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ABSTRACT  71 

The information obtained from the chemical analysis of specific human excretion products 72 

(biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the 73 

population under investigation to a defined substance. A proper biomarker can provide relevant 74 

information about lifestyle habits, health and wellbeing, but its selection is not an easy task as it 75 

should fulfil several specific requirements in order to be successfully employed. This paper aims to 76 

summarize the current knowledge related to the most relevant biomarkers used so far. In addition, 77 

some potential wastewater biomarkers that could be used for future applications were evaluated. For 78 

this purpose, representative chemical classes have been chosen and grouped in four main categories: 79 

(i) those that provide estimates of lifestyle factors and substance use, (ii) those used to estimate the 80 

exposure to toxicants present in the environment and food, (iii) those that have the potential to 81 

provide information about public health and illness and (iv) those used to estimate the population 82 

size. To facilitate the evaluation of the eligibility of a compound as a biomarker, information, when 83 

available, on stability in urine and wastewater and pharmacokinetic data (i.e. metabolism and 84 

urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future 85 

research are proposed.  86 

 87 

Key words 88 

Wastewater; Epidemiology; Biomarker; Consumption; Exposure; Population  89 

90 
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INTRODUCTION 91 

Relevant epidemiological information about lifestyle habits, public health and wellbeing can 92 

be obtained from the chemical analysis of urban wastewater. This approach, called wastewater-93 

based epidemiology (WBE), is based on the analysis of specific human metabolic excretion 94 

products (biomarkers) in wastewater as indicators of consumption or exposure of the population 95 

served by the sewer network under investigation to different substances. WBE has been 96 

successfully applied as a suitable approach for the estimation of illicit drugs consumption (Ort et al., 97 

2014; Thomaidis et al., 2016; Thomas et al., 2012; van Nuijs et al., 2011a; Zuccato et al., 2008), but 98 

it has also recently been employed to assess other lifestyle-related factors such as alcohol 99 

(Rodríguez-Álvarez et al., 2015; Ryu et al., 2016), nicotine (Castiglioni et al., 2015b; Lopes et al., 100 

2014; Rodríguez-Álvarez et al., 2014b), caffeine (Senta et al., 2015a) and new psychoactive 101 

substances (NPS) (Kinyua et al., 2015; Reid et al., 2014a; van Nuijs et al., 2014). WBE has also 102 

been applied to verify community-wide exposure to endocrine disruptors and antimicrobial agents 103 

in personal care and household products (O’Brien et al., 2015; Rydevik et al., 2015). The broad 104 

range of information that can be gathered from wastewater opens up the possibility of expanding 105 

WBE to other human biomarkers providing clues about diet, health, diseases and exposure to 106 

contaminants. For example by linking exposure to environmental or food contaminants with health 107 

outcomes such as diabetes or cancer. 108 

In general, a human biomarker can be an endogenous compound (produced naturally in the 109 

body) or a metabolite of a xenobiotic/exogenous substance (produced through metabolic processes 110 

after intentional consumption of a substance, accidental exposure to environmental contaminants, as 111 

well as through diet or ingestion of a substance). Biomarkers can be classified on the basis of their 112 

function as biomarkers of exposure (compounds that give information about substances consumed 113 

or ingested) and biomarkers of effect (indicators of measurable changes or alterations in an 114 

organism that can be associated with health problems or wellbeing) and on the basis of biological 115 
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nature (e.g. metabolites, hormones), or of the disease they can indicate (e.g. cardiovascular 116 

biomarkers, obesity biomarkers) (Pischon, 2009).  117 

The selection of a specific biomarker is not an easy task, as it needs to satisfy different 118 

criteria (Figure 1) (Castiglioni and Gracia-Lor, 2015; Gracia-Lor et al., 2016). From a WBE 119 

perspective, a suitable biomarker must be excreted mainly via urine and concentration levels in 120 

urine should be at least in the µg/L range to ensure its detection in raw wastewater after dilution 121 

(Chen et al., 2014).  122 

 123 

Excreted via urine 
in consistent amounts 

Detectable in wastewater

Stable in wastewater

Unique source: human metabolism

Requirements of:

• Lifestyle and 
substance use 
biomarkers

• Exposure biomarkers 
from environment 
and food

• Health biomarkers

Low variance in the per capita daily excretion

Daily  per capita excretion not affected by independent 
variables (season, weather or geographic location)

Requirements of:

• Population 
biomarkers

 124 

Figure 1. Main requirements of a biomarker 125 

 126 

A biomarker should also be sufficiently stable in wastewater during the transport (in-sewer 127 

stability) from the input (i.e. toilet) to the sampling point and during sampling, storage and analysis 128 

(in-sample stability) (McCall et al., 2016a). In wastewater biomarkers can undergo further 129 

transformation due to microbial activity (Mardal and Meyer, 2014) and/or sorption to particulate 130 

matter (Baker and Kasprzyk-Hordern, 2011; Daughton, 2012a; McCall et al., 2016a). The fate of 131 
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biomarkers in the sewer can be also predicted by using mathematical models to simulate 132 

physicochemical and microbial processes (Bisceglia and Lippa, 2014; McCall et al., 2016b; Ramin 133 

et al., 2016). It is important to note that biomarker transformation pathways in the sewer might be 134 

different from human metabolic pathways.  135 

Furthermore, a biomarker should preferably be specific to the compound under investigation 136 

and unique to human metabolism, thus ensuring that its presence only derives from human 137 

excretion and not from exogenous sources (Daughton, 2012b). Therefore, pharmacokinetic data on 138 

human metabolism are necessary but unfortunately this information is not always feasible as for 139 

many substances it is very limited or do not even exist. This information, however, is highly 140 

relevant not only to back-calculate the consumption/exposure of/to a certain substance by a 141 

community, but also to distinguish the amount of a substance originating from human metabolism 142 

or other sources. Unfortunately, pharmacokinetic studies are time-consuming and have to fulfil 143 

strict ethical rules. Alternative approaches, which allow for the identification and selection of 144 

appropriate biomarkers, are therefore required; for example, in-vitro studies using liver enzymes, 145 

which metabolize the parent compound, help in the elucidation of the chemical structure of the 146 

metabolites formed (i.e. possible biomarkers) formed (Mardal et al., 2016). Computer-based in-147 

silico modelling also allow the prediction of pharmacokinetics (Reid et al., 2014a). However these 148 

alternatives provide qualitative information on metabolism, but not data regarding excretion rates of 149 

parent substances and their metabolites (Gracia-Lor et al., 2016). 150 

The present manuscript emerges within the framework of the pan-European inter-151 

disciplinary network (Sewage analysis CORE group-SCORE), which brings together experts from 152 

different disciplines interested in standardizing the WBE approach and in coordinating international 153 

studies (http://score-cost.eu/). The aim of this review is to describe the criteria for selecting suitable 154 

biomarkers and to give an overview of relevant human (urinary) metabolites and potential 155 

wastewater biomarkers. Biomarkers have been grouped in four sections: (i) those that provide 156 

http://score-cost.eu/
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estimates of lifestyle factors and substance use, (ii) those used to estimate the exposure to toxicants 157 

present in the environment and food, (iii) those giving information about public health and (iv) 158 

those used to estimate the population size. For each group and biomarker, a thorough review of the 159 

available pharmacokinetic data (i.e. metabolism and excretion profile) and stability in urine and 160 

wastewater (if known) is provided. This information can be used to evaluate their suitability 161 

according to the criteria described above. Finally, potential gaps or limitations are discussed and 162 

future research directions are proposed.  163 

 164 

2. LIFESTYLE AND SUBSTANCE USE BIOMARKERS  165 

Initially, WBE was applied to evaluate lifestyle, in particular illicit drug use within a 166 

community. Its ability to deliver objective and near-real-time data on drug use, being able to detect 167 

changes over time and local patterns of use, suggests that this method can be used as a 168 

complementary and extended data source to existing epidemiological tools. WBE has been well 169 

established for monitoring the use of cocaine, cannabis, amphetamine, methamphetamine and 170 

MDMA (3,4-methylenedioxymethamphetamine).  171 

Additional applications to estimate consumption of other substances, such as alcohol, 172 

tobacco, caffeine and NPS, have been employed more recently. Alcohol and nicotine (tobacco) are 173 

probably the most popular and accepted recreational drugs. However, many negative social, 174 

economic and health aspects have been linked to their use, causing millions of deaths every year 175 

(World Health Organization, 2015, 2014). It is therefore important and of particular interest for 176 

policy makers to obtain continuous monitoring data on consumption levels and patterns of use, in 177 

order to reduce the disease burden related to alcohol and tobacco use. Caffeine use has been 178 

limitedly investigated, although it is one of the most extensively used legal stimulants, found in 179 

widely-consumed products, such as coffee, tea, soft and “energy” drinks. Besides monitoring its 180 

consumption, caffeine has also been proposed as a human biomarker for assessing the size and 181 
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dynamics of the population served (see section 5.3) by a particular wastewater treatment plant 182 

(WWTP) (Senta et al., 2015a). NPS are emerging narcotic or psychotropic substances which may 183 

pose similar threats to public health such as classical illicit drugs (European Union, 2005; Papaseit 184 

et al., 2014). Due to the delay between their appearance on the market and their addition to the list 185 

of banned (or controlled) substances, many NPS can be legally purchased, thus promoting their 186 

proliferation worldwide. Furthermore, new substances appear continuously on the market (Bijlsma 187 

et al., 2016; EMCDDA, 2015a). WBE has been proposed as a tool for providing useful information 188 

on temporal and regional trends in the use of NPS.  189 

Current state and some new features of WBE, with regard to lifestyle and substance use are 190 

presented in this chapter. Furthermore, specific biomarkers of each lifestyle factor are suggested 191 

(Table S1) and conceptual approaches for dealing with NPSs using biomarkers in wastewater are 192 

proposed. 193 

 194 

2.1. Illicit drugs 195 

Among the available epidemiological indicators, general population surveys have been 196 

traditionally used to assess illicit drug use at the population level. Yet, due to their inherent biases, 197 

complementary and real-time approaches are needed. The determination of illicit drug consumption 198 

through wastewater was first theorized by Daughton (Daughton, 2001) and implanted by Zuccato et 199 

al. using cocaine as an example (Zuccato et al., 2005). Since then, WBE has been widened to 200 

include other illicit drugs (Asimakopoulos and Kannan, 2016; Castiglioni et al., 2008; Hernández et 201 

al., 2016; van Nuijs et al., 2011a).  202 

The biomarkers currently used are either the illicit drug itself (i.e. amphetamine, 203 

methamphetamine, and 3,4-methylenedioxy-methamphetamine-MDMA) or one of its metabolites 204 
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(i.e. benzoylecgonine (BEG) for cocaine, 11-nor-9-carboxy-delta9-tetrahydrocannabinol (THC-205 

COOH) for cannabis and morphine or 6-acethylmorphine for heroin). 206 

Cocaine, the first substance studied in WBE, is considered unstable in wastewater; however, 207 

its unique and stable metabolite (BEG) makes back-calculation to drug consumption more 208 

straightforward. It must be noted that significant degradation of BEG from cocaine in sewage is also 209 

reported (Plósz et al., 2013), which could result in over estimation of cocaine consumption if this 210 

formation is neglected. Considering human excretion rates, a cocaine: BEG ratio around 0.1 or 211 

lower can indicate consumption, and any value higher (between 0.1 and 0.7) could indicate other 212 

sources of cocaine, such as direct disposal (Castiglioni et al., 2011a). However, more research is 213 

needed in this regard (Bijlsma et al., 2012; Postigo et al., 2010; Van Nuijs et al., 2009).  214 

Δ9-tetrahydrocannabinol (THC), the active ingredient of cannabis, is metabolized to more 215 

than 20 metabolites after consumption, with 11-nor-∆9-carboxy-THC (THC-COOH) and 11-216 

hydroxy-THC (THC-OH) being those primarily excreted. THC-COOH has been shown to be highly 217 

stable and is thus normally used to estimate cannabis consumption, albeit with some analytical 218 

difficulties arising in multi-residue methods resulting from its non-polarity compared to other illicit 219 

drugs (Bijlsma et al., 2014; Ort et al., 2014; Pedrouzo et al., 2011).  220 

Two more recently works studied illicit drugs are ketamine and methadone. Ketamine is a 221 

dissociative anaesthetic which has been used as a recreational drug, whilst methadone is a synthetic 222 

opioid used clinically to relieve pain and also as maintenance treatment of opioid addicts 223 

(Castiglioni et al., 2011b; Preston et al., 2003). Both ketamine and its metabolite norketamine are 224 

fairly stable in wastewater (Castiglioni et al., 2015a; McCall et al., 2016a), with the parent 225 

compound generally used as a biomarker for reliable estimation of drug usage. Variable stability for 226 

methadone has, however, been reported i.e. from high (Senta et al., 2014) to low (González-Mariño 227 

et al., 2010).  228 
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Opioids use in Europe remains a central issue, reflecting the significant impact these drugs 229 

still have on mortality and morbidity (EMCDDA, 2015b). In recent years, the production of high 230 

purity heroin has been rising, thereby increasing heroin-related mortality (UNODC, 2015). In the 231 

human body, heroin is rapidly hydrolyzed to 6-monoacetylmorphine (6-MAM) by blood esterases 232 

(Bencharit et al., 2003) and further hydrolyzed to morphine in the liver (Smith, 2009). In 233 

wastewater, heroin shows low stability (González-Mariño et al., 2010). Although 6-MAM detected 234 

in urine is used as a marker of heroin consumption (Staub et al., 2001), 6-MAM is not always 235 

detected in wastewater as it is not stable in wastewater (Thai et al., 2014). Back-calculations using 236 

6-MAM as biomarker provides inconsistent results (Been et al., 2015). Therefore, morphine is 237 

considered as an alternative biomarker for heroin. However, therapeutic consumption of morphine 238 

should be subtracted from the total measured morphine in sewage (Khan and Nicell, 2011; van 239 

Nuijs et al., 2011a; Zuccato et al., 2016), which necessitates the availability of registered prescribed 240 

morphine at the time of wastewater sampling. Morphine is also formed in the sewer due to 241 

deconjugation of morphine glucuronide and deacetylation of 6-MAM, which imposes new 242 

challenges in back-calculation schemes. Although fractions of morphine originating from codeine 243 

can be considered negligible (Zuccato et al., 2008), more research is needed to find a drug 244 

biomarker for heroin which fulfils all the aforementioned criteria.  245 

As shown in Table 1, the most frequently used illicit drug biomarkers are benzoylecgonine, 246 

amphetamine, methamphetamine, MDMA and THC-COOH (Thomas et al., 2012). Information 247 

about excretion and stability in urine and wastewater of these and other illicit drug biomarkers less 248 

frequently studied is presented in Table S1.One of the most current analytical challenges associated 249 

with WBE is represented by chirality. Amphetamine, methamphetamine and MDMA are among the 250 

illicit drugs that are chiral and as a result they can exist as enantiomers (one enantiomeric pair per 251 

each chiral centre). The verification of their chiral signature in wastewater (i.e. relative proportion 252 
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of two enantiomers within each enantiomeric pair) allows to distinguish between illicit or licit use 253 

and direct disposal (Emke et al., 2014). It has been shown that the distinction between the 254 

consumption or the disposal of MDMA could be made by differentiating the loads of the 255 

enantiomers present in wastewater. Indeed, enantiomeric fractions (EFs) greater than 0.5 indicated 256 

illicit use, whilst EFs equal to 0.5 indicated direct disposal, when EF was calculated as follows:  257 

 258 

Enantiomeric profiling of MDMA’s metabolites were recently investigated in wastewater by 259 

Castrignanò et al., suggesting enantioselective metabolism for HMMA (Castrignanò et al., 2016). 260 

Amphetamine and methamphetamine can also be investigated at enantiomeric level, however due to 261 

both legal and illicit uses, a clear understanding between consumption and direct disposal is 262 

difficult (Emke et al., 2014; Kasprzyk-Hordern and Baker, 2012).  263 

 264 

2.2.  Alcohol 265 

Following the consumption of alcoholic beverages, the majority of ingested ethanol is 266 

rapidly metabolized in the human body in a two-stage oxidation process, first to acetaldehyde and 267 

then to acetic acid. The remaining part is excreted unchanged in urine, sweat and exposed breath 268 

(Jones, 1990). However, a very small fraction (<0.1%) undergoes a conjugation reaction with 269 

glucuronic acid to produce ethyl glucuronide (EtG) (Dahl et al., 2002) and with 3'-270 

phosphoadenosine 5'-phosphosulfate to produce ethyl sulphate (EtS) (Helander and Beck, 2005). 271 

These metabolites are excreted within a few hours and are detectable in urine for considerably 272 

longer times (up to 1-2 days, depending on the subject and the alcohol dose) (Helander and Beck, 273 

2005; Høiseth et al., 2008), making them unequivocal indicators of recent alcohol consumption 274 

(Dahl et al., 2011; Dresen et al., 2004).  275 
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EtG was found to degrade ~50% after 18 hours, whereas EtS showed little or no degradation 276 

(Reid et al., 2011). In addition, no significant differences were found between its stability in sewage 277 

and in an ethanol-fortified wastewater sample (Reid et al., 2011), indicating that it is unlikely to be 278 

formed from unconsumed alcohol discarded into the sewer system. Taking into account these 279 

observations, EtS has been used by several researchers to estimate community-wide alcohol 280 

consumption through wastewater analysis (Table 1). Typically, its determination in this matrix is 281 

performed by direct injection, after filtration and/or centrifugation, into a liquid chromatography-282 

mass spectrometry system. The alcohol consumption rates estimated through WBE have revealed 283 

specific drinking patterns, temporal and spatial variations. The study conducted by Reid et al. (Reid 284 

et al., 2011), for example, clearly showed the weekend elevated drinking pattern in Oslo. 285 

Furthermore, the estimated consumption rates were in good agreement with sales statistics (Reid et 286 

al., 2011). The increase in alcohol consumption during the weekend was also found in three Spanish 287 

cities, eight Belgian cities an done Italian city (Andrés-Costa et al., 2016; Boogaerts et al., 2016; 288 

Mastroianni et al., 2014; Rodríguez-Álvarez et al., 2015, 2014a; Ryu et al., 2016). However, a 289 

different consumption pattern was observed during a special event in Valencia, where an increased 290 

alcohol use was noticeable, reaching the maximum rate on Wednesday, which corresponded to the 291 

last day of the “Fallas” festivities (Andrés-Costa et al., 2016). Co-consumption of alcohol and 292 

cocaine was also evaluated through WBE by analyzing cocaethylene, a specific biomarker excreted 293 

when the two substances are consumed together (Mastroianni et al., 2014; Rodríguez-Álvarez et al., 294 

2015). In the studies carried out in Belgium (Boogaerts et al., 2016) and Greece (Gatidou et al., 295 

2016) higher alcohol consumption in urbanized cities than in smaller villages was evidenced. 296 

Although all these studies highlight the potential of EtS as a reliable biomarker for estimating 297 

alcohol consumption in relative terms, the main limitation is the uncertainty associated with its 298 

percentage of excretion, which might lead to inaccurate back-calculations in absolute amounts. 299 

Until now, there have been insufficient pharmacokinetic studies evaluating this percentage to 300 
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provide a unique, representative figure (Halter et al., 2008; Høiseth et al., 2008; Lostia et al., 2013; 301 

Schneider and Glatt, 2004; Wurst et al., 2006). In the aforementioned WBE studies, the range 302 

0.010-0.016% (on molar basis) was used by (Andrés-Costa et al., 2016; Reid et al., 2011); the 303 

median value of the excretion rates provided by Høiseth et al. (Høiseth et al., 2008), 0.011%, was 304 

used by (Mastroianni et al., 2014; Rodríguez-Álvarez et al., 2014a). Finally, four studies (Boogaerts 305 

et al., 2016; Gatidou et al., 2016; Rodríguez-Álvarez et al., 2015; Ryu et al., 2016), employed a 306 

people-weighted value of 0.012%, based on the data provided by (Høiseth et al., 2008) and (Wurst 307 

et al., 2006).  308 

 309 

2.3.  Tobacco  310 

Nicotine is the principal alkaloid found in tobacco and, although not being directly 311 

associated with diseases, its addictiveness is the major cause of continued use of tobacco products 312 

(Hukkanen, 2005). Nicotine is extensively metabolized in humans, with 70-80% of the initial dose 313 

being converted to cotinine (Benowitz and Jacob, 1994), which is then further metabolized into 314 

various compounds, the most abundant being trans-3’-hydroxycotinine (Byrd et al., 1992). Nicotine 315 

and its major metabolites are also excreted as glucuronides. Globally, nicotine is excreted 316 

unchanged at rates between 8 and 10%, whilst its glucuronide makes up for 3-5% of the initial dose 317 

(Byrd et al., 1992). Cotinine and its glucuronide are excreted at rates between 10-15% and 12-17%, 318 

respectively, while trans-3’-hydroxycotinine and its glucuronide make up for 33-40% and 7-9% of 319 

the initial dose, respectively (Hukkanen, 2005).   320 

Nicotine and its metabolites, cotinine and trans-3’-hydroxycotinine, have been analyzed in 321 

wastewater as biomarkers (Table S1) to estimate tobacco use in various communities (Castiglioni et 322 

al., 2015b; Lopes et al., 2014; Mackuľak et al., 2015; Rodríguez-Álvarez et al., 2014b; Senta et al., 323 

2015a). The three compounds were shown to be stable in wastewater samples stored at 4° C and 20° 324 

C during 24 h (Chen et al., 2014; Rodríguez-Álvarez et al., 2014b; Senta et al., 2015a). However, 325 
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the concentration of the glucuronide of trans-3’-hydroxycotinine was shown to decrease even in 326 

refrigerated samples (i.e., 35% decrease over 8 h at 4° C). The authors of the study thus suggested 327 

to enzymatically deconjungate the compounds prior to extraction and analysis (Rodríguez-Álvarez 328 

et al., 2014b).  329 

The amounts of these compounds in wastewater range from 0.1 to 7 µg/L (Buerge et al., 330 

2008; Mackuľak et al., 2015; Rodríguez-Álvarez et al., 2014b; Senta et al., 2015a), and the levels of 331 

cotinine and trans-3’-hydroxycotinine reflected the excretion profiles expected from 332 

pharmacokinetic studies, whilst nicotine was found at higher levels (Rodríguez-Álvarez et al., 333 

2014b; Senta et al., 2015a). The contribution from ashes and cigarettes butts has been advanced as a 334 

possible explanation for this observation (Castiglioni et al., 2015b; Rodríguez-Álvarez et al., 2014b; 335 

Senta et al., 2015a). In fact, higher nicotine levels have been reported during rain events, supporting 336 

the hypothesis that ashes and cigarette butts found on streets eventually contribute to measured 337 

nicotine loads (Senta et al., 2015a). Thus, cotinine and trans-3’-hydroxycotinine were used as 338 

biomarkers to estimate the amount of nicotine used per capita in a population, as indicated in Table 339 

1 (Castiglioni et al., 2015b; Mackuľak et al., 2015; Rodríguez-Álvarez et al., 2014b; Senta et al., 340 

2015a). 341 

In some studies, figures were corrected to account for the portion of nicotine absorbed 342 

during smoking (Castiglioni et al., 2015b; Mackuľak et al., 2015), thus providing estimates of the 343 

gross amount of number of cigarettes. Additionally, Mackul’ak and co-workers (Mackuľak et al., 344 

2015) included a factor to account for losses due to degradation, based on the mean residence time 345 

of wastewater in sewers. From the estimated nicotine consumption, the number of cigarettes 346 

smoked per capita was also calculated using as reference value 0.8 mg of nicotine per cigarette 347 

(Gorrod and Wahren, 1993; Lopes et al., 2014; Rodríguez-Álvarez et al., 2014b) or 1.25 mg of 348 

nicotine (Castiglioni et al., 2015b). The obtained figures highlighted substantial differences in 349 

consumption within the same country. For example, researchers from Italy found significant 350 
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differences between the north, centre and south of the country (Castiglioni et al., 2015b; Senta et al., 351 

2015a). These results were in agreement with epidemiological data, which suggested a higher 352 

prevalence of tobacco use in the south (Castiglioni et al., 2015b). Similarly, important differences 353 

were found in cities in Slovakia and Spain (Mackuľak et al., 2015; Rodríguez-Álvarez et al., 354 

2014b). In Portugal, estimates of nicotine consumption derived from wastewater analysis were in 355 

line with findings from a European survey (Lopes et al., 2014).  356 

Mass loads measured in wastewater were also used to investigate weekly consumption 357 

patterns and findings suggested that this was stable throughout the week (Chen et al., 2014; 358 

Rodríguez-Álvarez et al., 2014b; Senta et al., 2015a). Public holidays and specific touristic 359 

locations, attracting larger crowds, were the only exceptions (Lopes et al., 2014; Mackuľak et al., 360 

2015). 361 

The results obtained show that the measurement of nicotine metabolites is a useful tool 362 

which could potentially be used to complete current knowledge about the prevalence of tobacco 363 

use. 364 

 365 

2.4. Caffeine 366 

Caffeine (1,3,7-trimethylxanthine) is the world's most widely consumed stimulating agent 367 

(Garattini, 1993). It is found in many globally popular products, including tea and cola drinks, as 368 

well as in some medications and dietary supplements, but the most important source of this alkaloid 369 

is coffee. 370 

Caffeine metabolism is extensive (Baselt, 2004), with at least 17 urinary metabolites 371 

identified in humans (Garattini, 1993). The major metabolites include 1-methyluric acid (excretion 372 

rate 12-25%), 1-methylxanthine (9-18%), 7-methylxanthine (2-8%), paraxanthine (1,7-373 

dimethylxanthine; 4-7%), 1,7-dimethyluric acid (5-8%) and unstable product 5-acetylamino-6-374 

formylamino-3-methyluracil (4-15%), with a small percentage (1-4%) of the initial dose excreted as 375 
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the parent compound (Carrillo and Benitez, 1994; Garattini, 1993). The list of caffeine metabolites 376 

identified in humans, together with the excretion rates can be found in Table S1. Besides being 377 

complex, caffeine metabolism is also rather variable, with the different excretion rates observed not 378 

only in different studies, but also between individuals within the same studies (Carrillo and Benitez, 379 

1994; Grant et al., 1983). These variations can be related with genetic differences (Blanchard et al., 380 

1985; Grant et al., 1983) or influenced by other factors, such as age (Blanchard et al., 1985; Grant et 381 

al., 1983), pregnancy ((Carrillo and Benitez, 1994; Garattini, 1993) or medications (Callahan et al., 382 

1983). However, certain metabolites, such as paraxanthine, 1,7-dimethyluric acid and 1-383 

methylxanthine were found to be less affected by the genetic background compared to the parent 384 

compound and they were, therefore, suggested as potential biomarkers for caffeine dietary intake 385 

(Crews et al., 2001). Furthermore, most of the pharmacokinetic data on caffeine metabolism in 386 

humans are quite old (Blanchard et al., 1985; Grant et al., 1983) and some of them include a 387 

relatively low number of subjects (Blanchard et al., 1985).  388 

Due to its wide usage in modern societies, caffeine is among the most ubiquitous wastewater 389 

micro-contaminants, usually detected at relatively high concentration levels (μg/L) in untreated 390 

wastewater (Martínez-Bueno et al., 2011; Rosal et al., 2010; Santos et al., 2009). Due to this, 391 

caffeine was proposed as anthropogenic marker to indicate the discharge of domestic wastewater in 392 

rivers and lakes (Buerge et al., 2003), but so far has been rarely used as a biomarker in a WBE 393 

approach. Caffeine has also been proposed as a human biomarker for assessing population size and 394 

the dynamics of people served by a particular WWTP (Daughton, 2012b) (see section 5.3).  395 

However, with the exception of paraxanthine, data on the occurrence of caffeine metabolites 396 

in wastewater are still very scarce. In fact, the first comprehensive study which included most of the 397 

major caffeine metabolites (1-methylxanthine, 7-methylxanthine and paraxanthine) was published 398 

just recently (Senta et al., 2015a). Concentrations of these metabolites found in Italian wastewater 399 

were similar to those of the parent compound, i.e. in the μg/L range. In the same work temporal and 400 
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spatial patterns of use were also studied and the mean mass loads of caffeine and its major 401 

metabolites revealed to be slightly lower during the weekend, probably due to the lower 402 

consumption of coffee. Similar findings for caffeine was reported by Rico et al. (Rico et al., 2016; 403 

Senta et al., 2015a). On the other hand, no clear geographical trends could be observed. Besides 404 

being easily detectable, caffeine, 1-methylxanthine, 7-methylxanthine and paraxanthine fulfill 405 

additional important requirement for an ideal biomarker - they are stable in wastewater samples 406 

stored at 4 °C and 20 °C for 24 h (Senta et al., 2015a). However, it is noteworthy that more research 407 

is needed in order to select the most suitable caffeine biomarker in wastewater for the correct 408 

interpretation of the obtained results within the concept of WBE.  409 

 410 

2.5. New Psychoactive Substances  411 

The detection of NPS and the estimation of their use are especially challenging for drug 412 

epidemiology, since new compounds appear continuously on the market and consumers do not 413 

always know the composition of the drugs they take. WBE can shed some light and provide 414 

additional information, but it is also affected by important challenges. First, pharmacokinetic data 415 

are essentially non-existent for most NPS, making it extremely difficult to define appropriate 416 

biomarkers. Second, the prevalence of abuse of a single substance is generally low, leading to very 417 

low concentrations in wastewater. Finally, their stability in this matrix is largely unknown 418 

(EMCDDA, 2016; Reid and Thomas, 2016). Based on the limited information available, this 419 

section attempts to present a selection of potential biomarkers, to be used in WBE studies, for the 420 

most common classes of NPSs: synthetic cannabinoids, synthetic cathinones, phenethylamines, 421 

piperazines, tryptamines, arylcycloalkylamines and benzodiazepines (EMCDDA, 2015a). The two 422 

first groups constitute the largest categories and also account for the majority of seizures in Europe 423 

(EMCDDA, 2015a).  424 
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Synthetic cannabinoids include a broad range of structurally different compounds sharing 425 

affinity for the cannabinoid receptors in the brain (Pertwee, 2008). Due to their recent increased 426 

popularity, their human metabolism is a growing area of research. Several in vitro and in vivo 427 

experiments have been performed over the past few years and, although individual pharmacokinetic 428 

profiles remain to be elucidated for many of them, it is generally thought that synthetic 429 

cannabinoids are extensively oxidized in the human body and excreted as a complex mixture of 430 

phase I and phase II metabolites (Fantegrossi et al., 2014; Seely et al., 2012). JWH-type 431 

cannabinoids are the most popular drugs within this class. Monohydroxylation, either at the N-alkyl 432 

side chain, the naphthyl moiety or the indole moiety (followed by the corresponding 433 

glucuronidation) has been identified as their major metabolic pathway and, in fact, 434 

monohydroxylated metabolites have been detected in urine from JWH-type cannabinoids 435 

consumers (Hutter et al., 2012; Ozturk et al., 2015; Wohlfarth et al., 2013). However, the lack of 436 

rigorous pharmacokinetic data, essential to calculate excretion rates, prevents from extrapolating 437 

these analyses to whole communities by the WBE approach. Another important limitation concerns 438 

their instability in wastewater: the scarce literature available suggests that some synthetic 439 

cannabinoids and their metabolites are highly labile and tend to get adsorbed to particle matter, 440 

hindering their determination and sub-estimating the potentially derived abuse calculations (Reid et 441 

al., 2014a, 2014b). As a reflection of these intrinsic difficulties, to the best of our knowledge only 442 

the metabolite JWH 018 N-5-hydroxypentyl and the parent compounds JWH-210 and JWH-122, 443 

have been positively detected in wastewater in two out of all the studies dealing with NPS in this 444 

matrix (Borova et al., 2015; Reid et al., 2014b) (see Table S1).  445 

Synthetic cathinones are known to have been abused for approximately 15 years and the 446 

synthesis of cathinone derivatives has been reported since the late 1920s (Hyde and Adams, 1928; 447 

Prosser and Nelson, 2012). They all refer to cathinone ((S)-2-amino-1-phenyl-1-propanone), a 448 

naturally occurring stimulant found in the leaves of Catha edulis (Khat) (Prosser and Nelson, 2012). 449 
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In general, the drugs are in part extensively metabolized in humans. However, some of the synthetic 450 

cathinones are also excreted unchanged in urine (Uralets et al., 2014). Details on the metabolism 451 

and detectability of synthetic cathinones can be found in original articles and are summarized in 452 

several review articles (Ellefsen et al., 2015; Helfer et al., 2007; Meyer et al., 2014, 2012, 2010a, 453 

2010b; Meyer and Maurer, 2010; Pawlik et al., 2012; Pozo et al., 2014; Shima et al., 2014; Staack 454 

and Maurer, 2005; Uralets et al., 2014; Welter-Luedeke and Maurer, 2015). Also, data on the 455 

stability, especially under storage conditions, were published (Senta et al., 2015b) and highlighted 456 

the possible instability of the parent compounds under alkaline conditions (Johnson and Botch-457 

Jones, 2013; Tsujikawa et al., 2012). However, detailed and comprehensive studies are missing on 458 

their chemical stability in wastewater and also biotransformation in the sewer or wastewater should 459 

be considered (McCall et al., 2016a). Several studies were published on the analysis of synthetic 460 

cathinones in wastewater samples, with mephedrone, methylenedioxypyrovalerone, methcathinone, 461 

methylone and α-pyrrolidinovalerophenone (α-PVP) being the most frequently detected (Borova et 462 

al., 2015; Chen et al., 2013; González-Mariño et al., 2016a, 2016b; Kinyua et al., 2015; 463 

Mwenesongole et al., 2013; Ocaña-González et al., 2015; Thai et al., 2016; Tscharke et al., 2016). 464 

Phenylethylamines are a class of substances related to amphetamine and methamphetamine, 465 

possessing psychoactive and stimulant effects; however, modification of these compounds can lead 466 

to potent hallucinogens (Zaitsu et al., 2011; Zawilska and Andrzejczak, 2015). They include 467 

amphetamine derivatives such as MDMA, 2C and ‘D’ series drugs. However, the phenethylamine 468 

core is shared among several compounds including cathinones and catecholamines. Several 469 

metabolism studies have been conducted in an effort to understand their metabolic profiles (Ewald 470 

et al., 2008, 2006; Lai et al., 2015b; Staack et al., 2003) but more information is needed.  471 

Piperazine-like compounds include the original member 1-benzylpiperazine (BZP), its 472 

methylenedioxy analogue and several phenylpiperazines. They are mainly known to bind to 473 

serotonin receptors, with BZP additionally producing amphetamine-like stimulant effects (Bye et 474 
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al., 1973; De Boer et al., 2001). A summary with details on the metabolism of piperazines can be 475 

found in some articles (Maurer et al., 2004; Staack et al., 2001; Staack and Maurer, 2005); 476 

furthermore, one study showed the detection of metabolites in human urine (Tsutsumi et al., 2005). 477 

Some examples are shown in Table S1. 478 

Tryptamine is a primary amine alkaloid found widely in nature in both the plant and animal 479 

kingdoms and known for its hallucinogenic effects (Collins, 2011). Metabolism of some synthetic 480 

tryptamines has been studied (Kamata et al., 2006; Michely et al., 2015; Narimatsu et al., 2008).   481 

Arylcycloalkylamines, which include the ketamine derivative methoxetamine (MXE) and 482 

phencyclidine derivatives, have emerged as legal alternatives to ketamine (Roth et al., 2013). MXE, 483 

which has gained popularity in several European countries (EMCDDA, 2014), is extensively 484 

metabolized (Meyer et al., 2013) but it was detected as parent MXE in wastewater from Belgium 485 

and Switzerland (Kinyua et al., 2015).  486 

Benzodiazepines are psychoactive substances whose core structure is a benzene ring fused 487 

to a diazepine ring. Benzodiazepines are known as tranquilizers and are among the most commonly 488 

prescribed antidepressant medications. Although a useful pharmaceutical, there is potential for 489 

abuse due to their hypnotic and sedative effects – even to the extent of being used as “date rape” 490 

drugs (Schwartz et al., 2000). From now on we will refer to those benzodiazepines used illegally as 491 

design benzodiazepines. Designer benzodiazepines have become a rapidly growing class of drugs 492 

on the NPS online market, since a medical prescription is not needed. Since designer 493 

benzodiazepines have increased in popularity, studies have been conducted characterizing their 494 

human metabolism (Huppertz et al., 2015; Moosmann et al., 2013).  495 

Up to now, no designer phenethylamines, tryptamines or designer benzodiazepines and 496 

metabolites have been detected in wastewater and only two studies has reported the stability of 497 

some phenylethylamines in wastewater (Bade et al., 2016; Senta et al., 2015b).  498 
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Although the interpretation of quantitative results should be done carefully for NPS due to 499 

the lack of metabolic information, the qualitative monitoring could lead to a better understanding of 500 

the frequency of use and could identify changes in consumption. 501 

 502 

3. EXPOSURE BIOMARKERS FROM ENVIRONMENT AND FOOD  503 

Two important exposure pathways for potentially harmful compounds are the dietary intake 504 

and the exposure from the surrounding daily environment. The monitoring of various classes of 505 

compounds for which exposure commonly occurs through these routes is necessary to safeguard 506 

public health. Representative chemical classes have been chosen as examples for this paper. 507 

Pesticides, mycotoxins and parabens are three classes of compounds for which exposure occurs 508 

through the intake of contaminated food or absorption through the skin and adverse health effects 509 

can be foreseen for humans (Błędzka et al., 2014; Heyndrickx et al., 2015; Rizzati et al., 2016; 510 

Warth et al., 2013). Exposure through the indoor environment (furniture, electronics, packaging and 511 

personal care products (PCPs)) is characteristic for UV-filters, plasticizers and brominated flame 512 

retardants. 513 

This section reviews the specific biomarkers of each of the above mentioned chemical 514 

classes which could be measured in wastewater in order to assess the overall exposure to these 515 

compounds through a WBE approach. When relevant, we have also included the metabolites of 516 

these chemicals to be explored as a suitable biomarker. The suggested biomarkers are reported in 517 

Table S2 including also metabolites, whenever such information is available.  518 

 519 

3.1 Pesticides  520 

Pesticides are chemicals commonly used for control of harmful organisms, such as fungi, 521 

insects and weeds. They are mostly used for crop protection, but can also be used for livestock 522 

protection, as well as for other industrial and household purposes, such as termite prevention. The 523 
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general population is exposed to pesticides mainly through diet (Ntzani et al., 2013), but also 524 

through household use (Trunnelle et al., 2013) and inhalation of polluted air - particularly in 525 

agricultural areas where aerial spraying of pesticides occurs (Coscollà et al., 2010). Exposure to 526 

pesticides is of public concern as they may cause health effects such as elevated rates of chronic 527 

diseases, like cancer or diabetes, as well as neurodegenerative disorders such as Parkinson disease, 528 

birth defects and reproductive diseases (Rizzati et al., 2016). Young children are the most 529 

susceptible to be at risk (European Food Safety Authority, 2013). 530 

There are several types of pesticides and they are generally classified by their chemical 531 

structure: carbamate, organophosphate or triazine pesticides (Table S2). They may also be 532 

classified by the type of pest they control, such as herbicides, which are intended to kill weeds and 533 

other unwanted plants, and insecticides, which kill insects and other arthropods. Pesticides are 534 

mostly formulated as mixtures with individual components which may act independently of each 535 

other, interact or have dose-addition effects (Hernández et al., 2013).  536 

Until now, there are only two WBE studies (Rousis et al., 2016a, 2016b) published on 537 

human exposure to pesticides. The first work (Rousis et al., 2016a) proposed for the first time a new 538 

application for pesticides, where pyrethroid, triazine and organophosphate metabolites were 539 

monitored in influent wastewater of seven Italian cities. The most frequently detected compounds 540 

were the specific metabolite of chlorpyrifos and chlorpyrifos-methyl, 3,5,6-trichloro-2-pyridinol 541 

(TCPY), the metabolite of diazinon (2-isopropyl-6-methyl-4-pyrimidinol, IMPY), the pyrethroid 542 

metabolites 3-phenoxybenzoic acid (3-PBA, common metabolite of about 20 pyrethroids), 3-(2,2-543 

dichlorovinyl)-2,2-dimethyl-(1-cyclopropane)carboxylic acid (DCCA, common metabolite of 544 

permetrin, cypermetrin and cyflutrin) and two alkyl phosphate metabolites. The second work 545 

(Rousis et al., 2016b) applied the novel WBE approach to assess further exposure to pyrethroids, 546 

concretely 3-PBA, cis-DCCA and trans-DCCA. The obtained results were in agreement with the 547 
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Human Biomonitoring (HBM) profiles in urine samples of the general population, reported in the 548 

literature.  549 

Yusa et al. 2015 reviewed analytical methods for HBM of pesticides and found that the most 550 

commonly biomonitored ones are carbamates, herbicides, neonicotinoids, organophosphates, 551 

pyrethroids and sulfonylurea herbicides – all of which can be monitored in urine samples and they 552 

can be good potential biomarkers for WBE. However, some other pesticide classes, such as 553 

organochlorines, are probably not suited to WBE due to their non-polar characteristics and their 554 

poor excretion in urine (Yusa et al., 2015).  555 

As described previously for other substances, the metabolites of pesticides rather than the 556 

parent substances should be measured in wastewater to avoid contributions from sources other than 557 

human metabolism. It has to be emphasized that some pesticide metabolites are also formed in the 558 

environment (i.e. atrazine undergoes dealkylation in water systems forming human metabolites) and 559 

therefore more research is needed.  Moreover, there are some common metabolites produced by 560 

different classes of compounds, such as organophosphate pesticides, organophosphate plasticizers 561 

and flame retardants, and this should be taken into account in a WBE approach. The novel method 562 

developed by Rousis et al. is considered as a valuable tool for obtaining objective, direct 563 

information on pesticide exposure levels and could provide complementary information for HBM 564 

studies. Table S2 presents the main potential biomarkers of exposure to pesticides selected by 565 

considering the detection frequency in urine, and the concentration levels (Barr, 2008; Yusa et al., 566 

2015).  567 

 568 

3.2  Mycotoxins  569 

Mycotoxins are toxic fungal metabolites that can be found in food and feed which are 570 

intended for human and animal consumption (i.e. cereals such as rice, maize and wheat). There is 571 
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huge concern of human health risks related to the ingestion of these substances, since they are stable 572 

in food processing and cooking. Maximum tolerable levels in food commodities were therefore 573 

legally established in many countries (Comission Regulation 1881/2006, 2006). While, nowadays, 574 

approximately 400 compounds belong to this group, only 10-15 are considered to be priority 575 

mycotoxins, due to higher occurrence and toxicity. These latter compounds belong to the groups of 576 

aflatoxins, ochratoxins, patulin and fusarium toxins (tricothecenes, fumonisins, zearalenone and 577 

zearalenone derivatives) (Anfossi et al., 2016; Turner et al., 2015). HBM studies performed on 578 

general population have shown that the most studied mycotoxin biomarkers in urine samples are 579 

aflatoxin M1 (AFM1), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), fumonisin B1 580 

(FB1) and zearalenone (ZON) (H Fromme et al., 2016; Heyndrickx et al., 2015). If mycotoxin 581 

contaminations are going to be increased in the near future due to higher global food demand and 582 

global climate and environment changes, new methods are needed to evaluate the human exposure 583 

to mycotoxins (Marroquín-Cardona et al., 2014). Thus, a novel approach such as the WBE can be 584 

useful to provide complementary information to existing methods.  585 

Few studies dealing with the determination of mycotoxins in wastewater have been 586 

published. The studied analytes were detected at very low concentrations (few ng/L), but at high 587 

detection frequency. In addition to parent compounds, some human metabolites were also 588 

investigated. The detected mycotoxins were DON, beauvericin (BEA), 3-Acetyldeoxynivalenol (3-589 

AcDON), NIV, ZON, α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) (Kolpin et al., 2014; Laganà 590 

et al., 2004; Schenzel et al., 2012, 2010; Wettstein and Bucheli, 2010). None of these studies 591 

attempted to apply the WBE approach to these substances; they had only a monitoring scope. In the 592 

present paper a selection of mycotoxins and their related potential biomarkers for a WBE approach 593 

were reported for the first time (Table S2). 594 

 595 

3.3  Parabens  596 
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Parabens are a group of chemicals that is drawing a lot of interest in the current discussion 597 

given their potential endocrine disrupting properties, since studies have shown that they have 598 

potential adverse health effects (Hu et al., 2013; Kim et al., 2015; Zhang et al., 2013). This has 599 

raised concern considering their widespread use. Parabens are used as preservatives in many 600 

different products, such as cosmetics, PCPs and foods, and can be commonly found in household 601 

products.  602 

Some studies also investigated the occurrence and fate of parabens in wastewater (González-603 

Mariño et al., 2009; Gracia-Lor et al., 2012a; Kasprzyk-Hordern et al., 2008), but not from a WBE 604 

perspective. Therefore, a list of known urinary biomarkers for paraben exposure is reported in 605 

Table S2. Future research should be addressed in order to explore paraben biomarkers for WBE.  606 

 607 

3.4.  UV-Filters  608 

Overexposure to ultraviolet (UV) radiation has been associated with skin disorders, such as 609 

cancer (Ramos et al., 2016). This led to the widespread usage of UV filters in a variety of personal 610 

care products to protect against UV radiation, i.e., sunscreen, cosmetics, beauty creams, body 611 

lotions, hair sprays and shampoos (Brausch and Rand, 2011). UV filters are also used in food 612 

packages, plastics and textiles to prevent polymer degradation. Hence, human exposure occurs 613 

through multiple routes such as dermal absorption, ingestion of contaminated food and tap water 614 

(Valle-Sistac et al., 2016). Two major types of UV filters are currently available; organic UV filters 615 

are used to absorb UVA and/or UVB radiation, whereas inorganic UV filters mainly reflect the 616 

radiation. Given the high photostability and lipophilicity, many UV filters can enter biological 617 

membranes and bioaccumulate in the body, including in the placental tissues (Valle-Sistac et al., 618 

2016).  However, it is important to note that most UV-Filters are released into the sewers without 619 

going through the body (Daughton and Ruhoy, 2009; Ruhoy and Daughton, 2008). This fact would 620 

contribute to a large uncertainty in its estimation. 621 
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Urinary analysis has frequently detected UV filters at various levels, demonstrating human 622 

exposure (Dewalque et al., 2014; Louis et al., 2015). Despite their widespread use, between 2010 623 

and 2015 only 20 studies have been published in peer reviewed journals dealing with UV filters 624 

detection in wastewater (Ramos et al., 2016). Yet, available data indicates that major UV filters 625 

groups, i.e. benzophenone derivatives, p-aminobenzoic acid derivatives, camphor derivatives, 626 

benzotriazole derivatives, salicylate derivatives, benzimidazole derivatives, triazine derivatives, 627 

cinnamate derivatives, crylene derivatives, and dibenzoyl methane derivatives, are ubiquitous in 628 

wastewater with concentrations ranging from the ng/L to the mg/L level (Gago-Ferrero et al., 2011; 629 

Rodil et al., 2012). Evidence from mammalian studies indicate that various UV filters are endocrine 630 

disruptors, acting as estrogenic, antiestrogenic, antiandrogenic or antithyroid (Louis et al., 2014). 631 

These results find support in recent epidemiologic studies reporting an association between human 632 

urinary levels of certain UV filters and couples fecundity, i.e. BP-2 (Louis et al., 2014), and 633 

decrease semen quality, i.e. BP-3 and BP-8. Therefore, (Louis et al., 2015) highlighted the 634 

importance of further studies exploring human exposure to UV filters. Despite the presence of UV 635 

filters has been reported in wastewater (Ramos et al., 2016; Tsui et al., 2014) no WBE approaches 636 

have been yet tested to evaluate human exposure to these substances. However, the high stability of 637 

these compounds and the indication of particular metabolite signatures (Le Fol et al., 2015) suggest 638 

potential biomarkers for UV filters in wastewater based biomarkers to support epidemiological 639 

studies (Table 1 and S2). 640 

 641 

3.5.  Plasticizers 642 

  Plastics are very versatile materials typically consisting of organic polymers of high 643 

molecular mass, which may contain other substances. Manufacturers often add different chemicals 644 

to plastics to give them specific characteristics, such as flexibility, resilience and pliability. These 645 

plasticizers mainly include phthalates and adipates, and because of their environmental persistence 646 
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and their widespread use, it is unsurprising that they can be found in wastewater and in the 647 

receiving environment (Barnabé et al., 2008; Gao and Wen, 2016; Olofsson et al., 2013; Zolfaghari 648 

et al., 2014). Some of these chemicals and/or their derivatives interfere with endogenous hormone 649 

signalization in animals and humans, raising concerns about their potential to cause long-term 650 

diseases (Joint Fao Oms Expert Committee On Food Additives, 2010). In particular phthalates (e.g. 651 

bis(2-ethylhexyl) phthalate and, dibutyl phthalate) were associated with the disruption of 652 

hormonally-mediated pathways, as well as increased risk for cancer (“Toxicological profile for 653 

di(2-ethylhexyl)phthalate (DEHP),” 2002, “Toxicological profile for Di-n-butyl-Phthalate,” 2001). 654 

Furthermore, epidemiological observational studies suggest that there is a consistent association of 655 

blood and urine concentrations of phthalates, and some effects, such as those mentioned above 656 

(Joint Fao Oms Expert Committee On Food Additives, 2010; Kim et al., 2015; Wang et al., 2016). 657 

Due to a better toxicological profile (Bhat et al., 2014) and a better blood compatibility (Zhong et 658 

al., 2013), other plasticizers, such as di-isononyl cyclohexane-1,2-dicarboxylate (DINCH), have 659 

been increasingly used in recent years as alternatives in PVC films and medical devices. 660 

Metabolites of phthalates, adipates, and DINCH have been found in urine (Fromme et al., 2016; 661 

Guo et al., 2011; Herrero et al., 2015; Loftus et al., 1993; Silva et al., 2007), but their presence in 662 

wastewater has never been investigated. For a list of known biomarkers in urine see Table S2. 663 

 664 

3.6  Flame retardants  665 

Flame retardants (FRs) are chemical additives for manufactured materials, such as plastics 666 

and textiles, to inhibit, suppress, or delay the production of flames to prevent the spread of fire. 667 

Brominated flame retardants (BFRs) and organophosphorus flame retardants (PFRs) are the most 668 

used classes of organic FRs. Due to their high log Kow, BFRs are lipophilic and preferentially 669 

retained in the human body, e.g. in the blood or adipose tissue. They are only slowly metabolized to 670 

hydroxylated metabolites (e.g. HO-PBDEs), which are also retained in the body and thus not 671 
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excreted in the urine. The presence of BFRs in the sewer system is largely due to direct input from 672 

the indoor environment, following washing out of dust and being associated with particles. PFRs 673 

are less persistent and rapidly metabolized in the human body (Van den Eede et al., 2013), they 674 

have been measured in municipal wastewater in Europe (Loos et al., 2012; Marklund et al., 2005), 675 

Australia (O’Brien et al., 2014) and United States (Schreder and La Guardia, 2014). PFRs 676 

metabolites are excreted via urine and they are thus suitable biomarkers to assess human exposure 677 

to PFRs (Van den Eede et al., 2015); however, there are no reports on the presence of PFR 678 

metabolites in wastewater and no studies testing them in a WBE approach (Table S2).  679 

 680 

4. HEALTH BIOMARKERS  681 

Community health programs play an essential role for public health agencies to monitor and 682 

evaluate the present status of health in a community and measure the success of programs aimed at 683 

improving it. Current challenges mainly consist of the quick and reliable evaluation of the overall 684 

health of a population, and detect possible health and illness threats such as pandemics or higher 685 

prevalence of diabetes or cancer. 686 

The quantitative measurement of specific exogenous and endogenous biomarkers related to 687 

these diseases in wastewater has the potential to provide rapid information on different factors 688 

related to public health and illness. Specific classes of pharmaceuticals such as antibiotics and 689 

benzodiazepines and their metabolites are exogenous compounds, which can be related to their use 690 

for specific illnesses or diseases, whereas endogenous compounds, such as α-fetoprotein, 691 

chroriogonadotropin (hCG) and isoprostanes, are more directly related to cancer or stress. 692 

In this section, both exogeneous and endogenous specific biomarkers are presented and 693 

suggested to monitor health issues (Table S3) through the WBE approach. In addition, DNA-based 694 

approaches, currently applied in the field of WBE, have been reviewed. 695 

 696 
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4.1 Pharmaceuticals  697 

4.1.1  Antibiotics  698 

Antibiotics (ABs) can be suitable biomarkers for representing human health status 699 

associated with bacterial infections. The determination of reliable data on their consumption is of 700 

interest as AB use is one of the main factors responsible for AB resistance (Euro-CDC, 2012). WBE 701 

may give a better understanding of real time use and misuse of ABs at the population level, by 702 

supporting for example prescription data from official sources and annual sales.  703 

Many ABs are excreted unchanged in urine (Castiglioni et al., 2006; Huang et al., 2011), 704 

hence, parent drugs are generally targeted as biomarkers (Table S3). However, the selection of a 705 

significant AB biomarker should not be limited to the parent drug only; in fact, the investigation of 706 

specific metabolites is adding specificity to the analysis avoiding biases coming from the direct 707 

disposal of the AB. This is particularly relevant for ABs widely used for veterinary treatments. The 708 

most targeted classes of ABs are β-lactams, quinolones and fluoroquinolones, sulphonamides, 709 

tetracyclines and macrolides. Apart from β-lactams that undergo easy hydrolysis, sulphonamides 710 

and macrolides are very persistent, and are therefore also detected in treated wastewater (Jelic et al., 711 

2012). Stability of the ABs metabolites in wastewater is less understood. 712 

The occurrence of ABs in influent wastewater has been widely investigated in several 713 

countries (Gracia-Lor et al., 2012b; Kümmerer, 2009; Verlicchi et al., 2012). Seasonal variability of 714 

population-normalized mass loads was observed by Castiglioni et al. 2006, using the WBE 715 

approach, showing a difference in percentage from winter to summer of 47, 77 and 100 for 716 

ciprofloxacin, ofloxacin and sulphamethoxazole, respectively (Castiglioni et al., 2006). Temporal 717 

monitoring of ABs at several time scales showed a higher variability monthly/hourly than 718 

daily/weekly along with seasonality in mass fluxes for ciprofloxacin, ofloxacin and clindamycin 719 

(Coutu et al., 2013). Deconjugation during in-sewer transport may influence the influent loading of 720 

sulfamethoxazole (Snip et al., 2016) depending on the type and size of the served catchment 721 
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(Polesel et al., 2016). Application of WBE helped in determining the usage of ABs in areas where 722 

consumption data were scarce or a proper regulation was missing, revealing an excessive use in 723 

China (Yuan et al., 2015).  724 

 725 

4.1.2 Benzodiazepines  726 

Benzodiazepines are used therapeutically for a considerable number of applications, 727 

including anxiety and sleep disorders. Their primary mode of action is an enhancement of the action 728 

of the neurotransmitter gamma-aminobutyric acid which may result in anticonvulsant, anxiolytic, 729 

hypnotic, muscle relaxant and sedative effects. Benzodiazepines and benzodiazepine analogs are 730 

commonly prescribed; however, they are also among the most frequently abused prescription 731 

medications (Button, 2015). Despite the risk for abuse, approximately 5.2% of US adults between 732 

18 and 80 years of age used benzodiazepines in 2008, with a double prevalence for women than 733 

men (Olfson et al., 2015). As such, monitoring of benzodiazepines is of public concern.  734 

Monitoring benzodiazepines in populations could be achievable via WBE as they are 735 

normally halogenated and hence resistant to biodegradation (Kosjek et al., 2012). Multiple studies 736 

have already identified both parent benzodiazepines and their urinary metabolites in wastewater 737 

influent (Baker et al., 2014; Borova et al., 2014; Castrignanò et al., 2016; Fernández et al., 2014; 738 

Hummel et al., 2006; Kosjek et al., 2012; Racamonde et al., 2015, 2014). Differences in the 739 

behavior of benzodiazepines are associated with differences in functional substituent groups, and 740 

mainly the hydroxylated tranquilizers, oxazepam, and temazepam, were reported to be present in 741 

influent and effluent wastewater (Bijlsma et al., 2012; Hummel et al., 2006; Löffler et al., 2005). 742 

A summary of the most commonly prescribed and detected benzodiazepine parent 743 

compounds and their metabolites, which have been identified in urine, in addition to identification 744 

in wastewater and stability data, when available, are presented in Table S3.  745 

 746 
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4.1.3 Other pharmaceuticals  747 

Even if many works have analysed the presence of pharmaceuticals in urban wastewater, 748 

only a few studies investigated these chemicals as WBE biomarkers. Some examples can be found 749 

in Table 1. Furthermore, a list of proposed pharmaceuticals is given in Table S3 with their 750 

excretion rates.  751 

 752 

4.1.4. Chiral pharmaceuticals  753 

 More than 50% of pharmaceuticals currently used are chiral although they are usually 754 

manufactured as racemic mixtures (Petrie et al., 2015; Vazquez-Roig et al., 2014). Human 755 

metabolism and microbial processes during wastewater treatment can result in the enrichment of 756 

one specific enantiomer. Thus, the analysis of chiral compounds in wastewater allows to distinguish 757 

between usage of pharmaceuticals due to intentional human ingestion and from accidental release 758 

(direct disposal). For instance, enantioselective analysis was used by (Vazquez-Roig et al., 2014) to 759 

tentatively propose direct disposal of atenolol where a moderate higher average daily load was 760 

observed. Recently, (Petrie et al., 2016) identified direct disposal of the antidepressant fluoxetine 761 

via the sewer network using wastewater analysis. 762 

 763 

4.2. Endogenous compounds  764 

Endogenous chemicals are produced by biological processes associated with stress or 765 

normal metabolism. Changes in biological mechanisms may result in alterations of the endogenous 766 

compound production and, therefore, measurement of such compounds can be used as indicator of 767 

health status and disease (Daughton, 2012b; Group, 2001; Hagger et al., 2006). Endogenous 768 

biomarker analysis has been extensively studied as diagnostic or prognostic tools in clinical 769 

medicine, and can be further applied to the field of WBE (Daughton, 2012b). Thus far, the 770 
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investigation of endogenous biomarkers has been more focused on diseases such as cancer, diabetes 771 

and cardiovascular disorder than on the overall health status. However, the number of biomarkers 772 

validated for routine clinical practice is rather limited (Poste, 2011; Rifai et al., 2006), which falls 773 

into even smaller numbers of biomarkers for WBE when considering only those excreted into urine. 774 

Nevertheless, a range of endogenous compounds have been suggested as wastewater biomarkers of 775 

effect including cancer (prostate specific antigen, α-fetoprotein) (Thomas and Reid, 2011; Yang et 776 

al., 2015c), oxidative stress (isoprostanes) (Daughton, 2012b; Ryu et al., 2015; Thomas and Reid, 777 

2011) and health (anti-inflammatory eicosanoids) (Daughton, 2012b). To date, studies conducted on 778 

candidate endogenous biomarkers in wastewater are based on targeted analysis of specific markers 779 

such as isoprostanes (Ryu et al., 2015) and cancer biomarkers (Yang et al., 2015c). However, it is 780 

important to note that omics approaches also hold promising and important roles in future 781 

developments and applications of endogenous biomarkers analysis in WBE (Rice et al., 2015). The 782 

added value of analyzing these compounds would reside mainly in relative comparisons, both intra- 783 

and inter- communities (Daughton, 2012b). Compared to the interpretation of the exogenous 784 

biomarkers, where absolute values are emphasized, the use of endogenous biomarkers is more 785 

focused on detecting changes over time or between communities. Such data can reveal emerging 786 

trends (i.e., early warning system) and health disparities caused by various factors (e.g., exposure, 787 

lifestyle). 788 

 789 

4.3. DNA  790 

The demand for sensitive, low-cost and high-throughput methods to characterize DNA/RNA 791 

sequences has driven the development of molecular biology techniques and bioinformatics, i.e., 792 

PCR-based approaches and next generation sequencing (NGS) (Ryoo et al., 2013). Massive 793 

sequencing is nowadays possible, owing to the development of different NGS platform that allows 794 

an entire genome to be sequenced in less than one week. These technical advances led to a rapid 795 
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increase in new applications, including DNA-based health biomarkers. During the last decade an 796 

increasing number of studies took advantage of these developments, and applied them to the field of 797 

WBE. Several examples highlight the potential of the approach. In the field of virological 798 

surveillance, wastewater screening has been used to identify the viral strains that are circulating in 799 

the community, supporting epidemiological studies of the related viral infections and working as an 800 

early warning tool (Hellmér et al., 2014; Kokkinos et al., 2011; Mclellan et al., 2013; Zhou et al., 801 

2014). Hellmér et al. 2014 investigated the presence of eight pathogenic viruses (norovirus, 802 

astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis A virus [HAV], and hepatitis E 803 

virus) in wastewater from Sweden to explore whether their identification could be used as an early 804 

warning of outbreaks. Results show that two strains were involved in an ongoing outbreak in 805 

Scandinavia and were also identified in samples from patients with acute hepatitis A in Gothenburg 806 

during spring of 2013.  807 

A similar framework has been applied in other areas such as the study of the epidemiology 808 

of the emerging human pathogens (Mclellan et al., 2013; Webb et al., 2015), and antibiotic 809 

resistance patterns of populations (Colomer-Lluch et al., 2014; Kumaraswamy et al., 2014; 810 

McLellan and Eren, 2014). One of the most recent applications has been in the field of human 811 

metabolic disorders. With the obesity epidemic reaching alarming levels, there is a need to set 812 

biomarkers to identify populations or sub-populations at risk (Lyssimachou et al., 2015). Recently, 813 

a good correlation has been established between the gut microbiome and obesity. In fact, only a few 814 

bacterial species are sufficient to distinguish between lean and obese individuals (Le Chatelier et al., 815 

2013). These findings prompted a large study in the US using oligotyping of high-throughput 16S 816 

rRNA gene sequence data to screen wastewater from 71 cities. It was demonstrated that cities could 817 

be differentiated by their sewage bacterial communities, and the community structures were good 818 

predictors of a city’s estimated level of obesity (Newton et al., 2015). This example illustrates that 819 
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once specific biomarkers are identified, DNA-based analysis in wastewater can work as a powerful 820 

tool to support epidemiological studies 821 

 822 

5. POPULATION BIOMARKERS  823 

Accurate estimation of population size is necessary to normalize WBE data to the per capita 824 

level, which allows for temporal and spatial comparisons to be made (van Nuijs et al., 2011b). A 825 

review of all uncertainties associated with WBE found that there is a direct relationship between the 826 

uncertainty in measuring the population size and the uncertainty in the calculated daily loads of 827 

drugs (Castiglioni et al., 2013; Lai et al., 2015a). Therefore, accurate data on population size are 828 

needed to make decisions involved with planning and forecasting, assessing services and 829 

infrastructure, policy making, informing legislation and resource allocation at the level of 830 

neighborhood, city, province or country.  831 

Current methodologies to estimate population size are based on public surveys (such as 832 

census taking), complemented with a wide array of demographic statistics, such as tourism and 833 

potential commuters. Census, however, can become increasingly outdated and cannot be easily 834 

updated to accommodate change such as births, deaths, and migration (movement). Ideally, the 835 

census should be able to estimate both the de jure and the de facto population. The de jure 836 

population comprises all “usual” residents, mainly those with formal residences. The de facto 837 

population comprises all those who are present, regardless of the location of their formal or usual 838 

residence (Daughton, 2012a). A de facto population therefore includes all non-residents (e.g., 839 

commuters, visitors, tourists) and excludes all permanent residents who are absent. However, the 840 

census approach acquires a static snapshot estimate and usually succeeds in only capturing a portion 841 

of the population. Population size can also be estimated from hydrochemical parameters that are 842 

routinely determined in the WWTPs, including chemical oxygen demand (COD), biological oxygen 843 
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demand (BOD) and total nitrogen and phosphorus. However, these parameters are highly influenced 844 

by wastewater composition (i.e. industrial, domestic or mixed).  845 

Addressing the population uncertainty and identifying suitable markers for the population 846 

size markers is thus an important aspect of WBE (Been et al., 2014; Brewer et al., 2012; Lai et al., 847 

2011; O’Brien et al., 2014). Many compounds can be considered as biomarkers for population size. 848 

Possible candidates are both naturally occurring and synthetic xenobiotics (and their metabolites or 849 

formulation impurities), as well as products of endogenous metabolism. A variety of chemicals 850 

have been studied as biomarkers of population, including drugs (e.g., carbamazepine (Gasser et al., 851 

2010)), biocides (e.g., triclosan (Singh et al., 2010)), chemicals in household cleaning agents, e.g., 852 

fluorescent whiteners, trialkylamines (Managaki et al., 2006; Valls et al., 1989), and food additives, 853 

e.g., sucralose (Oppenheimer et al., 2011). An essential characteristic for a biomarker to be useful 854 

for measuring population size is, in addition to the general requirements for a biomarker, to have a 855 

low variance in the per capita daily excretion (Daughton, 2012a); the knowledge of quantities 856 

excreted daily ensures that diurnal variations (e.g., resulting from circadian biorhythms) are fully 857 

accommodated. Another requisite for these groups of biomarkers is that daily per capita excretion 858 

should not be affected by variables such as season, weather and geographic location.   859 

 To date, none of the population size markers proposed have yet met all necessary criteria 860 

mentioned above and additional characteristics described before for a WBE biomarker should also 861 

be considered. Some specific applications are listed below. 862 

 863 

5.1 Artificial sweeteners 864 

The most popular artificial sweeteners used in foodstuffs include acesulfame (ACE), alitame 865 

(ALI), aspartame (ASP), cyclamate (CYC), neotame (NEO), neohesperidin dihydrochalcone 866 

(NHDC), saccharin (SAC) and sucralose (SUC) (Table S4) (Kokotou et al., 2012; Lange et al., 867 

2012). All of them, except NEO and ALI, are allowed to be used as additives in food by the 868 
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European Union (EPCD, 2003), whereas five of them, ACE, ASP, NEO, SAC and SUC are 869 

approved to be used in the United States (USFDA, 2006).  870 

After ingestion, ACE, CYC and SAC are unaffected by the human metabolism, and thus 871 

largely eliminated from human bodies mainly unchanged in urine (Fermin and Vallvey, 2004; 872 

Lange et al., 2012; Renwick, 1985; Roberts et al., 2000; Sardesai and Waldshan, 1991). Studies 873 

have shown that, due to variations in individual metabolism, CYC could be metabolized to 874 

cyclohexylamine and excreted in urine (Renwick et al., 2004). For ALI, 7–22% is excreted 875 

unchanged in feces, while the rest, about 78–93% is hydrolyzed to aspartic acid and alanine amide 876 

(Fermin and Vallvey, 2004). The glucuronide conjugates of ALI metabolites are the major urinary 877 

metabolites in the first 24 hours. ASP is largely broken down in human gut to aspartic acid, 878 

phenylalanine and methanol (Fermin and Vallvey, 2004; Lange et al., 2012). NEO and its 879 

metabolites are excreted in urine and feces (WHO Food Additive Series No. 52, 2004). Less than 880 

2% is excreted unchanged, but it is extensively metabolized in humans via de-esterification to N-[N-881 

(3,3-dimethylbutyl)-L-alpha-aspartyl]-L-phenylalanine (WHO Food Additive Series No. 52, 2004). 882 

Minor metabolites of NEO include N-(3,3-dimethylbutyl)-L-aspartic acid, 3,3-dimethylbutanoic 883 

acid and the carnitine conjugate and glucuronide conjugate of 3,3-dimethylbutanoic acid (WHO 884 

Food Additive Series No. 52, 2004). NHDC is hydrolyzed in humans to isoferulic acid, 3-885 

hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid (Fermin and Vallvey, 2004; Lange et 886 

al., 2012). SUC is mainly excreted unchanged in human feces, while 8-22% was excreted in urine 887 

unchanged together with its glucuronide conjugates (Roberts et al., 2000). 888 

ACE, CYC, SAC, and SUC were found highly stable in raw wastewater at 4oC and room 889 

temperature over four days (Ordóñez et al., 2012). Under these conditions, only 20-30% of ASP 890 

remained after one day and none left after two days. Similarly, the amount of NHDC was found less 891 

than 10% in the raw wastewater at 4oC after one day and linearly decreased at room temperature 892 

over three days. Similar results were also reported in another study, in which ACE, CYC, SAC and 893 
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SUC remained stable in raw wastewater at 4oC over three weeks, whereas ASP and NHDC were 894 

degraded within a day (Tran et al., 2013). 895 

Since they are exclusively non-metabolized in humans and highly stable in wastewater, the 896 

parent compounds ACE, CYC, SAC and SUC can be measured for the WBE approach. However, 897 

the analysis of the metabolites of ALI, ASP, NEO and NHDC, rather than of the parent compounds, 898 

is required, since these artificial sweeteners are largely metabolized in humans. Stability tests for 899 

the metabolites in raw wastewater are also necessary for future studies. The use of artificial 900 

sweeteners has been shown to be highly related to human activities (Buerge et al., 2009) and, 901 

therefore, human consumption is considered as the major source of these substances in raw 902 

wastewater; however, other sources, such as animal feedings, agriculture farms and industries, can 903 

contribute to their presence in sewage systems (Kokotou et al., 2012).  904 

Certain artificial sweeteners also showed a specific weekly pattern: in general higher loads 905 

in influents (i.e. consumption) were observed during weekdays than during weekends (Kokotou et 906 

al., 2013). This could be associated with more commuters during the weekday than the weekend in 907 

the studied catchment. These previous studies together suggested that measuring artificial 908 

sweeteners could be useful for the WBE approach to understand the population flow in a given 909 

catchment. This concept of using human consumed chemicals, such as the artificial sweetener ACE, 910 

to back-estimate the population size from a given wastewater sample was firstly attempted and 911 

discussed by (Lai et al., 2011) and further refined using wastewater samples collected on the census 912 

day and applying a Bayesian model (O’Brien et al., 2014). Importantly, with chemical-derived 913 

population estimates, the robustness of the WBE data was improved, since the total methodological 914 

uncertainty of the approach was reduced (Lai et al., 2015a, 2011). 915 

 916 

5.2. Nicotine 917 



39 

 

Currently, nicotine and its metabolites have been used as population markers on two 918 

occasions (Chen et al., 2014; Senta et al., 2015a). In the first case, the authors focused solely on 919 

cotinine, whose loads varied only limitedly over one week and showed good correlation with the 920 

size of the investigated populations (i.e., correlation coefficient = 0.981) (Chen et al., 2014). 921 

However, geographical/cultural differences in tobacco use or fluctuations in the number of users 922 

have been raised as potential flaws to the use of cotinine as population marker (Chen et al., 2014). 923 

Moreover, consumption of tobacco could change due to tax and other tobacco-related policies, 924 

which could affect the potential of nicotine and its metabolites as population markers.  In the second 925 

study (Senta et al., 2015a), cotinine and trans-3’-hydroxycotinine loads were used to estimate the 926 

number of individuals contributing to the collected wastewater samples. Good agreement was found 927 

between nicotine metabolite load population estimates and census data, suggesting that the method 928 

is a viable approach to estimate the size of a population.  929 

 930 

5.3. Caffeine 931 

Caffeine and some of its major metabolites were recently tested as a population biomarkers. 932 

Caffeine was one of the compounds included in the exploratory study to estimate population size 933 

using samples collected on the census day and applying a Bayesian model (O’Brien et al., 2014). A 934 

strong correlation between caffeine mass loads and population size was observed. In the second 935 

study, generally good agreement between caffeine loads and hydrochemical parameters routinely 936 

determined at the WWTPs was found (Rico et al., 2016). In another recent study, three major 937 

caffeine metabolites: 1-methylxanthine, 7-methylxanthine and paraxanthine were tested together 938 

with caffeine as possible population biomarkers (Senta et al., 2015a). These compounds fulfilled 939 

some of the major requirements for an ideal biomarker - they are easily detectable and stable in 940 

wastewater samples. However, their mass loads in wastewater did not completely reflect the human 941 

excretion profile of caffeine, probably due to biases in caffeine pharmacokinetic data (see section 942 
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2.4 and Table S2) and additional sources of some metabolites and unconsumed caffeine. This 943 

makes the possibility of using caffeine and/or its metabolites as biomarkers for population size 944 

assessment rather difficult, at least without additional studies. 945 

 946 

5.4. Pharmaceuticals 947 

Concentrations and mass loads of pharmaceuticals in wastewater were used in the WBE field 948 

for the estimation of population size only on three occasions (Lai et al., 2011; O’Brien et al., 2014; 949 

Rico et al., 2016). The investigated compounds by Lai et al. (Lai et al., 2011) were atenolol (beta-950 

blocker), gabapentin (anti-convulsant), hydrochlorothiazide (diuretic), and venlafaxine (anti-951 

depressant). Atenolol was concluded to be the best option for this aim for the specific catchment. In 952 

addition to the compounds selected by Lai et al., the same group also investigated carbamazepine 953 

(antiepileptic), codeine, ibuprofen, paracetamol (analgesics), furosemide (diuretic), iopromide 954 

(contrast medium), naproxen (anti-inflammatory) and salicylic acid (metabolite of acetylsalicylic 955 

acid) and the measured loads were used in a collective model for the estimation of the population 956 

size (O’Brien et al., 2014). By cross validating the data, the authors demonstrated that large 957 

populations sizes could be estimated fairly accurately using the information of multiple chemical 958 

mass loads. However, it could not be improved for small populations. In the work published by 959 

(Rico et al., 2016) twelve human urine biomarkers were tested to estimate population size, six of 960 

them being pharmaceuticals (hydrochlorothiazide, carbamazepine, codeine, naproxen, salicylic acid 961 

and atenolol). However, by using these compounds, the population was under or overestimated 962 

compared to the hydrochemical population, but they have good prospects if the appropriate data 963 

sales are available.  964 

 965 

5.5. Endogenous compounds 966 
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An alternative for estimating the population size in the catchment area of a WWTP relies on 967 

monitoring influent wastewater for a biomarker linked to human metabolism. Chemicals involved 968 

in endogenous metabolism avoid many of the problems encountered with xenobiotics, since their 969 

association with human activities has a higher fidelity. Yet, their main problem is excessive intra- 970 

and inter-individual variation in excretion. Biomarkers of endogenous origin derive from human 971 

biochemical processes and undergo continuous urinary or fecal excretion. Several endogenous 972 

biomarkers, which have been considered in the past or which have the potential to estimate the 973 

population size more accurately (Table S4), are further discussed.   974 

An important endogenous biomarker, widely used in clinical chemistry and with detailed 975 

knowledge about its excretion, is creatinine (CR). A small portion of creatine (and 976 

phosphocreatine), which is stored predominately in skeletal muscle, is continually converted to 977 

form the endogenous anhydride, CR (a nitrogenous waste product cleared via the kidney); the rate 978 

of conversion, in males for example, is about 1.6–1.7% per day. The major factors involved with 979 

variability in CR output have been summarized by (Ryan et al., 2011). However, intra- and inter-980 

day CR excretion is not constant and daily excreted quantities can have high variance, being 981 

strongly influenced by diet composition. In addition, CR is being increasingly used as a food and 982 

nutritional supplement, adding yet another source of potential variation to CR excretion rates. 983 

Although CR has been used in WBE studies as population marker (Brewer et al., 2012; Chiaia et 984 

al., 2008), it was shown to be unstable in wastewater (completely decomposed within 24 h) (Chen 985 

et al., 2014).  986 

Another potential biomarker is coprostanol (CoP) that originates from gut microbial 987 

metabolism, making up roughly 60% of the overall sterol content in human feces. CoP is poorly 988 

absorbed from the gut (it does not undergo enterohepatic circulation) and is therefore fully excreted 989 

in the feces. Since the 2000s, CoP has been used as anthropogenic marker in wastewater and to 990 

gauge the degree of dilution of raw or treated wastewater in receiving surface water (Takada and 991 
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Eganhouse, 1998). However, CoP is excreted by various vertebrates in differing absolute and 992 

relative quantities and it is sometimes difficult to distinguish between human and animal 993 

contamination (Bull et al., 2002). Furthermore, CoP adsorbs substantially onto particulate matter 994 

found in wastewater and was thus discarded as potential population marker (Chen et al., 2014). 995 

Similar results were obtained for cholesterol (Chen et al., 2014); cortisol and androstenedione were 996 

investigated, but rapidly degraded in wastewater (Chen et al., 2014).  997 

Another example of biomarker relatively unique to human metabolism is 1-aminopropan-2-998 

one (1-aminopropanone: APR; 1-aminoketone). Through 1-aminopropan-2-ol, APR serves as a 999 

precursor to vitamin B-12 (Fitzsimons and Belt, 2005). It is very water soluble and it is excreted via 1000 

urine, but in much lower daily quantities than CoP. However, it is sometimes found in wastewater 1001 

at levels higher than in urine, implicating potential de novo microbial formation in sewage 1002 

(Fitzsimons and Belt, 2005), whilst it could not be detected on other occasions (Singh and 1003 

Gardinali, 2006). 1004 

5-hydroxyindoleacetic acid (5-HIAA), a metabolite of serotonin, has also been investigated. 1005 

Its excretion might be altered due to diseases (e.g., carcinoid tumors (Zuetenhorst, 2004)) and diet 1006 

(i.e., some fruits and nuts (Feldman and Lee, 1985) and salt intake (Sharma et al., 1993). 1007 

Furthermore, intra- and inter-individual variability in excretion has also been highlighted (Curtin et 1008 

al., 1996). Results from wastewater analysis showed good correlation with census data and the 1009 

authors considered it as a promising marker (Chen et al., 2014).  1010 

Ammonium (NH4
+) represents the major form in which ammonia (NH3) is found in 1011 

wastewater and originates from the breakdown of urea (Udert et al., 2006). It is mainly introduced 1012 

via toilets (Butler et al., 1995) and it is routinely measured by WWTP as a water quality parameter. 1013 

It is supposedly less affected by non-human sources compared to conventional parameters (e.g., 1014 

chemical or biological oxygen demand, total phosphorous) (van Nuijs et al., 2011b) and can 1015 

potentially be measured online using ion-selective electrodes. Fluctuations in ammonium loads have 1016 
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been shown to link well to population dynamics (Been et al., 2014). Yet, its use to estimate absolute 1017 

figures of the size of the de facto population might be undermined in rural areas due to the 1018 

contribution of agricultural sources.  1019 

 1020 

5.6. DNA 1021 

Deoxyribonucleic acid (DNA) is a nucleic acid that carries most of the genetic instructions 1022 

from all known living organisms and many viruses. DNA can be naturally shed into the 1023 

environment through urine, feces, exudates or tissue residues. Compared to most of chemical 1024 

compounds as a candidate of population biomarkers, DNA is much more stable and able to persist 1025 

in the environment from month to hundred years depending on species (Prüfer et al., 2014; 1026 

Thomsen and Willerslev, 2015). DNA biomarkers have been widely used in the field of medical 1027 

diagnostics and biomedicine (Altintas and Tothill, 2013; Liu et al., 2011; Ralla et al., 2014; Wang et 1028 

al., 2012). For WBE, DNA has a great potential to act as a population biomarker, not only because 1029 

of its little affinity to other species in wastewater and constant excretion by humans, but also for its 1030 

extreme stability and the possibility of being quantifiable Those robotic characteristics well meet 1031 

the proposed criteria of a proper population biomarker candidate (Dejean et al., 2011; Thomsen and 1032 

Willerslev, 2015). 1033 

Typically, the changes of DNA component and structure such as DNA damage, repair and 1034 

mutation could be used as biomarkers. Recently, a H2AX histone phosphorylation assay was 1035 

developed as DNA damage biomarker for human population study, as it represents an early event in 1036 

the cellular response against DNA double-strand breaks (Sánchez-Flores et al., 2015). However, to 1037 

select a population biomarker for WBE uses, one of the crucial criteria is to screen human specific 1038 

DNA. Wastewater is a complex matrix, which may contain DNA from various species such as 1039 

plants, animals, and viruses. A recent study by Yang et al (Yang et al., 2015a, 2015b) has proposed 1040 

to use community sewage sensors to identify human-specific mitochondrial DNA as a potential 1041 
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population biomarkers. In this study, human specific mitochondrial DNA associated with disease 1042 

biomarkers (Liu et al., 2011; Tipirisetti et al., 2014) was amplified from wastewater by a 1043 

specifically designed primer using quantitative real-time polymerase chain reaction (PCR) (Yang et 1044 

al., 2015a). More importantly, the amplicons were detectable by an electrochemical biosensor based 1045 

on a custom synthesized ferrocence intercalator as a signal transducer. The developed biosensors 1046 

allow for the detection of single nucleotide variation and enable the potential of portable sensors for 1047 

rapid identification of specific human biomarkers in wastewater.  1048 

1049 
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6. CONCLUSIONS AND FUTURE PERSPECTIVES 1050 

WBE is a rapidly developing scientific discipline with a strong transdisciplinary character. It 1051 

has shown great progress, and opens up many possibilities for expanding its application to provide 1052 

relevant information about lifestyle and public health.  1053 

This review has outlined potential wastewater biomarkers of exposure or effect that could be 1054 

used for future applications associated with lifestyle and wellbeing studies. However, it has also 1055 

discussed limitations and highlighted that more research is needed, for various proposed 1056 

biomarkers, before WBE can appropriately be applied. Moreover, several trends, needs and 1057 

recommendations are indicated: 1058 

- Human pharmacokinetic data (metabolism and urinary profile of excretion) are necessary to 1059 

ensure that the candidate biomarker is formed in the body in a high proportion and is excreted 1060 

mainly via urine. This information is highly relevant not only to back-calculate the 1061 

consumption/exposure of a certain substance by a community, but also to distinguish the 1062 

amount of a substance coming from human or other sources.  1063 

- In-sample and in-sewer stability studies are needed for a better application in WBE. Stability 1064 

tests are often performed in the laboratory, trying to reproduce the real conditions of 1065 

temperature and sewage composition or in-sewer conditions. An alternative would be the use of 1066 

in-silico tools to predict the stability of a compound in wastewater treatment processes. These 1067 

models do not guarantee the formation of a biotransformation product, so it may be used as an 1068 

indicator or a guide about the in-sewer stability of a residue and its potential adsorption (Reid 1069 

2014). Sorption onto the solid particulate or the conjugation of the biomarkers must also be 1070 

taken into account when assessing stability.   1071 

- Source identification is needed to ensure that discharges from exogenous sources that might 1072 

cause overestimation of the real amounts consumed are considered.  1073 
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- Cross validation of data (e.g. concentrations of pharmaceuticals in wastewater with bench-top 1074 

sales) is recommended for all applications. 1075 

- Multiple biomarkers for estimating the population size need to be set to allow for the 1076 

normalization of the data. The development of portable biosensors may allow rapid estimation 1077 

of the population contributing to the wastewater samples in the near future. 1078 

- Regular monitoring of sewage for viruses based on similar DNA biosensors may give an early 1079 

warning of a possible upcoming outbreak.  1080 

- Omics approaches also hold promising and important roles in future developments and 1081 

applications of endogenous biomarkers analysis in WBE. 1082 

 1083 

1084 
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TABLES 1108 

 1109 

Table 1. Overview of the most relevant biomarkers used so far and potential biomarkers (for more 1110 

details, please read the corresponding text and/or supporting information). 1111 

 1112 

Class Parent compound 
Biomarker/potential 

biomarker 

WBE 

application 
Reference 

Illicit drugs 

Cocaine Benzoylecgonine YES 

(Castiglioni and 

Gracia-Lor, 

2015; Gracia-

Lor et al., 2016) 

Amphetamine Amphetamine YES 

(Castiglioni and 

Gracia-Lor, 

2015; Gracia-

Lor et al., 2016) 

Methamphetamine Methamphetamine YES 

(Castiglioni and 

Gracia-Lor, 

2015; Gracia-

Lor et al., 2016) 

MDMA MDMA YES 

(Castiglioni and 

Gracia-Lor, 

2015; Gracia-

Lor et al., 2016) 

THC/Cannabis THC-COOH YES 

(Castiglioni and 

Gracia-Lor, 

2015; Gracia-

Lor et al., 2016) 

Alcohol Ethanol Ethyl sulfate YES 

(Rodríguez-

Álvarez et al., 

2015) 

Tobacco Nicotine 
Cotinine + trans-3'-

hydroxycotinine 
YES 

(Castiglioni et 

al., 2015b) 

Caffeine Caffeine See Table S1 NO  

NPS  See Table S1 NO  

Pesticides 20 pyrethroids 
 3-PBA YES (Rousis et al., 

2016b) 

Permetrin, 

cypermetrin, 

cyflutrin cis-DCCA YES 

(Rousis et al., 

2016b) 

Permetrin, 

cypermetrin, 

cyflutrin trans-DCCA YES 

(Rousis et al., 

2016b) 

Mycotoxines  See Table S2 NO  

Parabens  See Table S2 NO  

UV-filters  See Table S2 NO  

Plasticizers  See Table S2 NO  

Flame  See Table S2 NO  
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retardants 

Pharmaceuticals 

Atenolol Atenolol YES 

(Baz-Lomba et 

al., 2016; van 

Nuijs et al., 

2015) 

Citalopram Citalopram YES 

(Baz-Lomba et 

al., 2016; van 

Nuijs et al., 

2015) 

Carbamazepine Carbamazepine YES 

(Baz-Lomba et 

al., 2016; van 

Nuijs et al., 

2015) 

Diclofenac Diclofenac YES 
(Baz-Lomba et 

al., 2016) 

Metformin Metformin YES 
(van Nuijs et al., 

2015) 

Valsartan Valsartan YES 
(van Nuijs et al., 

2015) 

Benzodiazepines Oxazepam Oxazepam YES 
(Baz-Lomba et 

al., 2016) 

Artificial 

sweeteners 
Acesulfame Acesulfame YES 

(Lai et al., 

2015a) 

Endogenous 

Compounds 
Serotonin 5-HIAA YES 

(Rico et al., 

2016) 

Ammonia Ammonium YES 
(Been et al., 

2014) 

 1113 

 1114 

1115 
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FIGURE CAPTIONS 1116 

 1117 

Figure 1. Main requirements of a biomarker 1118 

1119 
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