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Abstract 
 
This study investigates the morning commute problem with both household and individual 
travels, where the household travel is a shared ride of household (family) members. In 
particular, it considers the situation when a proportion of commuters have to drive their 
children to school first and then go to work (household travel). For household travel, 
departure time choice is a joint decision based on all household members’ preferences. 
Unlike the standard bottleneck model, the rush-hour dynamic traffic pattern with mixed 
travelers (household travelers and individual travelers) varies with the numbers of individual 
travelers and households, as well as the schedule difference between school and work. Given 
the numbers of individual travelers and households, we show that by appropriately 
coordinating the schedules of work and school, the traffic congestion at the highway 
bottleneck can be relieved, and hence the total travel cost can be reduced. This is because, 
departure/arrival of individual and household travels can be separated by schedule 
coordination. System performance under schedule coordination is quantified in terms of the 
relative proportions of the two classes of travelers and is compared with the extreme case 
when the same desired arrival time applies to both schooling and working. Furthermore, the 
efficiency of work and school schedule coordination in reducing travel cost is bounded. This 
efficiency is also compared with that at the system optimum where queuing is fully 
eliminated and schedule delay cost is minimized (achieved by a joint scheme of first-best 
pricing and schedule coordination). 
 
Keywords: Morning commute; household travel; individual travel; bottleneck congestion; 
schedule coordination. 
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1. Introduction 
 
Traffic congestion is pervasive in many metropolitan areas and is worsening throughout 
many countries. In the literature, understanding the dynamic traffic pattern and managing 
traffic congestion in the morning peak hour have been studied extensively by both 
transportation scientists and economists. Vickrey (1969) was the first to propose the 
bottleneck model to capture the traffic dynamics in the rush hour. In Vickrey’s model, the 
congestion is modeled as a deterministic queue behind a bottleneck of fixed capacity. 
Travelers choose their departure times to minimize individual travel cost including travel 
delay cost and schedule delay cost. Based on this model, various issues have been studied, 
e.g., existence and uniqueness of user equilibrium solution at a single bottleneck (Smith, 
1984; Daganzo, 1985; Lindsey, 2004); road pricing, tradable credits, and tradable permits to 
manage traffic congestion (Arnott et al., 1990; Laih, 1994; Xiao et al., 2012; Tian et al., 2013; 
Nie and Yin, 2013; Wada and Akamatsu, 2013); stochastic bottleneck capacity and travel 
demand (Arnott et al., 1999; Lindsey, 2009; Xiao et al., 2015); morning commute with 
heterogeneous travelers (Arnott et al., 1994; van den Berg and Verhoef, 2011; Liu and Nie, 
2011; Liu et al., 2014b; Liu et al., 2015a; Liu et al., 2015c); integrated problem of parking 
and morning commute (Arnott et al., 1991; Zhang et al., 2008; Qian et al., 2011; Qian et al., 
2012; Yang et al., 2013; Liu et al., 2014a; Xiao et al., 2016); capacity drop and/or hyper-
congestion (Arnott, 2013; Liu et al., 2015b; Liu and Geroliminis, 2016); complementarity 
formulation or ordinary differential equation formulation (Ramadurai et al., 2010; Wu and 
Huang, 2015; Wang and Xu, 2016). 
 
However, most of the previous studies focus on analyzing and managing the commuting 
problem with individual travelers only. Little attention has been paid to household travels. 
Different from individual trips, a household trip consists of the travels of all household 
members, i.e., shared ride of household members. Note that ride sharing is encouraged as the 
same number of travelers can be transported with less vehicles and drivers, and traffic 
congestion and environmental pollution can be reduced. Recently, de Palma et al. (2015) 
considered that individuals live as couples and value time at home more when together than 
when alone. They estimated the trip-time preference for married and unmarried men and 
women in the Greater Paris region. More recently, Jia et al. (2016) considered the equilibrium 
trip scheduling for households where each household travel group consists of one adult 
traveler and one child, and the adult traveler has to send the child to school first and then go 
to the workplace. For household travel, more than one member in the household will be 
involved in the departure time choice decision, i.e., all the members’ preference of arrival 
times have to be considered (e.g., for work and for school). 
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In Jia et al. (2016), all travelers are assumed to be household travelers. This is reasonable as a 
first step to understand how household travel is different from individual travel in departure 
time choices. However, this is usually not the case in reality as there will be both household 
travelers and individual travelers. Therefore, not only the interactions among members within 
a household can affect departure time decisions and the traffic equilibrium, but also the 
interactions among household travelers and individual travelers (through sharing the same 
road network) can re-shape the dynamic traffic pattern in the morning peak. This study, by 
considering this more realistic case with mixed travelers, will help us to better understand the 
impact of household travels. Indeed, the model presented in this paper incorporates that in Jia 
et al. (2016) as a special or extreme case, where the number of individual travelers equals 
zero (this has been specified in Section 3). 
 
Specifically, we consider that there are two types of travels: individual travel and household 
travel. An individual travel consists of only one trip, i.e., going to the workplace (given that 
travelers have a desired arrival time for work). A typical household travel consists of two 
successive trips, i.e., dropping off the children at the school and then going to the workplace. 
In this case, there are two desired arrival times: desired arrival time at school and desired 
arrival time at work. For individual travel, travelers have no cost associated with the school, 
while the household travel will take into account the costs associated with both school and 
work. We firstly explore the dynamic equilibrium traffic pattern with both household and 
individual travels. Then we examine how to coordinate school schedule and work schedule in 
order to reduce the traffic congestion, and thus reduce the total travel cost. Also, we analyze 
the efficiency of schedule coordination (for work and school). 
 
It is worth mentioning that the efficiency of schedule coordination depends on relative 
proportions of the two classes of travelers, and can be bounded. Note that there is a branch of 
studies looking into staggered work hours (e.g., Henderson 1981; Yushimito et al., 2014; 
Shirmohammadi et al., 2015; Takayama, 2015). However, all of these studies focus on the 
coordination of work schedules for individuals. None of them involves household trips or 
school schedule. Besides, we found that total travel cost can decrease with the proportion of 
household travelers in the population (which can be counterintuitive as a larger number of 
households suggest a larger number of travelers in total). We also found that schedule delay 
cost does not always increase with the difference between the two desired arrival times (for 
work and school). 
 
The remainder of the paper is organized as follows. Section 2 presents problem description 
and the cost formulations for both households and individual travelers. The dynamic traffic 
pattern at departure/arrival equilibrium with mixed travelers is discussed in Section 3. Section 
4 analyzes the system performance under given numbers of different travelers and work and 
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school schedules, and then evaluates and bounds the efficiency of coordinating work and 
school schedules in reducing total travel cost. Numerical illustration and verification are 
presented in Section 5. Section 6 concludes the paper. 
 
2. Problem Formulation 
 
Consider a bottleneck-constrained highway connecting a residential area and a city center 
(workplace) as shown in Figure 1. There is a school between home and workplace after the 
highway bottleneck. In the morning commute, there are two types of travelers: individual 
travelers and household travelers, which are described in the following. 
 

 
Figure 1. Home-Bottleneck-School-Work Network 

 
Firstly, 1N  individual travelers have to drive to the city center to work, and their desired 

arrival time at the workplace is *
2t . For these individual travelers, they will make a trade-off 

between the travel time cost related to queue length at the highway bottleneck and the 
schedule delay cost of arriving early or late at work. 
 
Besides the 1N  individual travelers, there are travelers from 2N  households. For simplicity, it 

is assumed that there is one adult and one child per household (all of them are referred to as 
household travelers in this paper). While later in the paper we sometimes might use 2N  to 

refer to household travelers, the total number of household travelers is indeed 22 N×  

(including both the adults and the children). The adult members in the households have to 
drop off their children at the school first and then go to the workplace. The desired arrival 
time at the workplace is *

2t  (identical to that of the individual travelers) while the desired 

arrival time at the school is *
1t .1 It is assumed that * *

2 1 0t t tD = - ³ .2 When making departure 

																																																													
1 The desired arrival time at school might not be interpreted as the exact school start time. It can be a time point 
which allows sufficient flexibility (e.g., no need to run) for the child to arrive at class on time. Later in the paper, 
we refer to “later than desired arrival time for school” as “late for school”. 
2 This means that a household on-time for school might still be early for work, which is closer to the practice. 
From a modeling perspective, the case with * *

1 2t t>  would be similar to the case with * *
1 2t t<  if we exchange the 

“school” and “work”. 
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time decisions, these household travelers will not only consider the travel cost of traveling to 
work, but also traveling to school. 
 
2.1. Individual travelers 
 
The individual travel cost (including the travel time cost and the schedule delay cost) by 
departing at time t  is  

 ( ) ( ) ( ){ } ( ){ }* *
2 2max 0, max 0,c t T t t t T t t T t t=a× +b× - - + g × + - , (1) 

where ( )T t  is the travel time for a departure time t , a  is the value of unit travel time, and b  

and g  are the schedule penalties for a unit time of early arrival and late arrival respectively. It 
is assumed that 0g > a > b > . Without loss of generality, the fixed component of the travel 

time (or free-flow travel time) is assumed to be zero, so that ( )T t  only contains the queuing 

time at the bottleneck. Therefore, ( ) ( )T t q t s= , where ( )q t  is the queue length at the 

bottleneck at time t , and s is the constant service capacity. Traffic can leave the road at any 
time and incur no delay until the traffic flow exceeds the road’s capacity; and once flow 
exceeds capacity then deterministic (point) queue will develop. Thus, 

 ( ) ( ) ( ) ( )
( ) ( )

,   or 0d
0,   and 0d
r t s r t s q tq t
r t s q tt

ì - > >
= í £ =î

, (2) 

where ( )r t  is the rate of traffic arriving at the bottleneck at time t . 

 
Given the above standard setting in the literature, the departure rates from home (or arrival 
rates at the bottleneck) for commuters who arrive at the destination before and after desired 
arrival time *

2t  respectively are given by 

1r sa
=
a-b

, 1r sa¢=
a + g

. (3) 

For detailed derivation of Eq.(3), one may refer to Arnott et al. (1990). 
 
2.2. Household travelers 
 
For household travelers, they have to drive their children to school before going to work. 
They will try to minimize the travel cost of the household as a whole, which is 

 
( ) ( ) ( ){ } ( ){ }

( ) ( ){ } ( ){ }

* *
1 1

* *
2 2

max 0, max 0,

      max 0, max 0,

c t T t t t T t t T t t

T t t t T t t T t t

é ù= a × + b × - - + g × + -ë û
é ù+ a × + b × - - + g × + -ë û

, (4) 

The first part in Eq.(4) is the travel time cost and schedule delay cost for traveling to school 
(associated with the child in the household), while the second part is for work (associated 
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with the adult in the household). Following the travel cost assumption for individual travelers, 
the travel cost in Eq.(4) assumes zero free-flow travel time between school and work, and 
also assumes zero additional travel delay caused by dropping-off children at school (both 
assumptions can be relaxed with the current framework by adding a constant delay, which is 
briefly discussed in Appendix A).  
 
Also note that in Eq.(4), the value of time (VOT) and schedule delay penalties for school are 
considered identical to those for work. This simplification, as an initial step to understand 
dynamic traffic pattern under mixed travelers, makes the algebra in the paper much less 
tedious (but indeed still sufficiently complex). While in future study we will incorporate 
different VOTs and schedule delay penalties, the modeling framework and essential analysis 
here can still be applied in a similar way. 
 
We focus on the situation where * *

2 1 0t t- ³ , which means that the household can be on time 

for school while early for work. Note that, if we consider the free-flow travel time between 
school and workplace to be a positive constant 0swt > , 3  then the assumption should be 

modified to * *
2 1 swt t t- ³ . Given this, there are three possible situations for household travel, 

i.e., i) early for school and early for work; ii) late for school but early for work; iii) late for 
school and late for work. For those households early for school and work, the equilibrium 
departure rate (from home) is 

2r sa
=
a -b

. (5) 

For those household early for school but late for work, the equilibrium departure rate (from 
home) is 

2r sa¢ =
a -b + g

. (6) 

For those household late for school and work, the equilibrium departure rate (from home) is 

2r sa¢¢=
a + g

. (7) 

 
Derivation of the three rates given in Eq.(5), Eq.(6) and Eq.(7) is similar to that for the rates 
in Eq.(3). It is obvious to see that 2 2 2r s r r¢ ¢¢> > > , and 2 1r r=  and 2 1r r¢¢ ¢= , where 1r  and 1r¢  are 

given in Eq.(3). Note that 2 1r r=  and 2 1r r¢¢ ¢=  are due to the assumption of identical VOT and 

schedule delay penalties for school travel and work travel. While there are three possible 
situations for household, it does not mean that all of them will arise simultaneously under a 

																																																													
3 We assume 0swt =  throughout the analysis while we discuss the extension to 0swt ¹  in Appendix A. 
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specific dynamic traffic pattern at the departure/arrival equilibrium given the numbers of 
individual travelers and households, and the work and school schedule difference (as shown 
in Section 3, there are four possible specific equilibrium traffic patterns). 
 
3. Commuting Equilibrium with Mixed Travelers 
 
3.1. Equilibrium traffic patterns 
 
With the formulations in Section 2, we can derive the possible dynamic departure/arrival 
pattern at the user equilibrium. As shown in Figure 2, four possible departure/arrival patterns 
can appear (later we refer to each pattern by “Case”), depending on * *

2 1t t tD = - , 1N  and 2N  

( *
1t  and *

2t  are desired arrival times at school and at workplace respectively). The conditions 

for the occurrence of each pattern are summarized in Table 1, and the critical time points in 
each pattern are summarized in Table 2. Furthermore, three critical departure/arrival patterns 
(the boundary between two different traffic patterns) are also shown in Figure 2. Note that in 
Figure 2, the blue lines are departures from home, and the red lines are the arrivals at work 
(also the arrivals at school as we assume zero free-flow time between school and work place). 
As one can see from the following discussion, household travelers are generally traveling 
earlier than individual travelers due to the school schedule. 
 

Table 1. Conditions for the four cases depicted in Figure 2 
Equilibrium  Conditions  Figures 

Case 1 
 

1 22* *
2 1

N N
s st t g b

b+g b+g- ³ +  
 

Figure 2(a) 
  

Case 2 

 1 22* *
2 1

N N
s st t g b

b+g b+g- < +  

1 22 2* *
2 1

N N
s st t g b

b+g b+g- > - +  

1 2* *
2 1

N N
s st t g b

b+g b+g- > -  

 

Figure 2(b) 

Case 3 
 1 22 2* *

2 1
N N
s st t g b

b+g b+g- £ - +  

* *
2 1 0t t- ³  

 
Figure 2(c) 

Case 4 
 1 2* *

2 1
N N
s st t g b

b+g b+g- £ -  

* *
2 1 0t t- ³  

 
Figure 2(d) 
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Case 1 in Figure 2(a): the time difference tD  between the two desired arrival times, i.e., *
1t  

and *
2t , is relatively large, which means that the school schedule is much earlier than work 

schedule. Due to this early school schedule, all household travels are early for work (those 
arrive between 1t  and 2t ). But they can be either early or late for school. Individual travelers 

will travel around their desired work arrival time *
2t  (to reduce schedule delays), and can be 

either early or late for work (arrival occurs between 3t  and 4t ). The departure and arrival of 

household and individual travels are completely separated, thus there is no direct flow 
interaction between the two classes of travelers. 
 
Case 2 in Figure 2(b): tD  is less than that in Case 1, and the departure and arrival of 
household and individual travels are connected. “Connected” means that the earliest 
individual travelers meet the latest household travelers at the highway bottleneck (both of 
them arrive at time 2t ), and have to wait upon arrival at the bottleneck until the queue of 

household travelers disappears. All household travels are early for work ( *
2 2t t< ), while might 

be early or late for school. Individual travelers can be either early or late for work (arrival 
occurs between 2t  and 3t ). 

 
The critical case between Case 1 and Case 2 is depicted in Figure 2(e), where, the first 
individual traveler arrives at the bottleneck exactly when the last household travelers exit; 
there is no flow interaction at the highway bottleneck between the two classes of travelers. 
 
Case 3 in Figure 2(c): tD  is relatively small, and the number of household 2N  is relatively 

large, thus some household travelers have to be late for work (they are also late for school). 
All the arrivals earlier than *

2t  are household travels. However, some households are late for 

both school and work (arrive after *
2t ). Figure 2(c) is only illustrative where these households 

late for school and work arrive at destination between *
2t  and 2t  (those arrive after 2t  are 

individual travelers). Indeed the departure and arrival of these household (late for both school 
and work) can be mixed with the individual travelers. In this “mixed” period, some individual 
travelers can be earlier than household travelers. However, even the departure order of these 
travelers can be different (any combination is possible as long as the departure rate is 2 1r r¢¢ ¢= ), 

the traffic pattern will still be the same. 
 
The critical case between Case 2 and Case 3 is depicted in Figure 2(f), where the first 
individual traveler meets the last household traveler, and both of them are on time for work. 
There is no household travel which is late for school and work. 
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Case 4 in Figure 2(d): tD  is also relatively small. However, different from Case 3, the 
number of individual traveler 1N  is relatively large, thus all households are pushed to arrive 

early for both school and work. Individual travelers can be either early or late for work. The 
departure and arrival of household are indeed mixed with the early arrival individual travelers. 
Similar to Case 3 and for illustration purpose, Figure 2(d) only depicts the situation that all 
household travelers arrive earlier than 2t . However, while the departure order of these people 

can be different (i.e., mixed with individual travelers of early arrival), the traffic pattern will 
still be the same because 2 1r r= . Also note that the traffic pattern is identical to the situation 

where all the travelers are individual travelers. 
 
The critical case between Case 2 and Case 4 is depicted in Figure 2(g), where, all the 
household travelers are early for work and school, and the last household traveler is just on 
time for school. Similar to Case 4, the traffic pattern is identical to the situation where all the 
travelers are individual travelers. 
 
By assuming that all travelers are household travelers, Jia et al. (2016) characterizes two 
situations: small school-work schedule difference and large school-work schedule difference. 
The “small school-work schedule difference” case corresponds to Figure 2(c) by letting 

1 0N = , while the “large school-work schedule difference” corresponds to Figure 2(a) 

(imagine that the current 1N  individual travelers all become household travelers). Later, 

readers can find in Figure 3 that the model in Jia et al. (2016) corresponds to the y-axis (thus 

1 0N = ) in the two-dimension domain of ( )1 2,N N . 
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*
1t

*
2t1t 2t 3t 4t

2N

1 2N N+

1r

2r

1r¢

s

s

2r¢

*
1t

*
2t1t 2t 3t

2N

1 2N N+

1r

2r

1r¢

2r¢
s

*
1t

*
2t1t 2t 3t

2N

1 2N N+
1r¢

2r¢

2r
s

*
1t

*
2t1t 2t

1 2N N+
1r¢

2r

s

3t

1r

2N

*
1t

*
2t1t

2N

1 2N N+

1r

2r

1r¢

s

s

2r¢

2t 3t
*
1t

*
2t1t 3t

2N

1 2N N+
1r¢

2r¢

2r s

*
1t

*
2t1t

1 2N N+
1r¢

2r s

3t

1r

2N

( )a ( )b

( )c ( )d

( )e ( )f

( )g

2r¢¢

1 1

2 2 2

;  

;  ;  

r s r s

r s r s r s

a a¢= =
a -b a + g
a a a¢ ¢¢= = =

a -b a -b+ g a + g

 
(a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Critical case between Case 1 and Case 2; 
(f) Critical case between Case 2 and Case 3; (g) Critical case between Case 2 and Case 4 

Figure 2. Possible commuting patterns with both household and individual travels 
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3.2. Properties of the equilibrium traffic patterns 
 
For given tD , Figure 3 displays the occurrence of each case (departure/arrival pattern) in the 
domain of ( )1 2,N N . As can be seen, the domain of ( )1 2,N N  can be divided into four regions 

by the three lines (Line 1, Line 2 and Line 3), i.e., region (1), (2), (3) and (4), which 

correspond to Cases 1, 2, 3, 4 respectively. Note that Line 1 is 2 12 2N t s Nb+g g
b b= × D × - ×  and 

corresponds to the critical case between Case 1 and Case 2 shown in Figure 2(e); Line 2 is 

2 12N t s Nb+g g
b b= × D × +  and corresponds to the critical case between Case 2 and Case 3 shown 

in Figure 2(f); and Line 3 is 2 1N t s Nb+g g
b b= - ×D × +  and corresponds to the critical case 

between Case 2 and Case 4 shown in Figure 2(g). The four lines indeed correspond to the 
conditions in Table 1. As mentioned, the model in Jia et al. (2016) corresponds to the y-axis 
( 1 0N = ) in the two-dimension domain of ( )1 2,N N . 

1N

2N

Line 1

Line 2

Line 3

(1)

(2)
(3)

(4)

O t sb+g
g × D ×

2 t sb+g
b × D ×

2 1N Ngb=

 
Figure 3. Domain of ( )1 2,N N  for cases in Figure 2 with given tD  

 

From Figure 3, we can see that, when 2 1N Ngb³ , only Case 1, Case 2 and Case 3 can arise; 

when 2 1N Ngb< , only Case 1, Case 2 and Case 4 can arise. We summarize these results in 

more details as follows. 
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Proposition 3-1. For given 1N  and 2N , as tD  increases from 0+  to +¥ :  

i) if 2 1N Ngb³ , the equilibrium traffic pattern will vary according to the path: Case 3 ®  

Case 2 ®  Case 1;  

ii) if 2 1N Ngb< , the equilibrium traffic pattern will vary according to the path: Case 4 ®  

Case 2 ®  Case 1. 
 

Proposition 3-1 can be verified according to the conditions in Table 1. When 2 1N Ngb³ , the 

following condition 2 12 2 0N N
s s

b g
b+g b+g- ³  holds. As 2 12 2N N

s st b g
b+g b+gD £ - , conditions for Case 3 (in 

Table 2) hold. As tD  becomes larger but is still less than 1 22N N
s s

g b
b+g b+g+ , conditions for Case 2 

(in Table 2) hold. One can further verify that when tD  becomes even larger and is greater 

than the critical value 1 22N N
s s

g b
b+g b+g+ , conditions for Case 1 (in Table 2) hold. We can verify 

the results for the situation with 2 1N Ngb<  similarly. 

 
Proposition 3-1 summarizes how dynamic traffic pattern varies with tD . From Proposition 3-
1, we see that, as tD  increases, the departure/arrival pattern changes in the way that the 
departure/arrival of the two classes of travelers becomes more separated in the situation with 

either 2 1N Ngb³  or 2 1N Ngb< . It is possible that given 1N  and 2N , by appropriately choosing 

tD , we can separate travels of the two classes of travelers, thus can reduce the traffic 
congestion temporally (one may refer to the Critical case between Case 1 and Case 2), and in 
the end reduce the total travel cost of travelers. This is also the motivation to discuss the 
coordination of school and work schedules in Section 4. 
 
Proposition 3-2. For given 1N  and tD , as 2N  increases from 0  to +¥ :  

i) if 1N t sb+g
g< × D × , the equilibrium traffic pattern will vary according to the path: Case 1 ®  

Case 2 ®  Case 3;  

ii) if 1N t sb+g
g³ ×D × , the equilibrium traffic pattern will vary according to the path: Case 4 

®  Case 2 ®  Case 3. 
 
The reasoning to verify Proposition 3-2 is similar to that for Proposition 3-1. Proposition 3-2 
summarizes how dynamic traffic pattern varies with 2N , given tD  and 1N . More specifically, 

given tD , when the number of individual travelers is relatively small, i.e., 1N t sb+g
g< × D × , 

Case 1 can arise; otherwise, i.e., 1N t sb+g
g³ ×D × , Case 1 would not occur. This means that 

when there are too many individual travelers, even if there are very few households, the 
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departure/arrival of the two classes of travelers cannot be separated. Proposition 3-2 also 
indicates that increasing the number of households might force the individual travelers to 
experience larger queuing delays (Case 1 ®  Case 2 ®  Case 3), and might force all 
individual travelers to be late for work (Case 2 ®  Case 3). 
 
Proposition 3-3. For given 2N  and tD , as 1N  increases from 0  to +¥ : 

 i) if 2 2N t sb+g
b< × D × , the equilibrium traffic pattern will vary according to the path: Case 1 

®  Case 2 ®  Case 4;  

ii) if 2 2N t sb+g
b³ ×D × , the equilibrium traffic pattern will vary according to the path: Case 3 

®  Case 2 ®  Case 4. 
 
Similarly, we can verify Proposition 3-3. Proposition 3-3 summarizes how dynamic traffic 

pattern will vary with 1N , given tD  and 2N . When 2N  is large, i.e., 2 2N t sb+g
b³ ×D × , Case 1 

cannot arise, i.e., the departure/arrival of the two classes of travelers cannot be separated. 
Proposition 3-3 also indicates that increasing the number of individual travelers might force 
the household travelers to experience larger queuing delays (e.g., Case 1 ®  Case 2 ®  Case 
4), and might force all the household travelers to be early for work (e.g., Case 3 ®  Case 2), 
or to be early for school (Case 2 ®  Case 4). 
 

Table 2. Time points for each pattern depicted in Figure 2 
Time Figure 2(a) Figure 2(b)  

1t  2*
1

N
st g-b

b+g-  ( ) ( )
1 22 3* *1 2

1 23 3 3 3
N N
s st t g b+ g

b+g b+g
+ - -   

2t  22*
1

N
st b

b+g+  ( ) ( )
1 22 2* *1 2

1 23 3 3 3
N N
s st t g b

b+g b+g
+ - +   

3t  1*
2

N
st g

b+g-  ( ) ( )
1 23 2* *1 2

1 23 3 3 3
N N
s st t b+g b

b+g b+g
+ + +   

4t  1*
2

N
st b

b+g+  N/A  

Time Figure 2(c) Figure 2(d)  

1t  ( ) 1 2* *1
1 22

N N
s st t g g

b+g b+g+ - -  1 2*
2

N N
s st g g

b+g b+g- -   

2t  ( ) 1 2* *1
1 22

N N
s st t g b

b+g b+g+ - +  1 2*
2

N N
s st g b

b+g b+g- +   

3t  ( ) 1 2* *1
1 22

N N
s st t b b

b+g b+g+ + +  1 2*
2

N N
s st b b

b+g b+g+ +   

 
From Figure 2 and Table 2, it is straightforward to see that, the peak start time 1t  depends on  

1N  and 2N , and tD . As * *
2 1t t tD = - , to have comparable results when looking at how 1t  
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change with tD , we fix the mid-point between *
1t  and *

2t , i.e., ( )* *
1 20.5 t t× +  is fixed. (This 

assumption is only valid for Lemma 3-1 and Proposition 3-4.) 
  

Lemma 3-1. For given 1N  and 2N , when we fix ( )* *
1 20.5 t t× + : i) 1t  is non-decreasing with 

tD  when 1 22N N
s st g b

b+g b+gD < + ; ii) 1t  is decreasing with tD  when 1 22N N
s st g b

b+g b+gD > + . 

 
Proof. See Appendix B. 
 

Proposition 3-4. For given 1N  and 2N , when we change tD , but fix ( )* *
1 20.5 t t× + , the peak 

start time 1t  reaches the maximum when 1 22N N
s st g b

b+g b+gD = + . 

 
Proposition 3-4 is straightforward based on Lemma 3-1. It indicates that for given 1N  and 2N , 

when we try to coordinate the school and work schedules by changing tD , the latest peak 

start time occurs at 1 22N N
s st g b

b+g b+gD = + , where the traffic pattern is the critical case between 

Case 1 and Case 2. Note that a later peak start time generally indicates lower travel cost for 
travelers (e.g., less schedule delay cost and identical queueing delay cost for the traveler 
departing at the peak start time). Later in Section 4, we will show that by letting 

1 22N N
s st g b

b+g b+gD = + , we can reduce travel cost compared with an arbitrary tD . 

 
Proposition 3-5. For given *

1t  and *
2t , peak start time 1t  is non-increasing with 1N , and is 

decreasing with 2N . 

 
Similar to Proposition 3-4, Proposition 3-5 can be obtained with Table 2 and Proposition 3-1. 
This result is expected as more travelers generally would indicate earlier peak start time. 
However, when the traffic pattern belongs to Case 1 (when the departure/arrival of household 
and individual travelers are completely separated), a marginal increase in individual travelers 
will not affect the peak start time (no direct interaction exists between households and 
individual travelers, and the peak start is fully determined by household travelers). 
 
4. User Cost and System Performance 
 
In Section 3, we analyzed all the possible commuting traffic patterns in detail. Now we turn 
to the users’ travel cost and total travel cost. 
 
4.1. Users’ travel cost 
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Based on Section 3 and with some manipulations, we can obtain the travel cost of individual 
travelers 1c  and travel cost of households 2c , which are summarized in Table 3. Note that 1c  

is based on Eq.(1) and 2c  is based on Eq.(4) for each case. 

 
Table 3. Travel costs of individual travelers and households for different cases 

Case Individual cost 1c   Household cost 2c    

1 1N
s

bg
b+g

 ( ) 22 N
st b g-b

b+gbD +   

2 ( )
( ) ( )

1 23 21
3 3 3

N N
s st b+g g bg

b+g b+g
- gD + +  ( )

( )
( )

1 22 341
3 3 3

N N
s st b b+ gbg

b+g b+g
- bD + +   

3 1 21
2

N N
s st bg bg

b+g b+ggD + +-  1 22 2N N
s s

bg bg
b+g b+g+   

4 1 2N N
s s

bg bg
b+g b+g+  1 22 2N N

s st bg bg
b+g b+g-bD + +   

 
Proposition 4-1. For given 1N  and 2N  and where 1dc d tD  and 2dc d tD  exist, we have: 

i) If 1 22N N
s st g b

b+g b+gD < + , 

1 20;  0dc dc
d t d t

£ £
D D

. (8) 

ii) Otherwise, 

1 20;  0dc dc
d t d t

= >
D D

. (9) 

 

Proof. When 1 22N N
s st g b

b+g b+gD < + , the arrivals of household travelers and individual travelers 

are connected (Cases 2, 3 and 4), and otherwise the arrivals of the two classes of travelers are 
separated (Case 1). Based on Table 3, we see that Eq.(8) and Eq.(9) hold.    ■ 
 
Note that 1c  and 2c  are continuous while not differentiable at the boundary cases. Part (i) of 

Proposition 4-1 indicates that when departure/arrival of two classes of travelers is close to 
each other (the arrivals are connected), increasing tD  is beneficial. This is because, 
separating departure/arrival of two classes of travelers can reduce congestion, and the 
reduced congestion cost overweighs the schedule delay increase led by a larger tD  (if any). 
The rational of Part (ii) of Proposition 4-1 is that when the arrivals of two classes of travelers 
are already fully disconnected, increasing tD  will only increase the schedule delay cost of 
household travelers, as well as their travel cost. 
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Furthermore, with Table 3, we can find the first-order derivatives of 1c  and 2c  with respect to 

both 1N  and 2N , which are summarized in Table 4. As we can see, in most cases we have 
1

1
0c

N
¶
¶ > , 1

2
0c

N
¶
¶ > , 2

1
0c

N
¶
¶ >  and 2

2
0c

N
¶
¶ > . This is because, more travelers lead to more severe 

congestion and larger schedule delay cost. However, in Case 1, when the two classes of 

travelers have no interaction, 1

2
0c

N
¶
¶ =  and 2

1
0c

N
¶
¶ = . We also notice the following result. 

 

Proposition 4-2. Wherever 1

1

c
N
¶
¶

, 1

2

c
N
¶
¶

, 2

1

c
N
¶
¶

 and 2

2

c
N
¶
¶

 exist, we have 

1 1 2 2

1 2 2 1

;c c c c
N N N N
¶ ¶ ¶ ¶

³ ³
¶ ¶ ¶ ¶

. (10) 

 
Proposition 4-2 indicates that the equilibrium travel cost of a user group tends to be more 
sensitive to the number of users in that group than the number in the other group. This result 
is similar to that in Lindsey (2004) even if the combined preferences of two members in a 
household bring further complexity (note that Lindsey’s paper only considers individual 
travelers). 
 

Table 4. Travel costs of individual traveler and household for different cases 

Case 1

1

c
N
¶
¶

  1

2

c
N
¶
¶

  2

1

c
N
¶
¶

  2

2

c
N
¶
¶

  

1 1
s

bg
b+g

 0   0  ( )2 1
s

b g-b

b+g    

2 ( )
( )
3 1
3 s
b+g g

b+g
 ( )

2 1
3 s

bg
b+g

  ( )
4 1
3 s

bg
b+g

 ( )
( )

2 3 1
3 s
b b+ g

b+ g
  

3 1
s

bg
b+g

 1
s

bg
b+g

 2 1
s

bg
b+g

 2 1
s

bg
b+g

   

4 1
s

bg
b+g

 1
s

bg
b+g

  2 1
s

bg
b+g

 2 1
s

bg
b+g

   

 
Proposition 4-3. For given tD , suppose 1 2N N N+ = is fixed, where the following 

derivatives exist, we have 

1 20; 0dc dc
dx dx

£ ³ , (11) 

where 2x N N= . 

 
Proof. See Appendix C. 
 
Proposition 4-3 indicates that, given the total number of users N  and the schedule difference 
tD , increasing the proportion of households (i.e., increase of x , which means there will be 
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less individual travelers) is beneficial to individual travelers (their travel costs decrease or at 
least do not increase) and is unfavorable to households (their travel costs increase or at least 
do not decrease). Furthermore, from Eq.(32), we know that within Case 3 and Case 4, where 
one class of travelers is dominating the population (Case 3: proportion of households is 
relatively large; Case 4: proportion of individual travelers is relatively large), the variation of 
the proportions of two classes of travelers will not change the travel costs (per household  or 
per individual) of both households and individual travelers (however, total travel cost of all 
travelers will change). 
 
4.2. Total cost and schedule coordination 
 
Given the travel costs of individual travelers and households presented in Table 3, we can 
easily obtain the total travel cost of all the users in all cases, i.e., 

1 1 2 2TC c N c N= × + × . (12) 

Suppose the system authority is able to coordinate schedules of school and work, we have the 
following result. 
 
Proposition 4-4. Given 1N  and 2N , it is optimal to set tD  such that the departure/arrival 

pattern is the critical case between Case 1 and Case 2. Therefore, we have 

( )* 1 22N Nt
s s

g b
D = +

b + g b + g
. (13) 

 
Proof. See Appendix D. 
 
Proposition 4-4 provides the optimal schedule difference between school and work. This 
proposition implies that by appropriately coordinating the school and work schedules, the 
total travel cost can be reduced. Under the optimal schedule coordination given in Eq.(13), 
the departure/arrival of the households and individual travelers will be completely separated. 
Intuitively, when departure/arrival of the households and individual travelers are fully 

separated (at 1 22N N
s st g b

b+g b+gD = + ), a further increase in tD  will not be beneficial as it only 

leads to capacity waste between the arrivals of individual travelers and households ( 0dTC
d tD > ). 

More specifically, increasing tD  (traffic pattern belongs to Case 1), the queuing delay will 
not decrease while schedule delay cost of households will increase (due to a larger school and 
work schedule gap tD ). We further display how the total travel cost, schedule delay cost and 
queuing delay cost will vary with tD  given the numbers of individual travelers and 
households in the following Figure 4. Note that in some intervals in Case 3 and Case 4, the 
departure/arrival of households and individual travelers can be mixed, the queuing delay cost 
and schedule delay cost cannot be determined uniquely (the total travel cost is identical). 



Revised paper submitted to Transportation Research Part B on December 6, 2016 

-18-	

	

Therefore, we take the illustrative situations depicted in Figure 2(c) and Figure 2(d) to 
compute the queuing delay cost and schedule delay cost for Figure 4. 
 

tD

Total Cost

Schedule

Queue

Case 3 Case 2 Case 1

1 22N N
s s

g b
+

b + g b + g
2 12 2N N
s s

b g
-

b + g b + g

( ) 2 1  a N Ngb³

Total Cost

Schedule

Queue

Case 4 Case 2 Case 1

tD1 22N N
s s

g b
+

b + g b + g
1 2N N
s s

g b
-

b + g b + g

( ) 2 1  b N Ngb<

 
Figure 4. Costs vary with tD : total travel cost, schedule delay cost and queuing delay cost: (a) 

The case with 2 1N Ngb³ ; (b) The case with 2 1N Ngb<   

 
As can be seen in Figure 4, when tD  increases, there is a trade-off between the total queuing 
delay cost and total schedule delay cost. The queuing delay cost is non-increasing over tD . 
This is expected as a larger tD  further separates the departure/arrival of households and 
individual travelers, and traffic congestion is temporally relieved. 
 
However, the schedule delay cost might not always increase with tD . For example, for Case 
4 in Figure 4(b), the schedule delay cost is decreasing. This is because, the number of 
individual travelers is relatively large and all households are forced to arrive earlier for school 
and work (one may refer to the traffic pattern in Figure 2(d)). By increasing tD  (suppose *

2t  

is fixed, then it is equivalent to decreasing *
1t ), without changing the traffic pattern, the 

households will have less earliness for school. Also, for Case 2 (in Figure 4(b)), the schedule 
delay cost is decreasing with tD  in the beginning. This is because, a larger tD  will allow 
more individual travelers to arrive at the destination during the tD  (between *

1t  and *
2t ), and 

there will be less late arrival individual travelers (note that late arrival penalty is larger than 
the value of time and early arrival penalty). In Case 1, the schedule delay cost always 
increases with tD , simply because a larger work and school schedule gap leads to larger 
schedule delays (associated with work) for households. 
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4.3. Efficiency of schedule coordination 
 
Following Proposition 4-4, the total travel cost of travelers under the optimal tD  in Eq.(13) 
can be given as follows: 

* 1 1 2
1 2

2N N NTC N N
s s s

æ ö æ öbg bg bg
= × + + ×ç ÷ ç ÷b + g b + g b + gè ø è ø

. (14) 

We consider 0tD =  as the benchmark case for efficiency analysis in which the total travel 
cost is 

0 1 2 1 2
1 2

2 2N N N NTC N N
s s s s

æ ö æ öbg bg bg bg
= + × + + ×ç ÷ ç ÷b + g b + g b + g b + gè ø è ø

. (15) 

Note that, in this benchmark case, as the work schedule coincides with the school schedule, 
all travelers have the same desired arrival time, and the commuting traffic pattern would be 
identical to that under standard bottleneck model (e.g., Arnott et al., 1990), which is similar 
to that in Figure 2(d). 
 
We then can define the percentage of cost reduction as 

0 *

0

TC TC
TC
-

q = , (16) 

where 0 *TC TC-  is the cost reduction under optimal schedule coordination, compared with 
the benchmark case with 0tD = , and 0TC  is the travel cost at the benchmark case. The 
percentage q  can be regarded as relative efficiency of the schedule coordination. Regarding 
this relative efficiency, we have the following proposition. 
 
Proposition 4-5. The percentage of cost reduction by setting tD  according to Eq.(13) is 

( )( )
1 2

1 2 1 2

2
2

N N
N N N N

q =
+ +

. (17) 

 
With Eq.(14) and Eq.(15), after some manipulations, the relative efficiency defined in Eq.(16) 
can be rewritten as that in Eq.(17). From Eq.(17), it is straightforward to see that school and 
work schedule coordination have relatively small efficiency as either 1 0N ®  or 2 0N ® . 

This is because, the travel cost reduction of schedule coordination comes from the separation 
between the departure/arrival of the two classes of travelers. As either 1N  or 2N  is relatively 

small, the impact of schedule coordination is limited by the small amount of traffic, i.e., 

{ }1 2min ,N N . 
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Proposition 4-5 also indicates that the relative efficiency of the schedule coordination can be 
determined in the way only related to the numbers of individual travelers and households. 
Furthermore, as we can define 2x N N=  (in Proposition 4-3), thus 11 x N N- = , we have 

( )2 1
1
x x

x
-

q =
+

. (18) 

This means that the efficiency depends on the relative proportions of the two classes of 
travelers instead of the magnitude of the numbers of travelers. We further bound this 
efficiency as shown in the next proposition. 
 
Proposition 4-6. The percentage reduction in Eq.(17) satisfies 

6 4 2q£ - . (19) 
 

Note that 34 12 %6 4 .3- » . It is easy to verify that when 2 1x = -  (around 41.42% ), 

Eq.(18) will reach the maximum value 6 4 2- . 
 
We now further look at the system optimum where queueing is fully eliminated and schedule 
delay is minimized. This can be achieved by letting 0tD =  and implementing a first-best 
time-varying toll given as follows (joint scheme of schedule coordination and pricing). 

( )

( )
( )
( )

( )

1 2

1 2

1 2

1 2

1

*
1 1 2

2 * *
1 2 1

2 * *
1 1 3

*
1 3 4

4

0

2

2

0

N N
s

N N
s

N N
s

N N
s

t t

t t t t t

t t t t t
t

t t t t t

t t t t t

t t

+bg
b+g

+bg
b+g

+bg
b+g

+bg
b+g

<ì
ï

-b - £ D <ï
ï

- b - £ D <ï
t = í

- g - £ D <ï
ï

- g - £ D £ï
ï

>î

 (20) 

where 1 2*
1 1

N N
st t +g

b+g= - , 2*
2 1

N
st t g

b+g= - , 2*
3 1

N
st t b

b+g= +  and 1 2*
4 1

N N
st t +b

b+g= + . The optimal 

toll is depicted in Figure 5. It is worth mentioning that this toll is similar to the first-best time-
varying toll for the single bottleneck model with two classes of travelers (with identical *t ): 

1N  travelers with schedule penalties b  and g , and 2N  travelers with schedule penalties 2b  

and 2g . 
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O

Toll

Time

2b

b

2g

g

* *
1 2t t=1t 2t 3t 4t

1 22N N
s

bg +
b + g

1N
s

bg
b + g

 
Figure 5. The optimal time-varying toll considering schedule coordination 

 
The total social cost under the above discussed system optimum is 

1 2 2
1 2

1
2

SO N N NTC N N
s s s

æ ö æ öbg bg bg
= × + × + ×ç ÷ ç ÷b + g b + g b + gè ø è ø

. (21) 

This cost can be regarded as the lower bound of the total travel cost of travelers. Similarly, 
the relative efficiency of the optimal joint scheme of schedule coordination and time-varying 
pricing can be defined as 

0

0

SO
SO TC TC

TC
-

q = . (22) 

The relative efficiency is further simplified in Eq.(23). 
 
Proposition 4-7. The efficiency of the optimal	 joint scheme of schedule coordination and 
time-varying pricing is 

( )( )
1 2

1 2 1 2

1 1
2 2 2

SO N N
N N N N

q = +
+ +

. (23) 

 
It is obvious that SOq  is greater than 50%. However, 50%SOq ®  if either 1N  or 2N  

approaches zero. Suppose 2 0N ® , the situation approaches the case with identical 

individual travelers, and the first-best pricing described in Figure 5 would lead to 50%SOq = , 
which is well noticed in the literature. Moreover, the departure/arrival order of the travelers 
will make no difference as they are identical. However, when 2 0N > , an appropriate 

departure/arrival order of the two classes of travelers (the one described in Figure 5) is 
needed to minimize the schedule delay cost. This additional gain arising from appropriate 
departure/arrival order results in an efficiency larger than 50%. 
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Similarly, the efficiency in Eq.(23) can be rewritten as 
( )11 1

2 2 1
SO x x

x
-

q = +
+

. (24) 

where 2x N N=  (in Proposition 4-3), thus 11 x N N- = . The efficiency then only depends 

on the relative proportions of the two classes of travelers. We further bound the efficiency as 
the following. 
 
Proposition 4-8. The efficiency of the optimal joint scheme of schedule coordination and 
time-varying pricing satisfies 

2 2SOq £ - . (25) 
 

Note that 2 2 58.58%- » . Combining Proposition 4-7 and Proposition 4-8, we notice that 
the efficiency given in Eq.(22) satisfying 50% 58.58%SO£ q £ . Also, it is easy to verify that 

when 2 1x = -  (around 41.42% ), Eq.(25) will reach the maximum value 2 2- . 
 
Without pricing, while we can reduce traffic congestion and travel cost by coordination of 
work and school schedules, we lose certain level of efficiency. We define the loss of 
efficiency as follows: 

0 *

0 SO

TC TCl
TC TC

-
=

-
, (26) 

where 0 *TC TC-  is the amount of travel cost that can be further reduced by the joint 
optimum scheme compared with pure schedule coordination, and 0 SOTC TC-  is the 
maximum cost reduction that can be achieved by implementing the joint scheme. We have 
the following proposition regarding Eq.(26). 
 
Proposition 4-9. The efficiency loss of the schedule coordination without pricing compared 
with the optimal joint scheme of schedule coordination and time-varying pricing is 

( ) ( )
1 2

2 2
1 1 2 2

2
4 2
N Nl

N N N N
=

+ +
. (27) 

 
Similarly, the efficiency loss in Eq.(27) can be written as 

( )
2

2 1
1 2
x x

l
x x
-

=
+ -

. (28) 

where 2x N N=  (in Proposition 4-3), thus 11 x N N- = . The efficiency loss can be 

bounded as follows. 
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Proposition 4-10. The efficiency loss in Eq.(27) satisfies 

21
2

l £ - . (29) 

 

Note that 2
21 29.29%- » . It is easy to verify again that when 2 1x = - , Eq.(25) will reach 

the maximum value 2
21- . 

 
In summary, schedule coordination can help reduce travel cost (against benchmark case) by 
up to 34.31%, while the joint scheme of coordination and pricing can reduce total cost by at 
least 50% and at most 58.58%. Schedule coordination loses efficiency compared with the 
joint scheme. However, this efficiency loss can be upper bounded. 
 
5. Numerical Analysis 
 
In this section, numerical experiments are conducted to verify and illustrate the essential 
ideas in the paper. Following Liu et al. (2015b), we take the value of time, schedule delay 
penalties as follows: 9.91 (EUR$/hour)a = , 4.66 (EUR$/hour)b = , 14.48 (EUR$/hour)g = . 
The highway bottleneck capacity is 30(veh/min)s = . 
 
5.1. Cost contours in the domain of ( )1 2,N N   

 
Given tD  (here we use 30 minutes), Figure 6 displays the total travel cost contours, 
individual travel cost contours, and the household travel cost contours in the domain of 

( )1 2,N N . In Figure 6, the red solid line represents Line 1 in Figure 3, and the red dashed line 

represents Line 2 in Figure 3, and the red dash-dotted line represent Line 3 in Figure 3. These 
three lines divide the domain of ( )1 2,N N  into four regions, which correspond to Case 1, Case 

2, Case 3 and Case 4 (as shown in Figure 3). 
 
As can be seen in Figure 6(a), the total travel cost increases with 1N  and 2N . This is because, 

a larger number of travelers indicates a larger travel cost for either household or individual 
traveler (one can verify from Figure 6(b) and Figure 6(c)). This total travel cost increase is 
nonlinear as the contours become denser when 1N  or 2N  is larger (for Figure 6(a)). We also 

notice that the individual travel cost in Figure 6(b) and the household travel cost in Figure 6(c) 
linearly increase (or at least do not decrease) with 1N  or 2N  in each region (there are four 

regions in total, therefore, household travel cost and individual travel cost are both piece-wise 
linear over 1N  and 2N ). These results are consistent with those in Table 4. 
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Figure 6. Costs Contours in the domain of ( )1 2,N N  

 
5.2. Total cost, schedule delay cost, and queuing delay cost 
 
Given the travel demand in each user class, Figure 7 and Figure 8 show how total travel cost, 
total travel delay cost, total schedule delay cost, as well as these total costs for individual 

travelers or households, vary with tD . Figure 7 shows the case with 2 1N Ngb³  ( 4000N = , 

1 500N =  and 2 3500N = ), and Figure 8 shows the case with 2 1N Ngb<  ( 4000N = , 

1 2000N =  and 2 2000N = ). As mentioned in our discussion about Figure 4, for Case 3 and 

Case 4, we take the illustrative situations depicted in Figure 3(c) and Figure 3(d) to compute 
the queuing delay cost and schedule delay cost. 
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Figure 7. Costs vary with the schedule difference tD : the case with 2 1N Ngb³  

 

As stated in Proposition 3-1, for the case with 2 1N Ngb³ , when tD  increases, the traffic 

pattern shifts from Case 3 to Case 2, and then to Case 1. This is also displayed in Figure 7. 
Indeed Figure 7(a) is the numerical verification of Figure 4(a). However, with Figure 7(b), 
we further see that total schedule delay cost of individual travelers decreases or at least does 
not increase with tD . This is because, as tD  becomes larger, the impact of households on 
individual travelers is lessening (i.e., less individual travelers are pushed to arrive late, the 
critical case (Case 1) is that tD  becomes large enough, departure/arrival of the two classes of 
travelers are completely separated), thus individual travelers have smaller schedule delay 
costs. Also we notice that the queueing delay costs for households and individual travelers 
are both non-increasing with tD , which means both of them benefit from the schedule 
coordination in terms of travel delays. 
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Figure 8. Costs vary with the schedule difference tD : the case with 2 1N Ngb<  

 
Similarly, Figure 8(a) repeats Figure 4(b) numerically. As already discussed about Figure 
4(b), in Case 4, the total schedule delay cost decreases with tD  (this is now verified 
numerically in Figure 8(a)). If we further look at Figure 8(b), we notice that (in Case 2) the 
total schedule delay cost of individual travelers decreases with tD . This is because, as 
discussed in Section 4, a larger tD  allows more individual travelers of early arrival. 
Moreover, we see that in Case 2, total schedule delay cost of households can decrease with 
tD  in the beginning. This is explained as follows. When tD  is larger, households are pushed 

to arrive at work further away from *
2t  (there are more individual travelers arriving early for 

work), and their scheduled delay cost associated with work becomes larger. But the saving in 
schedule delay cost associated with school might be even larger (when tD  is larger, indeed 
the two classes of travelers affect each other less). 
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5.3. Household and individual costs vary with schedule different tD  
 
Given total travel demand N  and tD  (we use 30 minutes here), Figure 9 displays how the 
household and individual travel costs and the average cost of all the travelers vary with the 
proportion of the household travelers, i.e., 2x N N= . And Figure 9(a), Figure 9(b) and 

Figure 9(c) represent the three situations with different demand levels, i.e., 1000N = , 
1500N = , and 2500N = . The average cost is defined as the total travel cost divided by N , 

i.e., TC N , where TC  is given by Eq.(12). 
 

There are indeed two critical values of N , i.e., 1190t sb+g
g × D × =  and 2 1848t sb+g

b × D × = , both 

of which are depicted in Figure 3, as well as Figure 6. Note that for given N , varying x  from 
zero to one corresponds to the line 1 2N N N+ =  in the domain of ( )1 2,N N . When 

N t sb+g
g< × D × , e.g., 1000N =  in Figure 9(a), the traffic pattern will always be Case 1; when 

2t s N t sb+g b+g
g b× D × < < × D × , e.g., 1500N =  in Figure 9(b), the traffic pattern will vary from 

Case 4 to Case 2 and then to Case 1 if we increase x  from zero to one; when 2N t sb+g
b> × D × , 

e.g., 2500N =  in Figure 9(c), the traffic pattern varies from Case 4 to Case 2 and then to 
Case 3 (Case 1 is no longer possible). These results are more obvious if one also refers to 
Figure 3 in Section 3. 
 
In all three situations in Figure 9, individual travel cost always decreases or at least does not 
increase with x , and household travel cost increases or at least does not decrease over x , 
which are also stated in Proposition 4-3. However, we notice that the average cost (as well as 
the total travel cost, since N  is constant in each situation) might decrease with x . This is 
somehow counterintuitive as we might expect that household travel cost is larger than 
individual travel cost (there are two persons in a household, household travel cost is “double 
cost”), and a larger x  means that there are more in the total demand N  with “double cost”. 
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Figure 9. Costs vary with 2x N N=  

 
6. Conclusions 
 
In this study, we examined how the rush-hour traffic pattern with household and individual 
travels differs from that generated by the conventional standard bottleneck model, and how it 
changes with the proportions of the two classes of commuters, and the time difference 
between school schedule and work schedule. This paper incorporates the model in Jia et al. 
(2016) as a special or extreme case, where the number of individual commuters is equal to 
zero. 
 
Besides modeling and analyzing the possible dynamic traffic patterns at the departure/arrival 
equilibrium with mixed travelers, we propose to coordinate the work and school schedules to 
temporally relieve traffic congestion and thus reduce the total travel cost of travelers. 
Efficiency of such schedule coordination has been evaluated and bounded. Moreover, we 
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found that total travel cost can decrease with the proportion of household travelers in the 
population. In addition, our numerical experiment suggests that the schedule delay cost does 
not always increase with the difference between two desired arrival times (for work and 
school). 
 
As mentioned in the paper, the value of time and schedule delay penalties for school (usually 
this is associated with the child in the household) is considered to be identical to those for 
work (usually this is associated with the adult in the household). This assumption or 
simplification makes the algebra in the paper much less tedious (while still quite complex). 
However, the main idea and modeling framework in the paper would be still valid even if we 
consider different VOTs and schedule penalties for school and for work. Our future study 
will consider that all travelers (both households and individual travelers) are heterogeneous in 
their VOTs and schedule penalties. 
 
Kuwahara (1990) is one of the leading researches to examine the dynamic traffic equilibrium 
under two tandem bottlenecks. The network in this paper (as shown in Figure 1) would be 
similar to Kuwahara (1990) if a bottleneck between school and workplace is added. Our 
future work will try to consider such a network with a bottleneck between home and school, 
and with a bottleneck between school and work. Under this network setting, we will try to 
incorporate three different types of trips: individual work trip, household trip, and school trip 
(only goes to school but not work). It is worth mentioning that, our work here focuses more 
on how household travel (departure time choices are governed by both work and school 
schedules) is different from individual travel, and how interactions between household travel 
and individual travel re-shapes the morning commute, while we ignore the network 
topology’s (e.g., two tandem bottlenecks) impact.4 
 
Besides, this study only considers the shared ride of household (family) members. Our future 
study will extend to ride sharing of non-family members. In that case, schedule coordination 
might not only help to reduce congestion, but also help to encourage ride sharing of travelers, 
which can further benefit the system (e.g., fewer vehicles, less fuel consumption). 
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4 We also do not consider that household members may travel together through public transit. Future work may 
take this into account and consider shared-ride of families in multi-modal systems such as those in e.g., Zhang et 
al. (2014), Zhang et al. (2016). 
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Appendix A. The General Case 
 
In Section 2, we assumed that the free-flow travel times and delay at school are zero, which 
helps to reduce the burden of the tedious algebra and also helps us to focus on the central idea 
in the paper, i.e., mixed travelers, schedule coordination. Now we turn to briefly discuss the 
more general case where the free-flow travel times between home and bottleneck, and 
between bottleneck and work place, and the delay at school are not zero, which are denoted 
by 1

ft , 2
ft , and sdt , respectively. Specifically, for both individual and household travelers, 

they need to spend a time of 1
ft  to reach the highway bottleneck (from home). After passing 

the highway bottleneck, the individual travelers will go to work place directly, where the 
free-flow time between highway bottleneck and work place is 2

ft ; and household travelers 

have to endure an extra delay sdt  to reach school and then go to work with a free-flow travel 

time of 2
ft .5 Similar to the major analysis in the paper, we still consider the on-time travelers 

for school can be early for work. Thus, # #
2 1 sdt t t- ³ , where we let # *

2 1 sdt t t= -  and # *
2 2 2

ft t t= - . 

 
Given the above, we can derive all the commuting equilibrium traffic patterns, which are 
shown in Figure 10. Furthermore, the conditions for occurrence of each flow pattern are 
summarized in Table 5. In presence of the non-zero free-flow times and delay at school, the 
arrival at bottleneck is different from the departure from home, and the arrivals at 
school/work are later than the departure from the bottleneck (as shown in Figure 10). Figure 
10(a), Figure 10(b), Figure 10(c) and Figure 10(d) correspond to Figure 2(a), Figure 2(b), 
Figure 2(c) and Figure 2(d) respectively. Note that similar to Figure 2(c) and Figure 2(d), 
Figure 10(c) and Figure 10(d) are illustrative where indeed the departure and arrival of some 
households can be mixed with the individual travelers.  
 
While the free-flow times 1

ft  and 2
ft  indeed do not change the equilibrium traffic pattern (i.e. 

the arrival at bottleneck and the departure from bottleneck in Figure 10), the delay due to 
traveling to school, i.e., sdt , can slightly affect the equilibrium, which leads to Case (e) and 

Case (f) shown in Figure 10(e) and Figure 10(f). This is because, the delay at school can 
postpone the arrival of the adult in the household at work, thus he or she might be late for 
work even if an individual traveler departing from home at the same time can be early for 

																																																													
5 While we assume that the households arrive at school after the delay sdt , analysis for the situations where 
arrival at school occur before the delay sdt  or in the middle of sdt  would be very similar. Also, one may argue 
that free-flow between school and workplace might be different from free-flow time between bottleneck and 
workplace. However, this would make negligible impacts on the model. 
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work. These two cases will never occur in the original situation where the delay due to school 
is not considered. Even though it can still be shown that appropriate schedule coordination 
can reduce travel cost by separating departure/arrival of households and individual travelers. 
Also note that if 0sdt ® , Case (e) and Case (f) in Figure 10 approaches Case (a) and Case (b). 

 

	

	

	

	

Figure 10. Possible commuting patterns when free-flow times and delay due to school are 
non-zero 
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Table 5. Conditions for the cases depicted in Figure 10 

Equilibrium  Conditions  

Case (a) 
 

1 22# #
2 1

N N
s st t g b

b+g b+g- ³ + ; 22# #
2 1

N
sd st t t b

b+g- ³ +  
 

  

Case (b) 
 1 22# #

2 1
N N
s st t g b

b+g b+g- < + ; 

1 22 2# #
2 1 3 N N

sd s st t t g b
b+g b+g- > - + ; 1 2# #

2 1
N N
s st t g b

b+g b+g- > -  

 

Case (c)  1 22 2# #
2 1

N N
sd s st t t g b

b+g b+g- £ - - +   

Case (d)  1 2# #
2 1

N N
s st t g b

b+g b+g- £ -   

Case (e)  22# #
2 1

N
sd st t t b

b+g- < + ; 1 22 2# #
2 1

N N
sd s st t t g b

b+g b+g- ³ - + +   

Case (f) 
 1 22 2# #

2 1 3 N N
sd s st t t g b

b+g b+g- £ - + ; 1 22 2# #
2 1

N N
sd s st t t g b

b+g b+g- < - + + ; 

1 22 2# #
2 1

N N
sd s st t t g b

b+g b+g- > - - +  

 

Note: # #
2 1 sdt t t- ³  always holds. 

 
We can further translate the conditions in Table 5 into the domain of ( )1 2,N N  in Figure 11, 

which is similar to Figure 3 (we omit the details). One can also see from Figure 11 that once 
0sdt ® , Case (e) and Case (f) will disappear. In practice, we can expect that sdt  is relatively 

small when compared to the whole journey time for the morning trips. 

 
Figure 11. Domain of ( )1 2,N N  for commuting equlibrium traffic patterns 

 
Appendix B. Proof of Lemma 3-1. 
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Proof. When 2 1N Ngb³ , based on Proposition 3-1, we know that the traffic pattern varies 

from Case 3 to Case 2, and then to Case 1 when we increase tD  from 0+  to ¥ . With Table 2, 
we then have 

2 1

2 1 1 2

1 2

2 2

2 2 21

2

0 0

1 6

1 2

N N
s s

N N N N
s s s s

N N
s s

t
dt t
d t

t

b g
b+g b+g

b g g b
b+g b+g b+g b+g

g b
b+g b+g

ì < D < -
ïï= - < D < +í

D ï
- D > +ïî

 (30) 

Note that 1t  is continuous at 2 12 2N N
s st b g

b+g b+gD = -  and 1 22N N
s st g b

b+g b+gD = +  (however, it is not 

differentiable at these two points). 
 

For the case with 2 1N Ngb< , the traffic pattern varies from Case 4 to Case 2, and then to Case 

1 as we increase tD  from 0+  to ¥ . We then have 
1 2

1 2 1 2

1 2

21

2

1 2 0

1 6

1 2

N N
s s

N N N N
s s s s

N N
s s

t
dt t
d t

t

g b
b+g b+g

g b g b
b+g b+g b+g b+g

g b
b+g b+g

ì < D < -
ïï= - < D < +í

D ï
- D > +ïî

 (31) 

Similarly, 1t  is continuous at 1 2N N
s st g b

b+g b+gD = -  and 1 22N N
s st g b

b+g b+gD = +  (not differentiable).  

 

The above analysis for the cases with either 2 1N Ngb³  or 2 1N Ngb<  suggests that 1t  is non-

decreasing when 1 22N N
s st g b

b+g b+gD < + , and is decreasing when 1 22N N
s st g b

b+g b+gD > + . This proves 

Lemma 3-1.    ■ 
 
Appendix C. Proof of Proposition 4-3. 
 
Proof. Note that 

1 2

1 2

i i idc c dN c dN
dx N dx N dx

¶ ¶
= × + ×
¶ ¶

; 1dN N
dx

= - ; 2dN N
dx

= . 

With Table 4, one can verify that 

( )

( )
( )

1 2

2
, Case 1

2, , Case 2
3 3

0,0 Case 3
0,0 Case 4

N N
s s

dc dc N N
dx dx s s

ì b g -bæ öbg
-ïç ÷b + g b + gè øï

ïïæ ö g bæ ö= -íç ÷ ç ÷è ø è øï
ï
ï
ïî

 (32) 
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As 0N ³  and g > b , we easily see the inequalities in Eq.(11) hold.    ■ 
 
Appendix D. Proof of Proposition 4-4. 
 

Proof. Based on Proposition 3-1, we know that when 2 1N Ngb³ , the traffic pattern varies 

from Case 3 to Case 2 and then to Case 1 as tD  is increased from 0+  to ¥ . With Eq.(12), we 
then have 

2 1

2 1 1 2

1 2

2 21
12

2 2 21 1
1 23 3

2
2

0 0

0

0

N N
s s

N N N N
s s s s

N N
s s

N t
dTC N N t
d t

N t

b g
b+g b+g

b g g b
b+g b+g b+g b+g

g b
b+g b+g

ì- g < < D < -
ïï= - g - b < - < D < +í

D ï
b > D > +ïî

 (33) 

Note that TC  is continuous at 2 12 2N N
s st b g

b+g b+gD = -  and 1 22N N
s st g b

b+g b+gD = +  (however, it is not 

differentiable at these two points), we then conclude that in this case, TC  is minimized when 
Eq.(13) holds. 
 

Similarly, for the case with 2 1N Ngb< , the traffic pattern varies from Case 4 to Case 2 and 

then to Case 1 as we increase tD  from 0+  to ¥ . We then have 
1 2

1 2 1 2

1 2

2

21 1
1 23 3

2
2

0 0

0

0

N N
s s

N N N N
s s s s

N N
s s

N t
dTC N N t
d t

N t

g b
b+g b+g

g b g b
b+g b+g b+g b+g

g b
b+g b+g

ì-b < < D < -
ïï= - g - b < - < D < +í

D ï
b > D > +ïî

 (34) 

Again, TC  is continuous at 1 2N N
s st g b

b+g b+gD = -  and 1 22N N
s st g b

b+g b+gD = +  (not differentiable). 

We also can conclude that in this case, TC  is minimized when Eq.(13) holds. Proposition 4-4 
is then proved.    ■ 
 
References 
 
Arnott, R., 2013. A bathtub model of downtown traffic congestion. Journal of Urban 

Economics, 76, pp.110-121. 
Arnott, R., de Palma, A. and Lindsey, R., 1990. Economics of a bottleneck. Journal of Urban 

Economics, 27 (1), pp.111-130. 
Arnott, R., de Palma, A. and Lindsey, R., 1991. A temporal and spatial equilibrium analysis 

of commuter parking. Journal of Public Economics, 45(3), pp.301-335. 
Arnott, R., de Palma, A. and Lindsey, R., 1994. The welfare effects of congestion tolls with 

heterogeneous commuters. Journal of Transport Economics and Policy, 28 (2), pp.139-
161. 



Revised paper submitted to Transportation Research Part B on December 6, 2016 

-35-	

	

Arnott, R., de Palma, A. and Lindsey, R., 1999. Information and time-of-usage decisions in 
the bottleneck model with stochastic capacity and demand. European Economic Review, 
43(3), pp.525-548. 

Daganzo, C.F., 1985. The uniqueness of a time-dependent equilibrium distribution of arrivals 
at a single bottleneck. Transportation Science, 19(1), pp.29-37. 

de Palma, A., Lindsey, R. and Picard, N., 2015. Trip-timing decisions and congestion with 
household scheduling preferences. Economics of Transportation, 4(1-2), pp.118-131. 

Henderson, J.V., 1981. The economics of staggered work hours. Journal of Urban Economics, 
9(3), pp.349-364. 

Jia, Z., Wang, D.Z. and Cai, X., 2016. Traffic managements for household travels in 
congested morning commute. Transportation Research Part E: Logistics and 
Transportation Review, 91, pp.173-189. 

Kuwahara, M., 1990. Equilibrium queueing patterns at a two-tandem bottleneck during the 
morning peak. Transportation Science, 24(3), pp.217-229. 

Laih, C.H., 1994. Queueing at a bottleneck with single-and multi-step tolls. Transportation 
Research Part A: Policy and Practice, 28(3), pp.197-208.  

Lindsey, R., 2004. Existence, uniqueness, and trip cost function properties of user 
equilibrium in the bottleneck model with multiple user classes. Transportation Science, 
38 (3), pp.293-314. 

Lindsey, R., 2009. Cost recovery from congestion tolls with random capacity and demand. 
Journal of Urban Economics, 66(1), pp.16-24. 

Liu, W. and Geroliminis, N., 2016. Modeling the morning commute for urban networks with 
cruising-for-parking: An MFD approach. Transportation Research Part B: Methodology, 
93, pp.470-494. 

Liu, W., Yang, H. and Yin, Y., 2014a. Expirable parking reservations for managing morning 
commute with parking space constraints. Transportation Research Part C: Emerging 
Technologies, 44, pp.185-201. 

Liu, W., Yang, H. and Yin, Y., 2015a. Efficiency of a highway use reservation system for 
morning commute. Transportation Research Part C: Emerging Technologies, 56, 
pp.293-308. 

Liu, W., Yang, H., Yin, Y. and Zhang, F., 2014b. A novel permit scheme for managing 
parking competition and bottleneck congestion. Transportation Research Part C: 
Emerging Technologies, 44, pp.265-281. 

Liu, W., Yin, Y. and Yang, H., 2015b. Effectiveness of variable speed limits considering 
commuters’ long-term response. Transportation Research Part B: Methodological, 81, 
pp.498-519. 

Liu, Y. and Nie, Y.M., 2011. Morning commute problem considering route choice, user 
heterogeneity and alternative system optima. Transportation Research Part B: 
Methodological, 45(4), pp.619-642. 



Revised paper submitted to Transportation Research Part B on December 6, 2016 

-36-	

	

Liu, Y., Nie, Y.M. and Hall, J., 2015c. A semi-analytical approach for solving the bottleneck 
model with general user heterogeneity. Transportation Research Part B: Methodological, 
71, pp.56-70. 

Nie, Y.M. and Yin, Y., 2013. Managing rush hour travel choices with tradable credit scheme. 
Transportation Research Part B: Methodological, 50, pp.1-19. 

Qian, Z., Xiao, F. and Zhang, H.M., 2011. The economics of parking provision for the 
morning commute. Transportation Research Part A: Policy and Practice, 45(9), pp.861-
879. 

Qian, Z., Xiao, F. and Zhang H.M., 2012. Managing morning commute traffic with parking. 
Transportation Research Part B: Methodological, 46 (7), pp.894-916. 

Ramadurai, G., Ukkusuri, S.V., Zhao, J. and Pang, J.S., 2010. Linear complementarity 
formulation for single bottleneck model with heterogeneous commuters. Transportation 
Research Part B: Methodological, 44(2), pp.193-214. 

Shirmohammadi, N., Yin, Y. and Nie, Y., 2015. A tradable credit scheme for staggered work 
time. In Transportation Research Board 94th Annual Meeting (No. 15-5201). 

Smith, M.J., 1984. The existence of a time-dependent equilibrium distribution of arrivals at a 
single bottleneck. Transportation Science, 18(4), pp.385-394. 

Takayama, Y., 2015. Bottleneck congestion and distribution of work start times: The 
economics of staggered work hours revisited. Transportation Research Part B: 
Methodological, 81, pp.830-847. 

Tian, L.J., Yang, H. and Huang, H.J., 2013. Tradable credit schemes for managing bottleneck 
congestion and modal split with heterogeneous users. Transportation Research Part E: 
Logistics and Transportation Review, 54, pp.1-13. 

van den Berg, V. and Verhoef, E., 2011. Congestion tolling in the bottleneck model with 
heterogeneous values of time. Transportation Research Part B: Methodological, 45 (1), 
pp.60-78. 

Vickrey, W.S., 1969. Congestion theory and transport investment. American Economic 
Review (Papers and Proceedings), 59 (2), pp.251-261. 

Wada, K. and Akamatsu, T., 2013. A hybrid implementation mechanism of tradable network 
permits system which obviates path enumeration: An auction mechanism with day-to-
day capacity control. Transportation Research Part E: Logistics and Transportation 
Review, 60, pp.94-112. 

Wang, D.Z. and Xu, L., 2016. Equilibrium trip scheduling in single bottleneck traffic flows 
considering multi-class travellers and uncertainty–a complementarity formulation. 
Transportmetrica A: Transport Science, 12(4), pp.297-312. 

Wu, W.X. and Huang, H.J., 2015. An ordinary differential equation formulation of the 
bottleneck model with user heterogeneity. Transportation Research Part B: 
Methodological, 81, pp.34-58. 



Revised paper submitted to Transportation Research Part B on December 6, 2016 

-37-	

	

Xiao, F., Shen, W. and Zhang, H.M., 2012. The morning commute under flat toll and tactical 
waiting. Transportation Research Part B: Methodological, 46 (10), pp.1346-1359. 

Xiao, L.L., Huang, H.J. and Liu, R., 2015. Congestion behavior and tolls in a bottleneck 
model with stochastic capacity. Transportation Science, 49(1), pp.46-65. 

Xiao, L.L., Liu, T.L., Huang, H.J., 2016. On the morning commute problem with carpooling 
behavior under parking space constraint. Transportation Research Part B: 
Methodological, 91, 383-407. 

Yang, H., Liu, W., Wang, X. and Zhang, X., 2013. On the morning commute problem with 
bottleneck congestion and parking space constraints. Transportation Research Part B: 
Methodological, 58, pp.106-118. 

Yushimito, W.F., Ban, X. and Holguín-Veras, J., 2014. A two-stage optimization model for 
staggered work hours. Journal of Intelligent Transportation Systems, 18(4), pp.410-425. 

Zhang, F., Lindsey, R. and Yang, H., 2016. The Downs–Thomson paradox with imperfect 
mode substitutes and alternative transit administration regimes. Transportation 
Research Part B: Methodological, 86, pp.104-127. 

Zhang, F., Yang, H. and Liu, W., 2014. The Downs–Thomson Paradox with responsive 
transit service. Transportation Research Part A: Policy and Practice, 70, pp.244-263. 

Zhang, X., Huang, H.J. and Zhang, H.M., 2008. Integrated daily commuting patterns and 
optimal road tolls and parking fees in a linear city. Transportation Research Part B: 
Methodological, 42(1), pp.38-56. 


