

Wα(a) =
∑

n≥2

1

n
Wα,n(a),

a function on 2× 2 matrices with entries in Ext1(M,M), by

Wα,n(a) = 〈bα,n−1(a, . . . , a), a〉.
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Write W := W0. Then Wα(a) =W (α+ a).

There is a smooth function + : Matsut,2×2(C)×Mat2×2(C)→ Mat2×2(C) given by matrix addi-
tion, and the proposition states that +∗(W ) =W−, the function on Matsut,2×2(C)×M2×2(C) that
restricts toWα over α ∈ Matsut,2×2. It follows by the properties of the transformation of the mo-
tivic vanishing cycle under pullback that

∫
Matsut,2×2(C)×{0}[−φtr(W−)] =

∫
Matsut,2×2(C)

[−φtr(W )].

So as well as integrating motivic weights across the same 1-dimensional subspace of Mat2×2(C)
both times, we have actually been integrating against the same motivic weight [−φtr(T 4)] both
times as well, almost. The almost here comes from the fact that along Ent we have modified the
function Wα, breaking it into a quadratic part and a part with cubic and higher terms – this is
what we do when we restrict to the minimal superpotential Wmin. What is this quadratic part?
As noted in [23, Sec.6.3], to a first approximation it is just Wα,2 on the constructible vector
space

(39) V = HOM1/Ker(bHOM•,1).

On Et this is trivial, so we concentrate on Ent. Here, V is spanned by a12 (see (31)), and the
quadratic function induced by W− equals α2y2, where y is the coordinate on the vector space
〈a12〉 ⊂ H, as defined in (28). After rescaling, this is just the function y2. If we had modified
“DT ” so that instead of integrating (1 −MF(x4)) along Ent we integrated (1 −MF(x4)) · (1 −
MF(y2)) = (1−MF(x4 + y2)) we would have arrived at the right answer, by the motivic Thom–
Sebastiani Theorem 3.1.

10. The role of orientation data in fixing preservation of ring structure

So let us recall the situation we have arrived at. Firstly, our goal was to associate motivic
Donaldson–Thomas counts to arbitrary stack functions of a Calabi–Yau 3-dimensional category
C. In the example of the Abelian category of modules over a superpotential algebra (in our
case, C[x]/〈x3〉), we have a good idea of how to do this, that seems to work, with the product
preserved on account of an application of the Kontsevich–Soibelman integral identity, followed
by the motivic Thom-Sebastiani Theorem. If we just start from the data of a 3-Calabi-Yau
category C, we have some proxy for the critical locus description, the minimal superpotential
Wmin considered as a function on the constructible vector bundle EXT 1, the problem is that
we don’t know how to apply the integral identity. More precisely, in the case of two stack
functions from single points both parameterising the object N , we do have something to apply
the integral identity to – the induced potential on the differential graded vector bundle END•

over Ext1(N,N), defined as in Definition 9.2 – but away from the origin, quadratic terms show
up, that are removed when we only consider the minimal superpotential Wmin.

The same story occurs if we replace the two stack functions we were multiplying before, which
were both νN , with arbitrary νEi , for E1, E2 ∈ C. Let us denote the version of the vector bundle
V from (39) that we get after making these replacements by VE1,E2 , so VE1,E2 is a vector bundle

on Ext1(E2, E1). The key, then, is to get some control over the constructible vector bundle
VE1,E2 , and its associated quadratic form, which we will denote QE1,E2 , so that we know how
to correct our map “DT ” in order to get something that preserves products. It turns out that
(up to a notion of equivalence that induces isomorphisms of motivic Milnor fibers in the ring
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Mot
µ̂(Ext1(E2, E1))) the pair of the vector bundle (VE1,E2 , QE1,E2) is intrinsic to the category

C, i.e. if we had picked a different minimal model for the category consisting just of the two
objects E1, E2, and so obtained a new pair of a vector bundle with nondegenerate quadratic
form, (V ′

E1,E2
, Q′

E1,E2
), the modification to the motivic Milnor fibre obtained by replacing the

motivic weight

(1−MF(Wmin))L
∑

i≤1(−1)i dim(Exti(•,•))/2

by

(1−MF(Wmin))L
∑

i≤1(−1)i dim(Exti(•,•))/2(1−MF(Q′
E1,E2

))L− dim(V ′
E1,E2

)/2

would be the equal to

(1−MF(Wmin))L
∑

i≤1(−1)i dim(Exti(•,•))/2(1−MF(QE1,E2))L
− dim(VE1,E2

)/2 .

This shouldn’t come as a great shock: the failure of our naive “DT ” map to preserve the product
is again intrinsic to C, by construction. So the dream is not dead at this point: if we can come
up with a way to coherently counteract the error term introduced by ignoring the contribution
from (VE1,E2 , QE1,E2) we will have come up with a fix that is invariant under quasi-equivalences
of Calabi-Yau categories.

This then, defines the role of orientation data in the theory of motivic Donaldson–Thomas
theory:

Condition 10.1. Orientation data provides a way of replacing (EXT 1,Wmin) with

a pair (EXT 1 ⊕ V,Wmin ⊕ Q) in such a way that the map Φ defined by integrat-

ing with respect to the weight which, over an element M ∈ C is (1 − MF(Wmin ⊕
Q))L− dim(V )/2+

∑

i≤1(−1)i dim(Exti(M,M))/2
provides an integration map preserving associa-

tive products.

Coming back to, and generalising, our main example, the following theorem is proved in [10].

Theorem 10.1. Let B′ be a Jacobi algebra defined by a quiver with potential (Q,W ). Then

there are 2|Q0| nonisomorphic choices of orientation data on the Abelian category B′ -modnilp of
nilpotent finite dimensional B′-modules, where |Q0| is the number of vertices of Q.

Appendix A. Why setting L1/2 = (1−MF(x2)) isn’t enough to make DTL1/2 an

algebra homomorphism

Let us continue to assume that k = C. There is a final move one could make, in order to try
to tweak the map DTL1/2 of (38) to produce a map preserving the product, without considering

the extra structure of orientation data. Recall that, when we modify with the appropriate L1/2

powers in DTL1/2 , we should be integrating across Ent with weight L1/2(1−MF(x4)), rather than

the weight (1−MF(x4)). Furthermore, as long as the ground field k contains a square root for

−1, we already have a square root for L in the ring Mot
µ̂(Spec(k)) given by 1−MF(x2) (this is a

neat exercise in the use of the motivic Thom-Sebastiani theorem, using the fact that x2+y2 can
be rewritten as x′y′ for new variables x′ and y′, and the explicit formula for the motivic nearby
cycle). So we may view the target ring of (38) as a rather unnatural place to work, and instead

push forward along the natural ring homomorphism π : Mot
µ̂(Spec(C))[L−1/2]

L1/2 7→(1−MF(x2))−−−−−−−−−−−→



MOTIVIC DONALDSON–THOMAS THEORY AND THE ROLE OF ORIENTATION DATA 25

Mot
µ̂(SpecC)[L−1]. In this case, after we remember to include the L1/2 factor in the motivic

weight for the nontrivial selfextension of N (as defined in Section 9), we have (in the image of
π) that its motivic weight was chosen to be (1−MF(x4 + y2)), where we use the motivic Thom
Sebastiani theorem here, and the map π ◦DTL1/2 does preserve the Hall algebra product in the
special example being considered, i.e.

π ◦DTL1/2(δN ⋆ δN ) = π ◦ DTL1/2(δN )2.

This is a crucial point for this paper. We are supposed to be motivating the introduction of
orientation data, with our example showing how the integration map DTL1/2 fails to preserve
the product if we ignore it, but on the other hand, it seems it should be easier, and perhaps
more natural, to take the lesson from the example to be simply that we should instead direct
our efforts towards proving the claim that π ◦ DTL1/2 is a ring homomorphism. There are two
reasons to reject this approach. The first, presented in the following theorem, is that the claim is
false. The second, discussed in Remark A.1, is that working with the integration map obtained
by composing with π, even once one uses orientation data modifications in order to be able
to prove that this map an algebra homomorphism, yields a substantially weaker theorem – see
Remark A.1.

Theorem A.1. There exists a cyclic three dimensional Calabi-Yau category C, such that the
map

π ◦DTL1/2 : st(Ob(C))→ M̃ot
µ̂
(SpecC)[[x]]

obtained by integrating with respect to the motivic weight (1−MF(Wmin))L
∑

i≤1(−1)i dim(Exti(•,•))/2

and composing with π is not an algebra homomorphism.

The idea is as follows. Instead of letting C be the category B -mod of finitely generated B-
modules, we let C be a family, over the base C∗, of copies of B -mod, except that over the point
z ∈ C∗ we scale the Calabi-Yau pairing 〈•, •〉 by z. To be more precise, the objects of C are
injective morphisms of sets τ : S → C∗, where S is a finite set of finite-dimensional B-modules,
and HomC(τ1, τ2) :=

⊕
τ1(η1)=τ2(η2),ηi∈Si

Hommod-B(η1, η2). Equivalently, we may define C in the

same way, but instead of considering S to be a finite set of finite-dimensional B-modules, we
take it to be a finite set of perfect differential graded modules over the A∞-algebra A used above.
What this word ‘perfect’ means here needn’t concern us, it is sufficient to mention that N and
self-extensions of N are perfect. Let Nα be the nontrivial self-extension of N . Then there is
a family of objects XNα of C lying over C∗, with the object over z defined by the map of sets
τ : {Nα} → {z} ⊂ C∗. There is a natural construction of orientation data for the category
C, and for the family XNα it is given in terms of motivic vanishing cycles by considering a
trivial 1-dimensional vector bundle V on C∗, with coordinate x, and multiplying the motivic
weight by L−1/2(1 −MF(zx2)), where z is the coordinate on the base C∗. Now the unmodified

integration map DTL1/2 has a L1/2 factor in the motivic weight above a point of XNα , whereas
the modified integration map, taking account of orientation data, replaces this with (minus) the
motivic vanishing cycle of zx2.

Let ιz : Spec(C) → C∗ be the inclusion of a point. Projecting the integration map along
π, and then considering the restriction to the fibre ιz, there is no change in the motivic weight
contribution of the orientation data, i.e. after fixing z we have ι∗z(1−MF(QOD)) = (1−MF(zx2)) =
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π(L1/2), and so there is a fibrewise equality ι∗z((1−MF(Wmin))(π(L1/2))) = ι∗z((1−MF(Wmin))(1−
MF(QOD))). But integrating across the entire family, varying z, the motive does change - this
should come as no surprise, since the motivic vanishing cycle of zx2 on C∗ ×C is zero, and not
(L−1)(1 −MF(x2)). This is easy enough to see: the nearby fibre over a point of C∗ × {0}, the
critical locus of zx2, is just two points, and going around the torus swaps these two points, so
that the integrated nearby fibre is just a copy of C∗, which is the same as the zero fibre (we use

here the extra relation on Mot
µ̂(SpecC), which specifies that any µn-action on an affine space

can be taken to be trivial). This is enough to suggest that there is at least a difference between
the putative integration map DTL1/2 and the more advanced version, incorporating orientation
data. It then becomes reasonable to suspect that in this case the map DTL1/2 may prove to
be defective, and the following (sketch) proof demonstrates this in a case containing the family
XNα .

Sketch proof of Theorem A.1. Let C be as above. Let XN be the family of objects of C over C∗,
with the object over z the map of sets {N} → {z} ⊂ C∗. The minimal potential for the object
lying over the point z is just zx4, where x is the coordinate on Ext1

mod-A(N,N). It follows that
DTL1/2(XN ) is the motivic vanishing cycle of the function zx4 on C∗ × C. The nearby fibre is
just a torus, since above any point of C∗ it is 4 points, and the monodromy action cyclically
permutes these points. So DTL1/2(XN )2 = (0 · x)2 = 0. The theorem will then follow from the
observation that π ◦ DTL1/2(XN ⋆ XN ) 6= 0.

The family XN ⋆ XN , as a family of A modules, can be broken up, constructibly, into three
components

(40) XN ⋆ XN = Y ∐ XEt ∐XEnt .

The family Y is parameterised by the scheme (C∗)2z 6=w, the space of pairs of disjoint ordered

points (z, w) of C∗. Each point represents a module N ⊕ N , and the minimal potential is a
function on the 2-dimensional vector bundle Ext1

mod-A(N) ⊕ Ext1
mod-A(N) with coordinates x

and y, with Wmin = zx4 + wy4. We denote by Wmin the natural extension of this function on
the trivial rank 2 vector bundle over (C∗)2. Then by the motivic Thom Sebastiani theorem, and
the fact that

∫
C∗×C φxy4 = 0, we deduce that

∫
(C∗)2z 6=w

φWmin
=

∫
(C∗)2 φWmin

−
∫
(C∗)2z=w

φWmin
=

−
∫
C∗×C2 φz(x4+y4).

4

The second factor in (40) should be thought of as a copy of Et over each point of C∗. That is,
up to division by L, it is a family parameterised by the scheme C∗, with the fibre over z equal
to the map of sets sending N ⊕N to z. Precisely,

DTL1/2(XEt) = L−1

∫

C∗×

(

0 0
0 0

)−φz tr(T 4) · x2 .

4In general one has to be a bit careful with equalities of the form of the first equality here, since in general one
shouldn’t expect

∫
X
φf =

∫
U
φf |U +

∫
V
φf |V
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An embedded resolution for the function z tr(T 4) is obtained by taking the fibre product of our
old embedded resolution for tr(T 4) with the extra factor C∗. We deduce from formula (6)

DTL1/2(XEt) = L−1((1− L)
∫
−φz(x4+y2) + L

∫
−φz(x4+y4)) · x2 .

Finally,

DTL1/2(XEnt) = −L−1 L1/2(L−1)φzx4 · x2 = 0

since Wmin = zx4 on Ent, and
∫
C∗×C φzx4 = 0. So to prove the theorem, it is enough to show

that
∫
C∗×C2 φz(x4+y2) 6= 0. Now we leave it to the reader to verify that this is given by the naive

motivic vanishing cycle
∫

C∗×C2

−φz(x4+y2) = [(x, y, z) ∈ C2 × C∗|z(x4 + y2) = 0]− [(x, y, z) ∈ C2 × C∗|z(x4 + y2) = 1]

and that this final quantity is equal to
∫

C∗×C2

−φz(x4+y2) = L2−L,

so we may deduce that

π ◦ DTL1/2(XN ⋆ XN ) = −(L−1)2 · x2 .

�

Remark A.1. In fact there are separate reasons for not composing the integration map with
π, anyway. There are substantive statements that can be deduced from the fact that DTOD, the
version of DTL1/2 modified by a suitable contribution from orientation data, is a ring homo-
morphism, which cannot be proved from the same claim regarding π ◦ DTOD. For an example,
we consider a result from the interface between cluster theory and Donaldson–Thomas theory.
In Efimov’s work on quantum cluster algebras and positivity [13], which also contains relevant
background to what follows, it is proved that the quantum cluster coefficients arising in quan-
tum cluster mutation of a skew-symmetrizable quantum cluster algebra are given by applying
a weight polynomial, in a variable q1/2, to an element in Z[L1/2] ∩ Mot

µ̂(SpecC). This inter-

section is just Z[L], since we do not make the identification L1/2 = 1 −MF(x2). From this one

immediately deduces the vanishing of odd powers of q1/2, as χq(L) = q. However note that

applying the weight polynomial to elements in π(Z[L1/2]) ∩ π(Mot
µ̂(SpecC)) = π(Z[L1/2]), we

can no longer deduce this, and we are handed the problem (see, for instance, [8]) of having to
prove a difficult-looking theorem regarding vanishing of odd (critical) cohomology. For a more

precise reference for how keeping the formal square root of L1/2 distinct from 1−MF(x2) buys
us this vanishing result see [13, Thm.5.3].

Appendix B. Deferred motivic calculations

Recall Proposition 4.1, which stated the equality of µ̂-equivariant motives

(41) MF(x4 + y4) = [C1]− 4L,

where C1 is a genus 3 complex curve, with the action 2(α+α2 +α3) on its middle cohomology.
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Proof. One can show this as follows: first, note that if X = C2, the blowup at the origin

X̃

h
��

X

provides an embedded resolution of f = x4 + y4. As ever, let J denote the set of divi-
sors in (fh)−1(0), as in the formula (6). There are then 5 elements in J , which we denote
E,D1,D2,D3,D4, where E is the exceptional P1. The preimage h−1(0) is E, which intersects
all of the divisors of J nontrivially. So there are 5 terms in the sum

(42)
∑

∅6=I⊂J

(1− L)|I|−1

∫

{0}
[D̃J ]

coming from the 4 sets {E,Di} as well as from the singleton set {E}. All divisors of (fh)−1(0)
apart from the exceptional P1 have multiplicity 1, so it follows that the étale cover corresponding
to each of the points E ∩ Di is just the 1-sheeted cover. So each of these points contributes
(1 − L) to (42) . There remains the étale cover over the complement to the projective variety

V (x4 + y4) in E, which is denoted, as in the formula (6) by D̃{E}. This cover is 4-sheeted, since
fh vanishes to order 4 along E. One can complete in the obvious way the resulting 4-sheeted
étale cover to a branched cover

C1

��

P1

of P1. Since this branched cover is simply ramified at each branch point of P1, i.e. there is only
one point in the fibre of each branch point, it follows that the cover is connected, and C1 is a
genus 3 curve. One can work out the equivariant Euler characteristic of C1 by taking a good
cover, in the analytic topology, of P1, such that any open set in the cover contains at most one
of the branchpoints. This calculation yields

χeq(C1) =(1 + α+ α2 + α3)χ(P1 − {4 points}) + 4

=2− 2(α+ α2 + α3).

Since we know that Z4 acts trivially on the top and bottom cohomology, we deduce that C1

has the cohomology stated in the proposition. Putting everything together we have

MF(x4 + y4) =([C1]− 4) + 4(1− L)

=[C1]− 4L.

�

In similar fashion we can explicitly describe MF(x4 + y2):

Proposition B.1. There is an equality of µ̂-equivariant motives

(43) MF(x4 + y2) = [C2]− 2L
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x4 + y2 = 0

Figure 1. Resolved x4 + y2

where C2 is a genus 1 curve with the action α+ α3 on its middle cohomology.

Proof. The motivic Milnor fibre of x4 + y2 is obtained by performing a couple of blowups as in
our resolution of S3, the P1 of A3 singularities in the projective variety V (tr(T 4)). After the
first blowup we introduce an exceptional P1, which the two components of the strict transform
of the divisor given by the original vanishing locus of x4 + y2 meet in a single point, as in the
leftmost part of Figure 1. Blowing up this point gives us the rightmost arrangement of divisors
of Figure 1. The new exceptional P1 we label E2, and the strict transform of the first exceptional
P1 we label E1. Let

Z̃

s
��

C2

be the map of schemes obtained by performing these two blowups. Then the numbers next to
the exceptional divisors in Figure 1 indicate the order of vanishing of the function (x4 + y2)s on
those divisors.

The preimage s−1(0) is equal to the union E1 ∪ E2. The complement to E2 in E1 is a copy

of C, from which it follows that our 2-sheeted étale cover of it, D̃{E2}, must be the trivial Z2-
torsor. The (resolved) completion of the 4-sheeted étale cover of E1, which we denote C2, is
again connected, since two of its branching points are simply ramified. So we can use the same
trick as for Proposition 4.1 to work out its cohomology using equivariant Euler characteristics.
This gives that

χ(C2) = (1 + α+ α2 + α3)χ(P1 − {3 points}) + 2 + (1 + α2) = 2− (α+ α3),
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implying that C2 is a torus with the action of Z4 on its middle cohomology given by the sum
α+ α3. Putting all the pieces together,

MF(x4 + y2) =[C2]− (2 + (1 + α2)) + (1 + α2)L+ (1− L)(2 + (1 + α2))

=[C2]− 2L.

�

Next we tidy up the unfinished business of calculating [D̃{Y }] from Proposition 5.4.

Proposition B.2. There is an equality of absolute equivariant motives

[D̃{Y }] =L[C1] + L(L− 1)[C2]− 2L(L+ 1)(44)

=LMF(x4 + y4) + (L− 1)LMF(x4 + y2) + 2L(L2 − 1).(45)

Proof. We stratify the cover D̃{Y } by stratifying the base D(tr(T 4)), the complement in P3 to

V (tr(T 4)). Denote matrices of D(tr(T 4)) by
(
a b
c d

)
.

Note that there is a C∗-action on D(tr(T 4)) given by

t ·
(
a b
c d

)
7→

(
a tb
t−1c d

)
.

(1) First consider the subscheme P1 ⊂ D(tr(T 4)) of matrices with nonzero trace, and c 6= 0.
P1 is acted on freely by C∗ with the above action. So we may take the quotient, and
multiply the motive we get by (L−1). So we fix the trace to be equal to 1, thereby fixing
an element in the line of matrices determined by an arbitrary matrix with nonzero trace,
and set c = 1, thereby passing to the quotient by the C∗-action. Once we have fixed the
trace, the complement D(tr(T 4)) is determined entirely by the determinant, it is given

by those matrices with determinant not equal to θ1 = 1+
√

1/2 or θ2 = 1−
√

1/2. There
is an isomorphism

C× (C− {θ1, θ2})→P1/C
∗

(x, y) 7→
(
x x(1− x)− y
1 1− x

)
.

Now

p4 + q4 = (p+ q)4 − 4pq(p+ q) + 2(pq)2

from which it follows that the local defining function for tr(T 4) on P1/C∗ is 1−4y+2y2.
The function 2y2−4y+1 defines a 4-sheeted étale cover in the usual way, and this is just
the étale cover occurring in the calculation of the motivic Milnor fibre of MF(x4 + y2),
since we form a homogeneous quartic from 2y2 − 4y + 1 by introducing the variable z
and taking 2y2z2−4yz3+ z4, which vanishes to order 2 at infinity. This is just the cover
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obtained by removing the branchpoints from the equivariant curve C2 of Proposition
B.1. We conclude that there is an equality of absolute equivariant motives

(46)

∫

P1

[D{Y }] = L(L− 1)([C2]− (3 + α2)).

(2) Next let P2 ⊂ D(tr(T 4)) be the subscheme of matrices with nonzero trace, c = 0, and
b 6= 0. Again we take representatives with trace equal to 1, and again we use the free
C∗-action to assume that b = 1. Then there is an isomorphism

C− {roots of p(z) = z4 + (1− z)4} →P2/C
∗

x 7→
(
x 1
0 1− x

)
.

The local defining function for tr(T 4) becomes x4 + (1 − x)4. This polynomial has 4
separate roots, so the 4-sheeted étale cover it defines over C is the curve C1, minus the
branchpoints, and also minus the 4 points lying over infinity. So

(47)

∫

P2

[D{Y }] = (L − 1)([C1]− 4− (1 + α+ α2 + α3)).

(3) Let P3 ⊂ P3 be the subscheme consisting of matrices with trace equal to zero, a 6= 0,
and c 6= 0. Then we can assume a = 1, after taking an appropriate scalar multiple.
Furthermore we again have a free C∗-action, and so we take the quotient again, and
assume c = 1. There is an isomorphism

C∗ →P3/C
∗

x 7→
(
1 x− 1
1 −1

)
.

The local defining equation for tr(T 4) becomes 2x2. The resulting 4-sheeted cover of C∗

has 2 components, each a torus, and we conclude that

(48)

∫

P3

[D{Y }] = (L − 1)(1 + α2)(L − 1).

(4) Let P4 ⊂ P3 be the subscheme consisting of matrices with zero trace, a 6= 0, c = 0, b 6= 0.
We again may assume a = 1. P4 is just a single free C∗-orbit, and so we conclude that

(49)

∫

P4

[D{Y }] = (L− 1)(1 + α+ α2 + α3).

(5) Let P5 ⊂ P3 be the subscheme of diagonal matrices. Then P5
∼= P1, and V (tr(T 4)) ∩ P5

consists of four points. It follows that the étale cover, restricted to P5 is just the étale
cover occurring in the calculation of the motivic Milnor fibre of x4 + y4, and so

(50)

∫

P5

[D{Y }] = [C1]− 4.
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(6) Let P6 ⊂ P3 be the subscheme consisting of off-diagonal matrices. Both entries b and c
must be nonzero for the matrix to be in D(tr(T 4)). So we may assume c = 1. On this
orbit C∗ again doesn’t act freely, so we will ignore it. There is an isomorphism

C∗ →P6

x 7→
(
0 x
1 0

)
.

The local defining equation for tr(T 4) is 2x2. So the resulting 4-sheeted étale cover of
C∗ is given by a cover by 2 tori, and we have the equality

(51)

∫

P6

[D{Y }] = (L− 1)(1 + α2).

Putting all this together gives equation (44). In light of Propositions 4.1 and B.1 we also deduce
equation (45).

�
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27. A. Parusiński and P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Alg. Geom.

10 (2001), no. 1, 63–79.
28. E. Segal, The A∞ deformation theory of a point and the derived categories of local Calabi-Yaus, J. Algebra

320 (2008), no. 8, 3232–3268.
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