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Abstract. 1. Four mechanical poultry killing devices; modified Armadillo (MARM), 

modified Rabbit Zinger (MZIN), modified pliers (MPLI) and a novel mechanical cervical 

dislocation gloved device (NMCD), were assessed for their killing potential in the cadavers 

of euthanised birds of 4 type/age combinations: layer/adult, layer/pullet, broiler/slaughter-age 

and broiler/chick.  

2. A 4x4x4 factorial design (batch x device x bird type + age) was employed. Ten bird 

cadavers per bird type and age were tested with each of the 4 devices (N = 160 birds). All 

cadavers were examined post-mortem to establish the anatomical damage caused by each 

device.  

3. Three of the mechanical methods: NMCD, MARM and MZIN demonstrated killing 

potential, as well as consistency in their anatomical effects, with device success rates of over 

50% indicating that the devices performed optimally more than half of the time. NMCD had 

the highest killing potential, with 100% of birds sustaining the required physical trauma to 

have caused rapid death.  

4. The MPLI was inconsistent, and only performed optimally for 27.5% of birds, despite 

good killing potential when performing well. Severe crushing injury was seen in >50% of 

MPLI birds, suggesting that birds would die of asphyxia rather than cerebral ischaemia, a 

major welfare concern. As a result, the modified pliers are not recommended as a humane on-

farm killing device for chickens.  

5. This experiment provides important data on the killing potential of untried novel 

percussive and mechanical cervical dislocation methods, informing future studies. 

Keywords: Killing, poultry, cervical dislocation, percussive, post-mortem, animal welfare 

INTRODUCTION 

Worldwide, an estimated 9.1 billion birds may need to be killed on-farm each year (DEFRA 

2015) and the method with which these birds are killed therefore has relevance to poultry 



welfare on a large scale. Poultry may need to be killed on-farm for multiple reasons (such as, 

injury, sickness and for stock management). Emergency killing on a large scale is often 

controlled by whole-house or containerised gas methods (Lambooij et al., 1999; Gerritzen et 

al., 2004; Gerritzen et al., 2009; McKeegan et al., 2011), but for the killing of smaller 

numbers of birds on-farm, there are currently two main methods: (i) cervical dislocation, 

which is designed to cause death by cerebral ischaemia and extensive damage to the spinal 

cord and brainstem (Ommaya and Gennarelli 1974; Gregory and Wotton 1990; Erasmus et 

al., 2010a,b; Bader et al., 2014; Martin et al., 2016); and (ii) percussive devices designed to 

cause extensive brain damage, resulting in brain death (Gregory and Wotton, 1990; HSA, 

2004; Mason et al., 2009; Erasmus et al., 2010a,b; Sparrey et al., 2014; Cors et al., 2015).  

Cervical dislocation is one of the most prevalent methods for killing individual birds 

and is used in commercial and non-commercial contexts. It is perceived to be humane by 

users, is easy to learn and perform, and does not require equipment (Mason et al., 2009; 

Sparrey et al., 2014; Martin, 2015; Martin et al., 2016). Both manual and mechanical cervical 

dislocation killing methods are designed to separate the skull from the vertebral column of 

the bird (ideally C0–C1 vertebral dislocation), resulting in severing of the spinal cord and/or 

brainstem and the main blood vessels supplying the brain (Gregory and Wotton, 1990; Parent 

et al., 1992; Veras et al., 2000; Cartner et al., 2007; Mason et al., 2009). It has been 

suggested that optimal application also produces a concussive effect on the bird due to trauma 

inflicted on the brainstem through the action of stretching and twisting (Harrop et al., 2001; 

Shi and Pryor, 2002; Pryor and Shi, 2006; Shi and Whitebone, 2006; Cartner et al., 2007; 

Erasmus et al., 2010a). However, both methods of cervical dislocation have been the subject 

of welfare concern, as research in the last 40 years has raised questions about their 

humaneness and consistency in poultry (Gregory and Wotton, 1986, 1990; Erasmus et al., 

2010a), as well as other species (Tidswell et al., 1987; Cartner et al., 2007). Some studies 



have indicated that animals, including poultry, may be conscious for an appreciable period 

post-application of cervical dislocation (Gregory and Wotton, 1990; Erasmus et al., 2010a; 

Carbone et al., 2012) and it has been noted that there is high variability in its application by 

different relevant groups (poultry stock-workers, veterinarians, trained slaughtermen) (Mason 

et al., 2009; Sparrey et al., 2014). Since January 2013 the use of manual cervical dislocation 

(MCD) as a killing method for poultry on-farm has been heavily restricted through the new 

EU legislation, Regulation (EC) no. 1099/2009 On the Protection of Animals at the Time of 

Killing (European Commission, 2009), following reported welfare concerns. In 2009, FAWC 

recommended further research to explore current and novel methods for killing poultry in 

small numbers. Several mechanical devices have been developed recently (such as CASH 

Poultry Killer, Turkey Euthanasia Device) (Erasmus et al., 2010a; Erasmus et al., 2010b; 

HSA, 2004; Raj and O'Callaghan, 2001), however, none have been enthusiastically adopted 

across the commercial industry or by small poultry keepers. 

Previous research has shown that post-mortem analysis is effective in inferring killing 

potential and time to loss of consciousness and has been used across several species in 

determining success rates of slaughter and on-farm killing method in livestock species while 

avoiding ethical concerns associated with the application of new killing methods (Anil et al., 

2002; Grandin, 2010; Morzel et al., 2002; Bader et al., 2014). The successful application of 

cervical dislocation methods is determined by the animal having its neck dislocated and the 

spinal cord severed (Cartner et al., 2007; Erasmus et al., 2010a; Carbone et al., 2012; Bader 

et al., 2014), while for concussive (head trauma) devices, there must be sufficient damage 

(e.g. skull fractures, brain contusions, cerebral oedema, haemorrhaging and contra-coup 

damage (that is, damage to the brain on both sides: the side that received the initial impact 

(coup) and the side opposite to the initial impact (countrecoup)) (Finnie et al., 2000; 2002; 

Gregory and Shaw, 2000; Gregory et al., 2007). Such effects can be observed in cadavers 



following the application of killing methods. Determining the success rate of a killing device 

is essential to evaluating its overall efficacy, and the designing and prototyping of novel and 

modified devices is the first stage of the development of a new humane device to despatch 

poultry on-farm.  

  The aim of this study was to assess the potential killing performance of 4 novel or 

modified mechanical devices (Figure 1) on both layer and broiler cadavers, through post-

mortem analysis. The results could then influence the decision of whether the devices should 

be taken forward for further development and evaluation in live and conscious birds as 

potential new on-farm killing methods for chickens.  

 

MATERIAL AND METHODS 

Subjects and husbandry 

A total of 160 female layer-type (Hy-Line) and meat-type (Ross 308) chickens (Gallus gallus 

domesticus) were used in this study as 4 batches which were distributed equally across two 

types and ages (Table 1). Birds were sourced from commercial farms and transported to 

SRUC facilities in 4 batches of 40 birds per batch, each including all 4 bird type and age 

combinations. The birds were weighed and wing-tagged on arrival.  

The birds were housed for one week prior to the experiment to allow them to 

acclimatise to the new environment and were housed in separate rooms per bird type and age 

group to provide recommended environmental controls (Aviagen, 2009; Hy-Line, 2012). All 

were kept in floor pens with wood-shavings litter at lower than commercial stocking density 

and with various environmental enrichments (such as suspended CDs, perches). The pens 

were constructed from wooden frames with wire-grid sides and roofs, allowing visual and 

auditory contact with other birds within the same room. Broiler chicks and layer pullets were 

housed in group pens (L 1.5 m x W 2.5 m x H 1.5 m). Broilers (slaughter-age) and layer hens 

Table 1 near here  
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were kept in pairs (pen size: L 1.5 m x W 0.5 m x H 1.5 m). All birds had ad libitum access to 

appropriate food and water, and were inspected twice daily, while minimum and maximum 

temperatures were recorded each morning.  

This experiment was performed under UK Home Office licence authority via Project 

and Personal licences and underwent review and approval (AUAE8-2012) by SRUC’s ethical 

review body. All routine animal management procedures were adhered to by trained staff. 

Experimental procedure 

The experiment was a 4 x 4 x 4 factorial design (batch x device x bird type + age). Ten birds 

per bird type (+ age) were tested with each of the 4 devices (N = 160 birds). Birds were tested 

in 4 one-week batches, with birds being tested in blocks of 10 per day in order to minimise 

any effect of operator fatigue (Sparrey et al., 2014). A Graeco-Latin square was used to 

balance batch, block, bird type (+ age) and device. Within this, 4 Latin squares (1 per batch) 

were used to balance block, test order in block and bird type (+age), with the test order in 

each block then repeated until all 10 birds were tested. 

All birds were weighed and schematic measurements of the head and neck were taken 

(Figure 2). Because it is inappropriate to evaluate untested killing methods on live birds, the 

birds were sequentially euthanised by intravenous sodium pentobarbital injection (Euthatal, 

Merial Animal Health Ltd., Essex, UK) via the brachial vein immediately prior to device 

testing in order to minimise blood coagulation and morphological changes (Gordon et al., 

1988; Bell et al., 1996).  

Four mechanical poultry killing devices: modified Armadillo (MARM), modified 

Rabbit Zinger (MZIN), modified pliers (MPLI) and a novel mechanical cervical dislocation 

gloved device (NMCD) were assessed for their killing potential in cadaver birds (four bird 

type and age combinations). All methods developed are discussed in detail in Martin (2015) 

and were designed to comply with the current European legislation, EC1099/2009 (European 

Figure 2 near here  



Council, 2009). The Armadillo (Figure 1a) is a brain-stem penetrating device designed by a 

veterinarian to dispatch game birds in the field (Sparrey et al., 2014; Martin, 2015). The 

device consists of a scissor-type mechanism (approximately 17 cm in length); the bird’s head 

is placed into the ‘cup’ of the lower arm (beak facing downwards) and when ready to apply 

the operator squeezes the handles together, which pushes the top arm (and the penetrating 

spike) downwards into the back of the bird’s skull, preferably through the foramen magnum, 

therefore severing the top of the spinal cord (or brain stem), and causing death by cerebral 

ischaemia. There is at present no published scientific evidence on the efficacy of this device. 

Modifications (with the permission of the inventor) consisted of replacing the lower arm of 

the device in order to increase the upper (U) (33 mm to 37 mm) and lower (L) (19 mm to 27 

mm) diameters of the openings of the metal cup, based on pilot work demonstrating the need 

for more space to encompass chicken heads. Additional insertion cups were moulded from 1 

mm thick plastic funnels, in order to generate two adjustments (G1, G2) to fit the various 

sizes of birds’ heads, based on bird type and age (G1: U = 36 mm and L = 23 mm (broiler, 

layer hen); G2: U = 30 mm and L = 18 mm (layer pullets, broiler chicks)). The additional 

cups had soft padding (Waxman 4719095N ½ inch Self Stick Felt Pads, Waxman, Ohio, 

United States) added around the sides, which cushioned the lateral sides of the bird’s head 

(over the eyes) as well as creating an oval shape for the upper opening.  

The Rabbit Zinger (Pizzurro, 2009a,b) is a penetrating captive-bolt device originally 

designed to kill rabbits (Figure 1b). It uses the stored energy in rubber tubes to drive a 

penetrating bolt into the animal’s head, causing death by extensive irreversible brain damage 

(DEFRA, 2014; Martin, 2015). The device was modified with permission of the original 

designer in order to adapt it to the new target species (poultry), however the original function 

and bolt mechanism of the device was retainelue Power Tubes (Pizzurro, 2009a) were used, 

which require 177 N to pull the bolt into the cocked position (Sparrey et al., 2014; Martin et 



al., 2016) and when fired the bolt (0.6 mm diameter) delivered approximately 11.87 J of 

kinetic energy. The modifications have been described previously (Martin, 2015; Martin et 

al., 2016), and consisted of three aluminium appendages added to the base of the device to 

provide a method of gently restraining the bird’s head: two rested either side of the bird’s 

head (over the ears, or auricular feathers) and the third ran down the front of the bird’s face 

between the eyes and over the nostrils and beak. Additional leather washers (Pizzurro, 

2009a,b) were added to the bolt, in order to reduce the penetration depth from 3.5 to 2.5 cm. 

The MZIN device was also weighted at the bottom in order to counteract the top-heaviness of 

the device when cocked. 

 ‘Semark’ pliers (also known as the ‘Humane Bird Dispatcher’) weigh approximately 

200 g and have an overall length of 180 mm. When the blades of the device are fully open the 

maximum distance between the upper and lower teeth is 36 mm. When the blades are fully 

closed there is a slight gap between the blades (<1 mm). The pliers were modified (MPLI) in 

an attempt to reduce reported crushing injury (DEFRA, 2014) by adapting the shape and 

width of the blades in order to create a narrower, curved concave edge rather than a straight 

edge (Martin, 2015). The edges of the blades remained blunt in order to reduce the risk of 

skin tearing and thus blood loss during application of the method. It was hypothesised that by 

narrowing the edge of the blade it would reduce the risk of crushing and would instead 

increase the likelihood of dislocation, as the narrower blade would more easily slip between 

two cervical vertebra when force was applied. The blades were widened gradually to increase 

the size of the blade (over 3 mm) and therefore generate a dislocation (a gap between the two 

vertebra), by pushing the vertebrae apart. 

The NMCD device (Figure 1d) was designed to create a mechanical method for 

cervical dislocation which mirrored the technique of the manual method (described in Martin, 

2015; Martin et al., 2016). It consisted of a thin supportive glove (SHOWA 370 Multipurpose 



Stable Glove, UK) designed to support the wrist and hand (and hypothesised to reduce strain 

injury in the operator) and a moveable metal insert. The metal insert consisted of two metal 

finger supports that were designed to fit around the bird’s head to create a secure grip, and to 

move independently from side-to-side in order to allow adjustment for different sizes of birds 

(Figure 1d). The rounded shape of the metal fingers was designed to aid the twisting motion 

(performed during manual cervical dislocation (Sparrey et al., 2014; Martin et al., 2016)) 

required to dislocate the bird’s neck by enhancing the ‘rolling action’ of the hand. The blunt 

edge between the two metal fingers (protruding < 1 mm from the fleshy area of skin between 

the index and middle fingers) provided a hard edge to force between the back of the bird’s 

head and the top of the neck, designed to direct the force into the desired area (a dislocation 

at C0–C1) when the method was applied. 

After device application, cadavers were immediately examined post-mortem in order 

to establish as accurately as possible the anatomical damage caused by the device. Specific 

post-mortem measures were recorded for each killing device, because their target anatomical 

areas were different. For all killing devices, binary measures (yes/no) were recorded for skin 

broken, external blood loss and subcutaneous haematoma and the total number of attempts 

were recorded (multiple pulls for NMCD or misfire of MZIN). For the MZIN and MARM, 7 

specific measures were recorded: binary measures of damage to the skull, specific brain 

regions (left forebrain, right forebrain, cerebellum, midbrain and brainstem); and the presence 

of an internal brain cavity haematoma. For killing devices which caused trauma to the neck of 

the bird (NMCD and MPLI), 7 specific post-mortem measures were assessed including 4 

binary measures (dislocation of the neck, vertebral damage (intra-vertebra dislocation/break), 

damage to neck muscle, crushing injury to the trachea or oesophagus and whether the spinal 

cord was severed). The level of cervical dislocation was also recorded (between C0-C1, C1-



C2, C2-C3, etc.). The number of carotid arteries severed was also recorded as zero, one or 

both.  

Derived kill potential and device success 

From the post-mortem evaluations two further binary (yes/no) measures were derived: kill 

potential and device success. Kill potential was defined as the cadaver exhibiting sufficient 

damage to any part of the anatomy which would have resulted in death (if the bird had been 

alive at testing) following one attempt. For example, this was confirmed dislocation of the 

neck and severing of the spinal cord for NMCD and MPLI (Gregory and Wotton, 1990; 

Erasmus et al., 2010a; Bader et al., 2014); and diffuse brain damage for the MARM and 

MZIN (Finnie et al., 2000; 2002; Limon et al., 2010) after one attempt.  

Device success was defined as when the device caused the desired anatomical 

damage, dictated by its hypothesised design, as well as producing sufficient damage which 

would have resulted in death (had the bird been alive at testing) and, based on scientific 

evidence, would be most likely to minimise time to unconsciousness post device application. 

Device success criteria were device specific and are described in Table 2.  

Statistical analysis 

All data were summarised in Microsoft Excel (2010) spread sheets and analysed using 

Genstat (14th Edition). Statistical significance was based on F statistics and P < 0.05 

significance level. Summary graphs and statistics were produced at bird and treatment level. 

Generalised Linear Mixed Models (GLMM) (binomial distribution) were used to compare 

performance across the 4 devices in terms of kill potential and device success, while 

incorporating bird type, age, and block as fixed effects and bird weight head measurements as 

covariates. Batch was included as a random effect. Detailed comparisons of device 

performance were achieved by sub setting the data twice: initially to remove unsuccessfully 

“killed” birds (that is, kill potential “no”) in order to prevent data skewing; and then into two 

Table 2 near here  



groups dependent on trauma area: 1) neck trauma (NMCD and MPLI); and 2) head trauma 

(MZIN and MARM), in order to allow logical comparison between killing treatments which 

damaged the neck or the head. Statistical comparisons on anatomical measures were 

conducted via GLMMs (Poisson distribution and binomial distribution) or Linear Mixed 

Models (LLM) (normal distribution) dependent on the data distributions for each variable. 

Data transformations were performed when necessary via Logarithm function. All models 

included batch number as random effects. All fixed effects were treated as factors and classed 

as categorical classifications and all interactions between factors were included in maximal 

models. 

 

RESULTS 

A total of 36 birds were not successfully “killed” on the first attempt (NMCD = 0/40 birds; 

MPLI = 15/40 birds; MARM = 15/40 birds; and MZIN = 6/40 birds). Device had an effect on 

kill potential (F(3,144) = 2.88, P = 0.038), with NMCD having the highest kill potential, with 

100% of birds sustaining the required physical trauma to have caused death (Figure 3). The 

MARM and MPLI had the lowest kill potential, both achieving 62.5%. Bird age was the only 

other factor to affect kill potential (F(1,144) = 5.15, P = 0.025), with younger birds being more 

likely to sustain the required physiological trauma to have resulted in death (mean = 0.87 ± 

0.04), compared to older birds (mean = 0.68 ± 0.05). All other factors (bird weight, type and 

head measures) and their interactions had no effect on kill potential. 

Device success was affected by killing device (F(3,144) = 7.00, P < 0.001), with 

NMCD most likely to perform in the desired way and producing optimal damage (Figure 3). 

Like kill potential, bird age affected device success (F(1,144) = 5.03, P = 0.026), with younger 

birds (mean = 0.69 ± 0.05) being more likely to sustain optimal anatomical damage compared 
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to older birds (mean = 0.53 ± 0.06). All other factors and their interactions had no effect on 

device success. 

Percussive methods 

For successfully killed birds (MARM = 25/40 birds; and MZIN = 34/40 birds), the 

percentage of birds for which the relevant head trauma post mortem factor was present, 

according to killing method, is shown in Table 3. Killing device had no effect on the majority 

of post-mortem measures, apart from damage to left forebrain, mid brain, and brain stem. The 

MZIN was significantly more likely to cause trauma to the left forebrain and the mid brain 

compared to the MARM, however, the opposite was seen for the brain stem, with very few 

MZIN birds sustaining damage compared to the MARM. No other factor or interaction 

affected external bleeding, skin tearing, subcutaneous haematoma, or whether or not the skull 

was damaged. Bird type, bird age, bird weight and their interactions with killing method had 

no effect on damage to any region of the brain.  

Cervical dislocation methods 

For successfully killed birds (MPLI = 25/40 birds; NMCD = 40/40 birds), the percentage of 

birds for which the relevant neck trauma post mortem factor was present, according to killing 

method, is shown in Table 4. Numerically, MPLI was more likely to tear the skin, cause 

external bleeding, vertebral damage, trachea damage, and oesophagus damage compared to 

NMCD, but the differences were not significant. NMCD was more likely to cause cervical 

dislocation, as well as severing one or more carotid arteries compared to MPLI (Figure 4). 

However, the location of the dislocation (C0-C1, C1-C2, etc.) was not significantly affected 

by killing method (F3,74 = 2.34, P = 0.076), although there was a tendency (P < 0.10), for 

NMCD to be more likely to cause a higher level dislocation compared to MPLI (Figure 5).  

Whether or not cervical dislocation (no = 0; yes = 1) occurred was significantly 

affected by bird type (F1,74 = 5.98, P = 0.014) and bird age (F1,74 = 6.39, P = 0.011), with 

Table 3 near here  



dislocations more likely to occur in broilers (mean = 0.95 ± 0.05) rather than layers (mean = 

0.55 ± 0.11), and younger birds (mean = 0.90 ± 0.07) compared to older birds (mean = 0.60 ± 

0.11). The diameter of the birds’ necks (N1) (F1,74 = 4.00, P = 0.050) also had an effect with 

unsuccessful dislocations associated with larger neck diameters (17.1±1.09 mm) compared to 

successful dislocations (14.9±0.51 mm). Bird type had an effect on the likelihood of vertebral 

damage (no = 0; yes = 1), with layers (mean = 0.75 ± 0.10) more likely to sustain damage 

than broilers (mean = 0.35 ± 0.11). No other factors or interactions, apart from killing method 

(reported above) had an effect on vertebral damage. 

Bird type, bird age, and bird weight and their interactions with killing device had no 

effect on skin tearing, external bleeding, subcutaneous, haematoma, trachea damage, 

oesophagus damage, number of carotid arteries severed, dislocation level, and dislocation 

level. The neck diameter of the birds (N1) had a tendency to affect the number of carotid 

arteries severed (F1,74 = 3.31, P = 0.074), with a significant negative correlation (r = -0.382, 

P = 0.047). 

 

DISCUSSION 

The results of this experiment provide useful data to allow evaluation of the killing potential 

of 4 untried novel percussive and mechanical cervical dislocation methods for chickens. The 

devices had been designed and prototyped with the aim to cause rapid loss of consciousness 

and brain death in order to be effective and humane. The NMCD device was shown to have 

the highest killing potential (100%), however, all devices achieved a killing potential of over 

60%. NMCD was also shown to have the highest device success (90%), demonstrating its 

consistency in achieving optimal damage to the cadavers, irrespective of bird type. Device 

success was always lower than the killing potential for each method because it was a more 

specific measure. The difference between killing potential and device success was 
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approximately 10% for NMCD, MZIN and MARM, demonstrating that these methods were 

not always performing optimally, which could have welfare implications. For NMCD, the 

primary reason for this difference was the number of carotid arteries severed, as on occasion 

only one was severed, and some birds exhibited a lower dislocation level than C0-C1. In the 

case of MZIN, the few failures in device success were due to only one region of the brain 

being damaged or only minor damage to all regions (such as internal brain cavity bleeding 

and bruising). Failures in device success with the MARM were primarily due to the spike not 

penetrating to an adequate depth to cause complete severing of the brain stem, as well as 

some issues with the ability to aim the device easily, and the spike not penetrating the brain 

stem, but instead the cerebellum. In terms of brain trauma, this could reduce the chance of 

neurogenic shock and extend the time to loss of consciousness and brain death (Freeman and 

Wright, 1953; White and Krause, 1993; Alexander, 1995; Dumont et al., 2001), but it did not 

appear to affect the inferred kill potential (that is, the damage would still be fatal). 

The MARM and MPLI had the lowest kill potential at 62.5%, however the MPLI had 

significantly lower device success (27.5%) than its killing potential. This was primarily 

because more than 50% of birds showed vertebral damage, failure of dislocation and trachea 

damage, which was indicative of severe crushing injury and inference of causing death by 

asphyxiation, which is a serious welfare concern (Gregory and Wotton, 1990; Sharma et al., 

2005; Salim et al., 2006; Erasmus et al., 2010a). 

Post-mortem measures for the neck trauma methods highlighted that the MPLI caused 

numerically more instances (though not significant) of cause skin tears and external bleeding, 

which could be considered a practical issue in a commercial environment due to biosecurity, 

human health and safety as well as being visually un-appealing (Kingsten et al., 2005; 

Halvorson and Hueston, 2006; Gerritzen and Raj, 2009). The MPLI, designed to dislocate the 

cervical vertebrae, only caused dislocation 45% of the time and caused crushing injury to the 



trachea as well as to the oesophagus. The injuries sustained, as well as the pressure applied by 

the blades, would still be fatal, but would not necessarily cause death by cerebral ischaemia, 

which is the intended outcome (Veras et al., 2000; Harrop et al., 2001; Bader et al., 2014). 

The primary concern with MPLI was that, despite the modifications, it was not performing in 

the desired way, indicating that it was not a reliable method. 

Both the MARM and MZIN always caused penetration of the skin and damage to the 

skull and the majority of birds bled into the external environment. There were significant 

differences in the areas of the brain damaged by the two devices, but they were designed to 

perform differently. With the MZIN, more than 60% of all birds received damage to the main 

areas of the brain (excluding the brain stem), demonstrating diffuse damage which the device 

is designed to cause in order to cause concussion and brain death (Oppenheimer, 1968; 

Alexander, 1995; Finnie et al., 2000). The MZIN showed higher killing potential than the 

unmodified Rabbit Zinger, which had previously been reported to have a kill success rate of 

50% in poultry (DEFRA, 2014). The MARM caused focalised damage to the brain stem and 

cerebellum, highlighting that the modifications to the MARM had successfully adapted its 

design to more adequately fit poultry. Such damage to the brain stem theoretically would 

result in fatal functional impairment (such as the puntilla method as described in Limon et al., 

2009; 2010) (Widjicks, 1995; Morzel et al., 2002; HSA, 2004). The unmodified Armadillo 

was tested previously (DEFRA, 2014), and had a low kill success of 46%, therefore the 

higher kill potential could be attributed to the modifications or that the killing potential was 

tested on cadavers, which are easier to handle, improving application of the method. The 

increase in success in the MZIN could be attributed to the same reasons. 

Other bird factors were shown to affect some post-mortem measures (dislocation 

level, vertebral damage), kill potential and device success, demonstrating inconsistency 

dependent on the target species, although their influence was more pronounced with the 



cervical dislocation methods than the head trauma methods. Bird age affected both killing 

potential and device success, in both cases revealing that it was easier to cause anatomical 

trauma to younger birds and therefore easier to achieve a reliable kill. Young birds are less 

anatomically mature, and therefore bones and cartilage are less calcified and reinforced, as 

well as connective tissue being less fibrous, making dislocation and damage to the skull 

easier to achieve (Sharma et al., 2005; Comi et al., 2009). However, in terms of neck muscle 

and arterial tissue, aging can have a detrimental effect, with reduced elasticity in arterial walls 

and skeletal muscle, reducing stretching potential, therefore carotid arteries and neck muscle 

are more likely to tear when under strain (Benetos et al., 1993; Nair, 2005). However, this 

needs to be considered in context of the size of the birds; smaller birds have less stretch 

potential than larger birds, therefore despite the increased elasticity, the magnitude of the 

stretch required to dislocate and tear should counteract this effect. In general, cervical 

dislocation was easier in broilers and younger birds, although these factors are confounded, 

as by definition broilers at both ages tested were immature compared to layer strains. The 

diameter of the neck also affected dislocation potential, with smaller necks (younger birds) 

being easier to dislocate than larger necks (older birds). When considering vertebral damage, 

layers were more likely to receive damage, but again bird type was confounded with age, 

with laying hens being older than any other bird group. The increased likelihood of vertebral 

damage could also be attributed to brittle bones in the laying hens (Whitehead and Fleming, 

2000). All other external factors had no effect on the post-mortem measures associated with 

brain trauma methods, indicating that these methods are less susceptible to inconsistency as 

when applied to various types, size and age of birds. However, this has to be taken within the 

context that both of the brain trauma methods: MZIN and MARM had killing potentials of 

84.2% and 62.5% respectively, both of which highlight issues with reliability. 



This study provides a general assessment of novel and modified devices for killing 

poultry on-farm, and the results demonstrate their killing potential. Three of the mechanical 

methods: NMCD, MARM and MZIN demonstrated killing potential, as well as consistency 

in their physical effects. Device success rates of over 50% demonstrated that more than half 

the time the devices performed optimally. In future studies, more detailed assessment of post-

mortem evaluations would be desirable, for example, skull damage location and size of 

dislocation (measurement of gap between two dislocated vertebrae), in order to further 

establish the effects on anatomy and more accurately infer time to unconsciousness and brain 

death in live birds. The MPLI was inconsistent, and had a low device success of 27.5%, 

despite matching killing potential with the MARM. The abundant evidence of crushing injury 

in >50% of birds was also a major concern, especially as the new European legislation on the 

Protection of Animals at the Time of Killing bans by their omission, the use of any method 

which demonstrates death by crushing to the neck (European Council, 2009). Thus, MPLI are 

not recommended as a humane on-farm killing device for chickens. The performance of the 

remaining three devices (NMCD, MZIN, MPLI) will be further assessed in live birds in order 

to establish their potential to provide a new humane method for despatching poultry on-farm. 
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FIGURE LEGENDS 

 

 

 

Figure 1. Photographs of tested devices: a) Armadillo®, b) Rabbit ZingerTM, c) ‘Semark’ 

pliers, and d) the Novel mechanical cervical dislocation gloved device. 

  



 

Figure 2. Schematic showing head and neck measures: A = width of head; B = lower 

mandible to top of skull; D = width of base of beak; E = base of skull to front of beak; F = 

width of beak at central nostril level; G = depth of beak; and N1 = width of neck. 

  



 

Figure 3. Summary of kill potential and device success rates (%) across the 4 killing devices. 

No common lettering indicates a significant difference between the groups. 
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Figure 4. Percentage of birds by the number of carotid arteries severed dependent on killing 

method. No common lettering indicates a significant difference between the groups. 
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Figure 5. Distribution of birds by the various dislocation levels in relation to killing method. 

 

Table 1.  Accommodation and bird details for each bird type and age group 

Bird group  N Mean bird age at 
killing (d) 

Mean bird weight 
at killing (kg) 

Housed stocking 
density (kg/m2) 

Layer pullets 40 73.5 ± 0.2 0.8 ± 0.1 2.3  
Layer hens 40 487.9 ± 0.9 1.8 ± 0.1 4.8  
Broiler chicks 40 22.4 ± 0.1 0.7 ± 0.2 1.9  
Broiler (slaughter age)  40 37.1 ± 0.6 1.9 ± 0.7 5.1  
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Table 2.  Device success criteria for each killing device 

Device Device success criteria 
MARM • Spike penetrates through foramen magnum of the skull 

• Severing of brain stem 
MZIN • Skull is penetrated and damaged 

• Severe damage to a minimum of one area of the brain 
MPLI • Complete cervical dislocation at C0-C1 

• Severing of the top of the spinal cord (i.e. brain stem) 
• Severing of both carotid arteries 
• No breakage to the skin  
• No crushing injury to the trachea or oesophagus 

NMCD • Complete cervical dislocation at C0-C1 
• Severing of the top of the spinal cord (i.e. brain stem) 
• Severing of both carotid arteries 
• No breakage to the skin  

 

Poultry killing devices: modified Armadillo® (MARM), modified Rabbit ZingerTM (MZIN), 
modified pliers (MPLI) and a novel mechanical cervical dislocation gloved device (NMCD).



Table 3.   Percentage of birds killed successfully for which the relevant head trauma post 

mortem factor was present, according to killing method. Significant P values are underlined 

Post mortem measure 
Percentage of birds 

F statistic P valueMZIN MARM 
Skin broken 100.0 100.0 0.03 0.993
External bleeding 96.7 88.0 1.44 0.264
Subcutaneous haematoma 100.0 92.0 1.44 0.234
Skull damage 100.0 100.0 0.06 0.982
Left forebrain damage 62.5 0.0 5.81 0.029
Right forebrain damage 65.6 0.0 4.70 0.994
Cerebellum damage 65.6 64.0 0.00 0.998
Midbrain damage 84.4 0.0 5.80 0.013
Brain stem damage 31.3 92.0 5.10 0.034

 

Poultry killing devices: modified Armadillo® (MARM) and modified Rabbit ZingerTM. 

  



 

Table 4.   Percentage of birds killed successfully for which the relevant neck trauma post 

mortem factor was present, according to killing method. Significant P values are underlined 

Post mortem measure 
Percentage of birds F statistic P value
NMCD MPLI  

Skin broken 7.5 20.0 0.32 0.570
External bleeding 2.5 7.5 0.06 0.805
Subcutaneous haematoma 100.0 72.5 0.00 0.994
Cervical dislocation 100.0 45.0 11.86 <0.001
Vertebral damage 5.0 55.0 3.26 0.071
≥1 carotid artery severed  95.0 15.0 6.34 0.012
Trachea damage 0.0 52.5 3.41 0.059
Oesophagus damage 0.0 12.5 0.13 0.870
Spinal cord severed 100.0 67.5 0.00 0.998
 

Poultry killing devices: modified pliers (MPLI) and a novel mechanical cervical dislocation 
gloved device (NMCD). 

 

 




