Topology of Xer recombination on catenanes produced by Lambda integrase

Bath, J., Sherratt, D. J. and Colloms, S. D. (1999) Topology of Xer recombination on catenanes produced by Lambda integrase. Journal of Molecular Biology, 289(4), pp. 873-883. (doi: 10.1006/jmbi.1999.2804) (PMID:10369768)

Full text not currently available from Enlighten.


Xer site-specific recombination at the psi site from plasmid pSC101 displays topological selectivity, such that recombination normally occurs only between directly repeated sites on the same circular DNA molecule. This intramolecular selectivity is important for the biological role of psi, and is imposed by accessory proteins PepA and ArcA acting at accessory DNA sequences adjacent to the core recombination site. Here we show that the selectivity for intramolecular recombination at psi can be bypassed in multiply interlinked catenanes. Xer site-specific recombination occurred relatively efficiently between antiparallel psi sites located on separate rings of right-handed torus catenanes containing six or more nodes. This recombination introduced one additional node into the catenanes. Antiparallel sites on four-noded right-handed catenanes, the normal product of Xer recombination at psi, were not recombined efficiently. Furthermore, parallel psi sites on right-handed torus catenanes were not substrates for Xer recombination. These findings support a model in which psi sites are plectonemically interwrapped, trapping a precise number of supercoils that are converted to four catenation nodes by Xer strand exchange.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Colloms, Dr Sean
Authors: Bath, J., Sherratt, D. J., and Colloms, S. D.
College/School:College of Medical Veterinary and Life Sciences > School of Molecular Biosciences
Journal Name:Journal of Molecular Biology
Publisher:Academic Press
ISSN (Online):1089-8638

University Staff: Request a correction | Enlighten Editors: Update this record