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Abstract

IL-7 is a critical cytokine for lymphocyte development. Recent work has highlighted critical roles for IL-7 signaling in mature
T cell homeostasis and function, but its role in B cells is less well characterized. Using a knock-in mouse possessing a Tyr to
Phe mutation at position 449 (IL-7Ra449F/449F mice) within the cytoplasmic SH2-binding motif of IL-7Ra, we evaluated the
role of IL-7Ra Y449 motif in spleen B cells. IL-7Ra449F/449F mice had reduced numbers and increased death of follicular B cells
compared to WT, but had significantly more follicular cells than IL-7Ra2/2. The death of IL-7Ra449F/449F follicular cells was
not due to a failure to respond to BAFF or lower levels of BAFF, a critical B cell survival factor. Marginal zone B cells were
unaffected by the IL-7Ra449F/449F mutation. Any role for TSLP was ruled out, as TSLPR2/2 mice had an identical B cell
phenotype to wild-type mice. Bone marrow chimeras and the absence of IL-7Ra on B cells suggested that IL-7 did not
directly regulate mature B cells, but that an IL-7-responsive cell was influencing B cells. IL-7 was also critical at the
checkpoint between the T1 and T2 stages in the spleen. IL-7Ra2/2 mice fail to develop T2 cells, but IL-7Ra449F/449F show a
reduction compared to WT but not complete absence of T2 cells. We also tested the functional responses of IL-7Ra449F/449F

to antigens and infection and found no difference in antibody responses to T-dependent or T-independent antigens, or to
Influenza/A. IL-7 was important for generation of antibody responses to the intestinal worm H. polygyrus and for naive levels
of IgA. Taken together, this suggests that IL-7 regulates follicular B cell numbers and survival in a cell-extrinsic manner, via a
bone-marrow derived cell, but is not critical for antibody production outside the gut.
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Introduction

B cells are essential for the generation of antibody responses to

pathogens. IL-7Ra detects two key cytokines, interleukin-7 (IL-7)

and thymic stromal lymphopoietin (TSLP), which have been

previously shown to regulate B cell development. IL-7Ra2/2 mice

possess very few mature T or B cells, which has limited the analysis

of the role of IL-7Ra in periphery. Here, we present work using

mutant mice to analyze the role of IL-7Ra in peripheral B cell

function and homeostasis.

Two main B cell lineages are found in the peripheral immune

system, B1 and B2 B cells [1]. B2 cells are found in secondary

lymphoid organs [2] and are further divided in the spleen by their

anatomical location and phenotype. Follicular (FO) B cells exist in

the follicular regions of the spleen, respond to T-dependent

antigens and form germinal centers for the production of high-

affinity antibody. Marginal zone (MZ) B cells are found in the

regions surrounding the follicles, respond to T-independent type II

antigens and rarely form germinal centers [3].

IL-7 is detected by the IL-7Ra-cc complex, whereas TSLP is

detected by IL-7Ra-TSLPR. Despite the fact neither IL-7Ra nor

TSLPR are expressed on peripheral resting B cells, generation of

B2 lineages is dependent on IL-7, as in the absence of IL-7 or IL-

7Ra signals, few follicular or marginal zone cells develop [4,5].

The development of the remaining cells may be dependent on

Flt3-L or TSLP[6,7]. The remaining B2 cells in IL-7Ra2/2 and

IL-72/2 mice have a marginal zone phenotype but are not able to

respond to T-independent type II immunization [8]. The role of

IL-7 and IL-7Ra in the generation of B1 cells is still unclear; IL-

7Ra2/2 mice have been reported to lack B1 cells [4], whereas IL-

72/2 do not [5], potentially leaving a role for TSLP. Over-

expression of IL-7 [9] or TSLP [10] has been previously shown to

result in expansion of the follicular B cell population.

Three conserved tyrosines in the cytoplasmic domain of IL-7Ra
are found in all mammals. Tyr449 is part of an YVTM signaling

motif, which is thought to bind STAT5 and the regulatory subunits

of class IA PI3K. We previously generated IL-7Ra449F/449F mice

[11], which possess a point mutation that blocks signaling through
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the Tyr449 motif. We have shown that the IL-7Ra449F/449F

mutation causes loss of phosphorylation of STAT5 in T and early B

cells [11,12], as well as blocked development of T cells in the thymus

and homeostasis in peripheral organs [11,13]. The role of IL-7Ra
Tyr449 has previously been investigated using chimeric receptors in

bone marrow B cell culture, but this has not been assessed in vivo, nor

with an intact receptor [14].

Although not the focus of this study, we have previously

examined bone marrow B cell development in IL-7Ra449F/449F

mice. IL-7Ra449F/449F and IL-7Ra2/2 mice show reduced

immature IgM+IgD2 bone marrow cells. Throughout develop-

ment, IL-7Ra449F/449F and IL-7Ra2/2 mice have a similar

phenotype, suggesting that Tyr449 is the key signaling residue for

the development of bone marrow B cells.

IL-7 is critical for the generation of B cells in the bone marrow,

but its role in the development and function of peripheral B cells is

less clear, in part due to the severe phenotype seen in IL-72/2 and

IL-7Ra2/2 mice. The IL-7Ra449F/449F mouse permits analysis of

the function of IL-7 signaling without completely removing the

receptor. Here, we investigate the role of the IL-7Ra Tyr449 motif

in the development, homeostasis and function of peripheral B cells.

We show that follicular B cell development and survival are

regulated in a cell-extrinsic manner dependent on IL-7Ra Tyr449

signaling. However, primary antibody responses are not defective

to the majority of antigens, with the exception of the response to

H. polygyrus in the gut.

Materials and Methods

Mice
All mice were maintained in the Centre for Disease Modeling at

UBC with full ethical and procedural approval from the University

of British Columbia Animal Care and Biosafety Committee

(Protocols A07-0115, A12-0118 and A12-0119). All work was

carried out according to institutional guidelines. All efforts were

made to minimize suffering, with minimally invasive procedures.

IL-7Ra449F/449F mice were previously generated by introducing a

point mutation into the endogenous IL-7Ra gene and were

backcrossed to C57BL/6 for 15 generations. All mice were bred

on site and maintained under identical conditions. TSLPR2/2

mice were obtained from Dr James Ihle, transgenic IL-7 [15] and

IL-7Ra2/2 (B6.129S7-Il7rtm1Imx/J), BoyJ (B6.SJL-Ptprca Pepcb/

BoyJ), Rag12/2 (B6.129S7-Rag1tm1Mom/J) were purchased from

Jackson Laboratories.

Flow cytometry
2-106106 cells were stained for 30 minutes on ice with

antibodies detailed in Table S1. For intracellular staining,

surface-stained cells were fixed and permeabilized using Foxp3

fix/perm kit (eBioscience) for 16 hours and then stained with

intracellular antibodies. Samples were acquired on a LSRII or

FACSCanto with 405 nm, 488 nm, 561 nm and 633 nm lasers.

For flow-sorting experiments, cells were labeled with antibody

cocktails, in some cases depleted of FITC-conjugated cells using

anti-FITC beads and an AutoMacs (Miltenyi Biotech) and then

flow-sorted using either FacsAria IIu or Influx machines (Becton-

Dickinson). Analysis was carried out using Flowjo (Treestar,

Ashland, Oregon), Excel and Prism.

Caspase 3/7 activation assessment
Single-cell preparations of spleen cells were incubated for

30 mins at 37uC with 1:10 dilution of CellEvent Caspase-3/7

reagent (Invitrogen). Cells were then washed, placed on ice and

labeled with antibodies as above.

Bone-Marrow Chimeras
Rag12/2BoyJ mice (CD45.1+) were irradiated with two doses of

6.5 gy four hours apart. Twenty-four hours after irradiation, mice

were injected via the tail vein with 56106 total bone marrow cells.

Mice were then maintained on 2 mgml21 Neomycin for two

weeks after irradiation. The mice were then left for six to eight

weeks to reconstitute, and then analyzed.

Real-time PCR
Cells were placed into Trizol (Invitrogen) and RNA purified as

specified previously. Complementary DNA was then made from

total RNA using Superscript III (Invitrogen) or Maxima (Thermo)

cDNA synthesis kits. Real-time PCR was then performed using

Ssofast EvaGreen mastermix (Biorad), CFX96 PCR machine.

Primers used: Rps29-Fwd: ACGGTCTGATCCGCAAATAC

Rps29-Rev CATGATCGGTTCCACTTGGT; Dtx1-Fwd GTG-

CCCTACATCATCGACCT Dtx1-Rev CCGACGATGGATC-

GTAGAAG Dtx2 Fwd GACTCAGTTTCGCCAGAACA Dtx2-

Rev GCTACCCAGGATCCGTCAT. Primers for Notch2, Jag1,

Jag2 and Dll1 were taken from Gazit et al [16]. Cycling conditions

were: 95uC 2 mins followed by 40 cycles of 95uC for 10 sec and

60uC for 15 sec. Finally, a melt curve was performed to check for

presence of a single product from each reaction. Expression level

of genes-of-interest were then compared to expression of ribosomal

protein RPS29.

Infection and Immunization
Mice were immunized with either 100 mgml21 NP-KLH

absorbed onto alum i.p., 50 mgml21 NP-LPS i.p. (both Biosearch

Technologies). For influenza experiments, mice were infected with

with 5 HAU of Influenza A PR8 i.n. as described previously[17].

Mice were inoculated by gavage with 200 Heligmosomoides polygyrus

bakeri infective third-stage larvae, as described [18,19]. Mice were

euthanized after 14 days (NP-KLH, NP-LPS or Influenza) or 21

days (H. polygyrus) and blood taken by cardiac puncture. BAL was

obtained by flushing the lungs of mice with 1 ml PBS.

Antibody Levels
Antibody levels in sera and BAL were detected by ELISA.

Briefly, plates were coated with antigen or anti-mouse pan-Ig

antibody and then serial dilutions of serum or BAL fluid added to

the plates. The bound antibody was then detected using a SBA

Clonotyping System-B6/C57J-HRP kit (Southern Biotech) and

ABTS reagent (Sigma-Aldrich). We then calculated the dilution of

serum or BAL which gave 50% of the maximal responses using

GraphPad.

Flu-specific antibodies were coating a plate with 500 HAU ml21

heat-killed Influenza A PR8; NP-specific responses were detected

using NP-BSA (Biosearch) coated plates. HES-specific responses

were detected by coating a plate with 1 mgml21 HES (a kind gift of

Rick Maizels, Edinburgh, UK).

BAFF serum levels
BAFF serum levels were assessed using the Mouse BAFF/

BLyS/TNFSF13B Quantikine ELISA Kit (R&D Systems), and

concentrations obtained by comparing to a standard curve.

Microscopy
Spleens were embedded in OCT, frozen and 7 mm sections

were taken. Sections were then stained with anti-B220, anti-IgM

and anti-IgD, and analyzed on an Olympus Fluoview FV1000

microscope.

IL-7Ra Tyr449 Regulates Follicular B Cells

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88771



Results

IL-7 controls the number of follicular B cells in the spleen
To examine the role of IL-7 signaling in generating peripheral B

cells, we decided to examine splenic B cells under conditions of

limited IL-7Ra signaling. Total numbers of splenocytes as well as

live B cells, based on their expression of B220 and CD19, were

reduced in IL-7Ra449F/449F and IL-7Ra2/2 mice, suggesting that

IL-7Ra signaling plays a critical role in the development of

peripheral B cells (Figure 1A, 1B). Heterozygous IL-7RaWT/449F

had similar numbers of B cells to IL-7Ra449F/449F mice, suggesting

that lacking a single functional copy of IL-7Ra Tyr449 prevents

normal B cell numbers. We then examined the two main B2

subsets in the spleen, follicular and marginal zone B cells, given the

previously reported differences in FO and MZ cells numbers in

mice which overexpress IL-7 [9]. We confirmed that IL-7Ra2/2

mice had severely reduced follicular and marginal zone cells; the

small number of cells which remained in these mice mostly

possessed a marginal zone phenotype (CD21hiCD23lo), although

there were smaller populations of follicular (CD23+CD21+) and

CD232CD212 cells. However, unlike IL-7Ra2/2, IL-7Ra449F/

449F mice had normal numbers of marginal zone cells, but reduced

follicular B cells compared to WT, suggesting that signals

downstream of the IL-7Ra Tyr449 influenced the numbers of

follicular B cells but were dispensable for marginal zone B cells

(Figure 1A, 1C).

We then tested if increasing the level of IL-7Ra signaling by

over-expression of IL-7 results resulted in more follicular B cells.

We examined B cell populations in IL-7-overexpressing transgenic

mice (Tg IL-7) and, confirming previous observations [9], found

increased numbers of follicular and similar levels of marginal zone

B cells to wild-type mice. To then examine if increasing IL-7 can

rescue the phenotype of the IL-7Ra449F/449F mice, we crossed

them to generate IL-7Ra449F/449F Tg IL-7 mice. Transgenic over-

expression of IL-7 could not rescue the phenotype of reduced

follicular cells seen in IL-7Ra449F/449F mice, which suggested that

Tyr449 was required for the maintenance of follicular B cell

numbers (Figure 1D).

As IL-7Ra can bind both IL-7 and TSLP, we used TSLPR2/2

mice to examine which was the key cytokine for follicular B cell

numbers. TSLPR2/2 showed similar follicular and marginal zone

levels to WT mice, suggesting that TSLP did not play a role in this

process (Figure 1E). IL-7Ra449F/449F TSLPR2/2 also did not

show any difference in the number of follicular nor marginal zone

B cells compared to IL-7Ra449F/449F, suggesting that even in the

absence of normal IL-7 signals, TSLP cannot compensate

(Figure 1F). This suggests that IL-7 was the key cytokine for

follicular B cell numbers, not TLSP.

These experiments suggested that IL-7 had control of the

number of follicular B cells in mice. Increasing IL-7 levels resulted

in increased numbers of follicular cells while reduced IL-7Ra
signaling resulted in fewer follicular B cells. However, IL-7 Tyr449

dependent signaling was not required for marginal zone B cells.

MZ and FO B cells are in correct physiological locations
and are phenotypically normal similar in IL-7Ra449F mice

To determine if the cells were in the correct physiological

locations, we examined the organization of the spleen. WT mice

showed a large IgD+B220+ follicular B cell compartment and a

small layer of B220+IgM+ marginal zone B cells outside that. IL-

7Ra449F/449F spleens showed a thicker marginal zone compartment

relative to the follicle, confirming the observations seen by flow

cytometry (Figure 2A). We also examined expression of IgM and

IgD by FO and MZ cells in WT and IL-7Ra449F mice. Both

marginal zone and follicular B cells show normal expression of IgM

and IgD. Within the B220+ population, we also see a reduction in

IgD+IgMlow follicular cells, and an increase in IgMhiIgDlow

marginal zone cells in IL-7Ra449F, similar to that seen by CD21-

CD23 staining (Figure 2C, compare to 1A).

IL-7 is required in non-B cells for follicular B cell
homeostasis

The reduction seen in follicular B cells could be a result of either

cell-intrinsic IL-7Ra within the B cells or due to IL-7Ra signaling

within other cells influencing the B cell population. To examine

this, we used mixed bone-marrow chimeras to examine the spleen

defect seen in IL-7Ra449F/449F mice. We transferred WT or IL-

7Ra449F/449F bone marrow to RAG12/2 mice to determine if the

FO/MZ phenotype found in the mice was dependent on

hematopoietic cells or due to defects in splenic architecture or

IL-7Ra signaling in non-bone marrow derived cells. We also

injected lethally irradiated RAG12/2 mice with a mixture of

CD45.1+ BoyJ and CD45.2+ WT or IL-7Ra449F/449F bone

marrow in a 1:9 ratio. We used a 1:9 ratio as this gave a

sufficiently large population of spleen B cells in the IL-7Ra449F/

449F mice, as IL-7Ra449F/449F precursor B cells were out-competed

by WT cells in the bone marrow (Unpublished data).

WT bone marrow transferred to RAG12/2 mice fully

reconstituted the spleen and showed similar B cell follicular-

marginal zone profile to WT mice (Figure 3A and 3C, compare to

1A). Mice which received IL-7Ra449F/449F bone marrow showed a

phenotype similar to that seen in intact IL-7Ra449F/449F mice, with

a relatively larger marginal zone and smaller follicular population

(compare 2B and 1A). This suggests that the reduction in follicular

cells in IL-7Ra449F/449F mice is due to defects within the bone

marrow derived cells, not aberrant development of spleen

architecture or IL-7Ra signaling within non-hematopoietic cells.

We then examined mixed WT:BoyJ and IL-7Ra449F/449F:BoyJ

chimeras. As expected, WT and BoyJ cells showed identical

follicular and marginal zone proportions in the CD45.1+ (BoyJ)

and CD45.2+ (WT) populations from the same mouse (Figure 3B

and 3C). Remarkably, IL-7Ra449F/449F CD45.2+ cells show an

identical FO-MZ ratio to BoyJ CD45.1+ cells from the same

mouse. This data suggests that the lack of follicular cells in IL-

7Ra449F/449F mice is due to an environmental factor outside the B

cells, and that the defect seen in IL-7Ra449F/449F mice was rescued

by the presence of WT cells. IL-7Ra449F/449F cells within the WT:

IL-7Ra449F/449F chimeras still had defective bone marrow B cell

development, which resulted in fewer cells arriving in the spleen,

but normal spleen development into FO and marginal zone cells.

We could also not find expression of IL-7Ra on any B220+CD19+

cells from either WT or IL-7Ra449F/449F mice (not shown), which

again suggests that the effects of IL-7 on B cells in the spleen were

cell-extrinsic.

The mixed BoyJ:IL-7Ra449F/449F chimeras described above

suggested that the presence of WT bone marrow derived cells

could rescue the follicular B cell phenotype seen in IL-7Ra449F/449F

mice. To further narrow the cell types which could influence the

follicular B cell numbers, we injected lethally irradiated

CD45.1+RAG12/2 mice with a mixture of CD45.1+ RAG12/2

and either CD45.2+ WT or IL-7Ra449F/449F bone marrow

(Figure 4A). RAG12/2 bone marrow was given in excess at a ratio

of either 2 or 4 RAG12/2 cells to 1 WT or to IL-7Ra449F/449F cell,

to provide a non-RAG1 dependent immune system that had the

greatest proportion of WT cells possible. This generated mice which

possess an immune system which is predominantly WT in the non-

RAG-dependent compartments (granulocytes, DC, NK etc.), but
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either WT or IL-7Ra449F/449F in the RAG-dependent (T and B) cell

compartment.

Mice which received WT and RAG12/2 bone marrow, as

expected, showed a similar B cell FO/MZ ratio to mice which

received WT bone marrow only (Figure 4B, compare to 3B). Mice

which received a mixture of IL-7Ra449F/449F and RAG12/2 bone

marrow showed similar proportions of follicular B cells and a

similar marginal zone-follicular ratio to mice which had received

only IL-7Ra449F/449F bone marrow (Figure 4B and 4C, compare

to 3B). This is in contrast to the experiments in 3A and 3B, where

WT T and B cells were present and the IL-7Ra449F/449F B cell

population showed a similar phenotype to the WT. These

experiments, taken together, suggest that a bone marrow derived,

RAG1-dependent cell is influencing follicular B cell numbers.

IL-7Ra mutant mice have fewer T2 stage cells in the
spleen

B cells undergo a series of developmental stages in the spleen

before they become follicular or marginal zone B cells. We

therefore examined if B cells in the spleens of IL-7Ra449F/449F and

IL-7Ra2/2 mice were failing to progress before reaching the

follicular and marginal zone stages. B cells arrive in the spleen

from the bone marrow as IgM+AA4.1+ immature B cells, where

they can be divided based on the expression of CD23 into T1

(IgM+CD23low) and T2 (IgM+CD23+) cells. Marginal zone and

follicular B cells are thought to differentiate from the T2 cells [20].

IL-7Ra449F/449F and IL-7Ra2/2 mice had increased proportion

of T1 cells (B220+CD19+AA4.1+IgM+CD23low; Figure 5A). How-

ever, IL-7Ra2/2 had a drastic reduction in T2 cells; IL-7Ra449F/

449F mice showed a reduction in ratio of T2 to T1 cells when

compared to WT, suggesting a clear T1-T2 defect in IL-7Ra449F/

449F and IL-7Ra2/2 mice (Figure 5B). This shows that there are

IL-7Ra Y449-independent signaling events involved in lympho-

poiesis.

We also examined T1 and T2 cells in the mixed bone marrow

chimeras described in figure 3B. Development of T1 and T2 cells

was identical in WT and IL-7Ra449F/449F cells from the same

mouse, suggesting cell-extrinsic factors regulated the development

of cells at this stage (Figure 5C).

Two major pathways govern the development and survival of

T1 and T2 cells in the spleen, Notch and BAFF [20]. BAFFR

levels on the B cells were similar on T1 and T2 cells from WT, IL-

7Ra449F/449F and IL-7Ra2/2 mice (Figure 5D). Levels of RNA

encoding Notch ligands Jagged1, Jagged2 and Delta-like-ligand 1

were equal between WT and IL-7Ra449F/449F spleens (Figure 5E);

however, levels of the negative regulator of notch signaling

Deltex1 were notably higher in T1 cells from IL-7Ra449F/449F

mice (Figure 5F). This suggests that T1 cells may have altered

Notch signaling in IL-7Ra449F/449F mice, affecting the generation

of T2 cells.

IL-7 signals control follicular, but not marginal zone, B
cell survival

To evaluate developmental progress beyond the T2 stage for the

basis of the difference in follicular B cell versus marginal zone cells

in IL-7Ra449F/449F mice, we examined cell survival. The

proportion of apoptotic (active Caspase3/7+) and dead (DAPI+)

cells were examined in WT, IL-7Ra449F/449F and IL-7Ra2/2

mice. In both IL-7Ra449F/449F and IL-7Ra2/2 mice, dead and

apoptotic cells were increased in follicular, but not marginal zone

B cells (Figure 6A and 6B).

The major B cell survival factor is BAFF [21]. Mice treated with

an anti-BAFF-R antibody show decreases in T2 cells and follicular

B cells in the spleen [22], similar to IL-7Ra449F/449F mice. We

therefore decided to study the BAFF levels and BAFFR signaling

in the WT, IL-7Ra449F/449F and IL-7Ra2/2 mice. We found

increased levels of BAFF in the serum of IL-7Ra449F/449F and even

higher amounts in IL-7Ra2/2 mice (Figure 6C), suggesting that

defect in follicular B cells was not due to absence of BAFF.

However, it remains a possibility that in the presence of adequate

levels of BAFF, IL-7Ra449F or KO cells were not responsive to

BAFF. To test this hypothesis, we then examined BAFF-reactivity

of follicular cells from WT and IL-7Ra449F/449F mice. Spleen cells

were centrifuged on Lympholyte-M to obtain live cells, and then

sorted for follicular cells. The cells were then incubated for three

days in BAFF, and then analyzed by flow cytometry for dead

DAPI+ cells (Figure 6D). Unlike ex vivo cells (Figure 6B), cultured

IL-7Ra449F/449F follicular B cells have no defect in survival

compared to WT, and respond equally well to BAFF. This

suggested that IL-7Ra449F/449F cells were able to respond normally

to BAFF, but they do not receive adequate survival signals in vivo

via a cytokine other than BAFF.

IL-7Ra is required for IgA production, but not responses
to immunization or pathogens

Having shown a defect in the number of follicular B cells in the

spleen of IL-7Ra449F/449F mice, we then examined if the B cells

from these mice were able to produce antibodies in the same levels

as WT. Resting levels of circulating antibodies in sera taken from

WT and IL-7Ra449F/449F mice were assessed by ELISA. We found

that the level of all antibody isotypes were identical between WT

and IL-7Ra449F/449F mice, with the exception of IgA (Figure 7A).

We then investigated if IgA levels were similarly decreased in the

lung, a major site of IgA function. Similar to the serum, we also

saw a clear decrease in IgA levels in washings from the lung (BAL;

broncho-alveolar lavage) in IL-7Ra449F/449F mice (Figure 7B).

This suggested that resting levels of antibodies of most isotypes

were intact in IL-7Ra449F/449F mice, with the exception of IgA.

To examine the B cell function of the IL-7Ra449F/449F mice, we

used the model antigens NP-KLH (T-dependent) and NP-LPS (T-

independent type I). IL-7Ra449F/449F mice were able to respond

identically to WT to both antigens, as assessed by NP-specific

IgG2b, IgG2c and IgM responses in serum and total numbers of

NP-specific B cells in the spleen of these mice (Figure 8A and 8B).

IgA responses in this assay were not detectable in WT, hence, we

were unable to assess the role of IL-7R signaling in IgA producing

B cells.

We then infected WT, TSLPR2/2 and TSLPR2/2 IL-

7Ra449F/449F mice with PR8 Influenza/A or the intestinal parasite

Heligmosomoides polygyrus to assess the responses of B cells at mucosal

sites, where IgA responses may be critical. We used TSLPR2/2

and TSLPR2/2 IL-7Ra449F/449F mice to determine if the cytokine

involved was TSLP or IL-7. In response to Influenza/A, the levels

of PR8-specific IgG2b antibody produced by TSLPR2/2 and

Figure 1. IL-7, not TSLP, controls the number of follicular B cells in the spleen. (A) Spleens from WT, IL-7RaWT/449F, IL-7Ra449F/449F and
IL-7Ra2/2 mice were taken and stained with antibodies directed against CD19, B220, CD23 and CD21. (B) Total numbers of spleen cells and
(C) Numbers of B cells from mice shown in A. Numbers of follicular (CD19+B220+CD21+CD23+) and marginal zone (CD19+B220+CD21hiCD23lo) from
(D) WT (n = 4), IL-7RaWT/449F (n = 3), IL-7Ra449F/449F (n = 5) and IL-7Ra2/2 (n = 4) (E) WT (n = 3), IL-7Ra449F/449F (n = 3) and IL-7 over-expressing (TgIL-7)
(n = 3) and Tg IL-7 IL-7Ra449F/449F (n = 3). (F) WT (n = 4), IL-7Ra449F/449F (n = 4), TSLPR2/2 (n = 4) and TSLPR2/2 IL-7Ra449F/449F (n = 6) mice.
doi:10.1371/journal.pone.0088771.g001
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Figure 2. FO and MZ cells in IL-7Ra449F exist in correct physiological locations and express normal levels of IgM and IgD. (A) Sections
of spleens from WT and IL-7Ra449F mice were taken and stained with antibodies to IgD, IgM and B220 to reveal follicular and marginal zone cells.
Scale bar is 100 mm (B) Marginal zone and follicular B cells from WT and IL-7Ra449F mice were stained with antibodies to IgM and IgD. (C) Shows
complete CD19+B220+ population from (B).
doi:10.1371/journal.pone.0088771.g002
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TSLPR2/2 IL-7Ra449F/449F mice in the serum and BAL were

identical to WT at day 14 after infection, suggesting that antibody

responses to Influenza/A are not affected by the absence of either

TLSPR or IL-7Ra Tyr449 dependent signaling (Figure 8C). In

mice infected with H. polygyrus, WT and TSLPR2/2 mice

produced robust anti-HES antibody responses, whereas

TSLPR2/2 IL-7Ra449F/449F mice showed reduced levels of anti-

HES (Figure 8D). This suggest that the antibody response to H.

polygyrus, but not Influenza/A, is dependent on IL-7 signaling

through IL-7Ra Tyr449. We could detect neither PR8-specific nor

HES-specific IgA in any of these samples, even in WT mice.

Discussion

IL-7Ra signaling controls the number of follicular B cells in the

spleen, but not their function. We have shown that reduction of

IL-7Ra signaling, through mutation of the Y449 motif, reduced

the number of follicular but not marginal zone B cells in the

spleen. Increasing IL-7 has the opposite effect, increasing follicular

B cells, but not marginal zone B cells. The critical cytokine was IL-

7, not TSLP, as even in the absence of normal IL-7Ra signaling,

TSLP did not compensate.

The reduction in follicular B cells found in IL-7Ra449F/449F

mice was not dependent on defective splenic architecture, as

RAG12/2 mice which had received IL-7Ra449F/449F bone

marrow show a similar phenotype to IL-7Ra449F/449F mice. The

Figure 3. Presence of WT cells rescues IL-7Ra449F/449F FO-MZ phenotype. Irradiated Rag12/2 mice were injected with (A) WT (n = 3) or
IL-7Ra449F/449F (n = 3) bone marrow alone or (B) a 9:1 mixture of WT (n = 3) or IL-7Ra449F/449F (n = 4) to B6.SJL bone marrow or and left for eight weeks
to reconstitute. The proportion of CD45.1+ (BoyJ) and CD45.2+ (either WT or IL-7Ra449F/449F) B220+CD21+ cells are shown, with the FO (CD21+CD23+)
and MZ (CD21hiCD23lo) populations. The MZ/FO ratio is then shown (C) from the CD45.1+ and CD45.2+ populations. Experiments were repeated with
at least three separate sets of chimeras, with similar results.
doi:10.1371/journal.pone.0088771.g003
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mixed bone marrow chimera experiments also identified that IL-7

is not signaling in the B cells to influence their development, but

instead in a RAG1-dependent non-B cell. The identity of this cell

is unclear, but it is possibly a T cell, or a type-III ILC which could

be influenced by the lack of lymphocytes. This conclusion is in

keeping with the fact that B cells do not express IL-7Ra past the

immature IgM+IgD2 stage in the bone marrow. We confirmed

that IL-7Ra449F/449F B cells do not have aberrant expression of IL-

7Ra due to the generation of the knock-in mouse (not shown).

Taken together, this information suggests that an IL-7Ra+ RAG-

dependent cell was responsible for the homeostasis of the follicular

B cell population, but how is still an open question. We ruled out

the contribution of the key B cell survival cytokine BAFF, as levels of

the cytokine were increased and in vitro BAFF responsiveness was

normal in IL-7Ra449F/449F follicular B cells. We speculate that the

reason for enhanced BAFF levels in IL-7Ra449F and IL-7Ra2/2

mice was due to reduced consumption of the cytokine due to fewer

B cells.

The development of peripheral B cells in IL-7 mutant mice has

been described previously, but these were cases where the

peripheral development is severely perturbed especially in the

complete absence of IL-7 signals, in the case of IL-72/2 and IL-

7Ra2/2 mice [4,23]. Both have a preponderance of MZ-like cells

that were unable to function normally when transferred to IL-7

replete mice [23].

Ceredig et al [9] showed that Tg IL-7 mice showed enhanced

numbers of follicular cells, and this effect was not due to any defect

in splenic architecture. This study also concluded that the

enhanced production of B cell precursors in the bone marrow

was responsible for the increases seen in follicular B cells.

However, in our loss of function IL-7Ra449F/449F mouse model,

we would argue against reduced precursor B cell development

being responsible for the changes in follicular B cells. Equal

numbers of precursor T1 spleen B cells are found in IL-7Ra449F/

449F and IL-7Ra2/2 mice yet drastic differences are then seen in

the FO and MZ compartments in these mice. If the differences in

MZ and FO cells in IL-7Ra449F/449F and IL-7Ra2/2 mice were

due to enhanced BM lymphopoiesis in IL-7Ra449F/449F compared

to IL-7Ra2/2 mice, we would expect to see more T1 cells in IL-

7Ra449F/449F than in IL-7Ra2/2 mice, which we do not.

The difference between the B cell populations in IL-7Ra449F/449F

and IL-7Ra2/2 mice may be primarily in the failure of IL-7Ra2/2

B cells at the AA4.1+ transitional stage in the spleen. T2 cells are

essentially absent from IL-7Ra2/2 mice, in contrast to IL-

7Ra449F/449F mice. It is possible that insufficient IL-7Ra2/2 cells

reached the T2 stage in the spleen, rendering them unable to fill

the marginal zone niche, whereas sufficient IL-7Ra449F/449F cells

are present after the T2 stage to fill the marginal zone

compartment. However, the T1-T2 defect was not intrinsic to

the B cells themselves, as IL-7Ra449F/449F T2 cells performed

Figure 4. Follicular B cells levels in IL-7Ra449F/449F mice are dependent on a RAG-dependent non-B cell. (A) Irradiated Rag12/2 mice
were injected with a mixture of CD45.2+ WT or IL-7Ra449F/449F and CD45.1+Rag12/2 bone marrow at a ratio of 1:2 or 1:4. Mice injected with only WT or
IL-7Ra449F/449F bone marrow were also generated in parallel. (B) Shown are the MZ and FO populations from B220+CD45.2+ cells from these chimeras
after eight weeks reconstitution. The MZ to FO ratios are shown in (C), with each symbol indicating an individual mouse.
doi:10.1371/journal.pone.0088771.g004

IL-7Ra Tyr449 Regulates Follicular B Cells

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88771



Figure 5. IL-7Ra449F/449F and IL-7Ra2/2 B cells are arrested at the T1 stage within the spleen. (A) Expression of CD19 and AA4.1 on
B220+DAPI2 cells in the spleen, and the proportions of T1 (IgM+CD232) and T2 cells (IgM+CD23+) cells within the AA4.1+ population. (B) Ratio of T2
cells to T1 in the spleens of WT (n = 4), IL-7Ra449F/449F (n = 3) and IL-7Ra2/2 mice (n = 5). (C) Proportions of T1 and T2 populations in 9:1 BoyJ:
IL-7Ra449F/449F mixed bone marrow chimeras (n = 4) from figure 2B. (D) Surface expression of BAFFR on T1 and T2 cells from WT, IL-7Ra449F/449F and
IL-7Ra2/2 mice. (E) RNA levels of notch ligands Jag1, Jag2 and Dll2 in the spleen of WT, IL-7Ra449F/449F and IL-7Ra2/2 mice. (F) Expression of Deltex1,
Deltex2 and Notch2 on sorted spleen T1 cells. Shown is mean of three cDNA preparations for each genotype.
doi:10.1371/journal.pone.0088771.g005
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equally to WT T2 cells in chimeras, where both WT and IL-

7Ra449F/449F cells are present. We found that Notch proteins in

T1 cells and levels of Notch-ligands in the spleen are normal,

with increased levels of the Notch-regulator Deltex1 in IL-

7Ra449F/449F mice. Deltex1 was expressed at lower levels in

TSLP-overexpressing mice [10], which had the opposite pheno-

type to IL-7Ra449F/449F mice, with increased numbers of

follicular B cells, suggesting that IL-7/TSLP may regulate

deltex-1, and that deltex-1 may negatively regulate the level of

follicular B cells in some manner.

We find it unlikely that defects in bone marrow B cell

development in IL-7Ra449F/449F mice (Unpublished data) is the

reason behind the defective B cell development and survival in the

spleen. IL-7Ra449F/449F cells from mixed bone marrow chimeras

show defective bone-marrow B cell development, but normal

spleen T1, T2, follicular and marginal zone proportions. However,

we cannot rule out that WT cells are having effects within the

bone marrow to rescue spleen B cell development and survival.

Higher levels of IL-7 cannot rescue follicular B cell levels in IL-

7Ra449F/449F mice. This suggests that signals downstream of

Tyr449 for follicular B cell development and survival are unique,

and that enhanced signaling through motifs other than Y449

cannot compensate for the lack of signaling at Y449.

Levels of naı̈ve antibody in IL-7Ra449F/449F mice are similar to

WT, with the notable exception of IgA. IL-7Ra449F/449F mice,

similar to IL-7Ra2/2 [24], lack Peyer’s patches in the intestine

Figure 6. IL-7Ra signaling controls follicular B cell survival, but not BAFF signaling or responsiveness. Spleens from WT (n = 4),
IL-7Ra449F/449F (n = 5) and IL-7Ra2/2 (n = 4) mice were taken and either stained with DAPI immediately before acquisition (A) or Caspase3/7 dye for 30
minutes at 37uC (B), and then analyzed by flow cytometry. Shown is percentage positive for DAPI or Caspase 3/7 activation, and is representative of
three separate experiments. (C) Levels of BAFF in serum from WT (n = 4), IL-7Ra449F/449F (n = 3) and IL-7Ra2/2 mice (n = 3). Two separate sets of serum
were analyzed. (D) Live follicular B cells from WT and IL-7Ra449F/449F spleens were cultured for three days in BAFF. Shown is mean proportion of dead
(DAPI+) cells assessed by flow cytometry after three days. Culture experiments were repeated three times.
doi:10.1371/journal.pone.0088771.g006

Figure 7. IL-7Ra449F/449F mice have defective IgA production.
(A) Resting antibody levels in serum from ten-week-old WT and IL-
7Ra449F/449F mice. (B) Comparison of total Ig and IgA levels in serum and
broncho-alveiolar lavage fluid (BAL) taken from the same mice, with
each symbol indicating an individual mouse.
doi:10.1371/journal.pone.0088771.g007
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(not shown). B cells within the Peyer’s patches produce a large

amount of IgA[25], so it seems possible that the absence of Peyer’s

patches in IL-7Ra449F/449F mice is responsible for the lack of IgA.

The related cytokines BAFF and APRIL are able to alter IgA

levels in mice [26,27]. Although BAFF levels are increased in

IL-7Ra449F/449F and IL-7Ra2/2, these mice have lower levels of

IgA, suggesting that BAFF does not have a role in this process.

IL-7 signaling has a clear effect on splenic B cell development

and in T cell biology [11]. However, the IL-7Ra449F/449F mice

had no defect in antibody responses to Influenza, T-dependent or

T-independent antigens, suggesting that the cells which remain are

capable of producing a functional antibody response. There was

an exception to this however, in the defect in HES-specific

response to H. polygyrus, which was dependent on IL-7Ra Tyr449

but not TSLP. It is unclear why IL-7Ra449F/449F mice were unable

to form normal antibody responses to H. polygyrus, and what is

unique about the response to this pathogen that requires IL-7Ra
Tyr449. It may represent a failure of Th2 T cell responses in IL-

7Ra449F/449F mice, or be symptomatic of a defective gut immune

system.

We previously described a clear role for IL-7 (and not TSLP)

and signaling downstream of IL-7Ra449F/449F in the T cell

response to Influenza A PR8 [17], but there was no difference in

the primary antibody response to Influenza in IL-7Ra449F/449F

mice. However, this study primarily focused on effector CD4 and

CD8 responses, not the ability of T cells to provide help to B cells,

primarily mediated by T-follicular helper cells. IL-7Ra449F/449F

mice have similar numbers of CXCR5+ICOS+ T-follicular helper

cells (not shown) which may allow normal T cell help from these

cells.

IL-7 is a critical cytokine for the development of T and B cells

that, in excess, allows the development of leukaemia in both mice

and humans. We have shown that, despite regulating the survival

of follicular B cells, blocking the IL-7Ra Tyr449 signaling does not

prevent productive antibody responses. We have shown that the

peripheral differences seen in IL-7Ra449F/449F are due to defects

within the spleen itself. IL-7 in the spleen controls the survival of

splenic follicular B cells indirectly, via a mechanism that mostly

likely relies on a RAG-dependent bone marrow derived cell.

Coupled with the absence of any functional defect in the antibody

responses to immunogens and infectious agents, this represents a

clear target for potential therapies, combining the ability to block

B cells cancers without any functional B cell immunodeficiency.
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