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Abstract—Detecting community structure has become one
important technique for studying complex networks. Although
many community detection algorithms have been proposed, most
of them focus on separated communities, where each node
can belong to only one community. However, in many real-
world networks, communities are often overlapped with each
other. Developing overlapping community detection algorithms
thus becomes necessary. Along this avenue, this paper pro-
poses a maximal clique based multiobjective evolutionary
algorithm (MOEA) for overlapping community detection. In this
algorithm, a new representation scheme based on the intro-
duced maximal-clique graph is presented. Since the maximal-
clique graph is defined by using a set of maximal cliques
of original graph as nodes and two maximal cliques are
allowed to share the same nodes of the original graph, over-
lap is an intrinsic property of the maximal-clique graph.
Attributing to this property, the new representation scheme
allows MOEAs to handle the overlapping community detection
problem in a way similar to that of the separated com-
munity detection, such that the optimization problems are
simplified. As a result, the proposed algorithm could detect
overlapping community structure with higher partition accuracy
and lower computational cost when compared with the existing
ones. The experiments on both synthetic and real-world net-
works validate the effectiveness and efficiency of the proposed
algorithm.
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I. INTRODUCTION

ECENT years have witnessed many researches that

modeled real-world systems in nature and society
as networks to capture the intricate properties of these
complex systems, where objects are represented as nodes
and the interactions among the objects are represented as
edges [1]-[5]. Uncovering the community structure of com-
plex networks is helpful for understanding complex sys-
tems. Researches on analyzing community structure thus
gained growing attention during the past decades [6]-[9].
Traditionally, much of the focus within community detec-
tion is on the separated communities, where each node can
belong to only one community [6], [7], [10], [11]. However,
in many real-world networks, communities are often over-
lapped with each other [12]-[15]. For example, people in
social networks always belong to several groups, simulta-
neously, such as family, friends and colleagues. For this
reason, recent studies have paid much attention to overlapping
community detection and developed various algorithms from
different perspectives, including clique percolation [12], link
partitioning [13], local expansion and optimization [16], [17],
and label propagation [18].

The community detection problem can be formulated as
an optimization problem [7], and such a problem is always
NP-hard [19]. Therefore, some researchers introduced evolu-
tionary algorithms (EAs) into this field and developed several
promising methods [9], [20], [21]. In addition, it is widely
accepted that a community should have dense intraconnections
and sparse interconnections, implying that two conflicting
objectives should be optimized simultaneously in commu-
nity detection, i.e., maximizing internal links and minimiz-
ing external links [6], [22], [23]. Therefore, the community
detection problem can also be modeled as a multiobjec-
tive optimization problem (MOP). Along this line, several
multiobjective EAs (MOEAs) [19], [24]-[28] have been pro-
posed. However, most of them focused on separated com-
munity detection and failed to detect overlapping community
structures.
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In fact, one obstacle for applying MOEAs to overlapping
community detection is the representation scheme of the
individual. The existing representation approaches can be
broadly divided into two major classes, i.e., prototype-
based approaches [28] and node-based approaches [24]-[27].
In the prototype-based approaches [28], each gene of an
individual represents the information of one community, e.g.,
the coordinates of the community center. Though suitable for
overlapping community detection, this representation scheme
has some shortcomings and limitations, such as tending to
capture round-shaped community, requiring to set the num-
ber of communities in advance, and increasing the difficulty
in designing evolutionary operators. Furthermore, when adopt-
ing prototype-based approaches as the representation scheme,
the community detection is generally converted to a data clus-
tering problem, which is based on the network information
such as spectrum [28]. During this transformation, some valid
network information may be lost [28].

Unlike the prototype-based representation, genes of an
individual in the node-based approaches correspond to the
community information of the nodes in the network [24]-[27].
Under this scheme, there are two types of approaches: 1) direct
and 2) indirect. For the direct node-based approach [24]-[27],
each gene is an integer representing the community infor-
mation of the corresponding node, such as the label of the
community this node belongs to [27] or the label of a node
that belongs to the same community with this node [24]-[26].
However, since this representation scheme can only ensure
every node to be assigned to one community, it is not suitable
for overlapping community detection. For the indirect node-
based approach [27], each gene of an individual is a random
integer within the number of nodes of the network and thus
a decoder is needed to transform them to the corresponding
community information. In the decoding process, each node
is allowed to belong to multiple communities, such that this
representation approach can be used for overlapping commu-
nity detection. However, the introduction of the decoder in
the evolution process brings in two main drawbacks. First,
since the fitness computation is directly related to the decoder,
the decoding method has a significant influence on partition
accuracy. Second, the decoding process is executed for each
individual in each generation, leading to a high computational
complexity of the algorithm.

To address the aforementioned issues of representation
schemes, this paper introduces the maximal-clique graph,
which uses a set of maximal cliques as nodes and links among
maximal cliques as edges. Then based on the maximal-clique
graph, a clique-based representation scheme is proposed,
where each gene of the individual represents the commu-
nity label of the corresponding maximal clique. Since two
maximal cliques are allowed to share the same nodes of
the original graph, overlap is an intrinsic property of the
nodes of the maximal-clique graph, which exactly character-
izes the overlapping communities. Attributing to this property,
the new representation scheme allows MOEAs to handle the
overlapping community detection problem in a way similar
to that of the separated community detection, which not only
simplifies the optimization problems, but also overcomes some

limitations of the existing representation schemes. Compared
with the prototype-based representation, the clique-based
approach is not restricted by community shapes and requires
no prior knowledge on the community structure. Compared
with the indirect node-based representation, the clique-based
approach does not need to decode individuals in the evolution
process, which largely lowers the computational cost of the
algorithm.

Afterwards, the clique-based representation scheme and the
corresponding evolutionary operators are coupled with the
framework of MOEA, constituting a maximal clique based
MOEA (MCMOEA), for overlapping community detection.
The experiments on synthetic networks and real-world net-
works validate that MCMOEA is effective and efficient.
Comparisons with other five representative algorithms show
that MCMOEA is competitive and promising.

The rest of this paper is organized as follows. Section II
briefly describes the community detection problem, and
introduces the objective functions and the framework of
MOEA used in this paper. Section III gives a detailed descrip-
tion of the proposed maximal-clique graph. In Section 1V, the
details of MCMOEA are presented. In Section V, the per-
formance of MCMOEA is evaluated on both synthetic and
real-world networks and the comparisons are made between
MCMOEA and other five representative methods. Finally, the
conclusion is given in Section VI.

II. BACKGROUND

This section introduces the necessary background
knowledge for understanding the proposed MCMOEA. First,
the definition of network community used in this paper is
clarified. Then the multiobjective model of the community
detection problem is given. In the end, the framework of
MOEA used in this paper is briefly reviewed.

A. Definition of Network Community

A network can be modeled as a graph G = (V,E),
where V. = {vi,v,...,vn} is the set of nodes,
E = {(vi,v)|vi,v; € V and i # j} is the set of links, called
edges, and N is the number of nodes. Generally, a community
in a network is regarded as a group that has dense intra-links
and sparse inter-links. To make the definition more clear,
Radicchi et al. [10] gave a quantitative description of the net-
work community based on the node degree. Let A = [A;;]yxn
be the adjacent matrix of G. For an unweighted graph, A;; = 1,
if (v;,v;) € E; otherwise, A;; = 0. Suppose § is a subgraph
of G, and then for any node v; € S, the internal and external
degrees of node v; can be denoted as kg“(v,') = Zv,-,vJE sAj; and
k" (vi) = _vies.vgs Aij» Tespectively. Then S is a community
in a strong sense if

Vi € S, k(v > k3™ (). (1)

In other words, every node in a strong community has
more intraconnections than interconnections. In contrast, S is
a community in a weak sense if

DKW > Y kgt @

v;,eS v;eS
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That is, the sum of internal degrees of nodes in a weak com-
munity is larger than that of external degrees. Considering
the former community definition is too strict, the latter one is
adopted in this paper [27].

B. Community Detection Problem

The community detection problem can be modeled as an
MOP with two objectives [19], [24]-[28]. One objective is to
maximize the link density among nodes in the same commu-
nity (intra-link density), while the other is to minimize the link
density among nodes in different communities (inter-link den-
sity). A number of different criteria have been proposed for
measuring intra-link and inter-link densities [19], [25], [26].
In this paper, the kernel k-means (KKM) [29] and ratio
cut (RC) [26] are, respectively, adopted for measuring these
two densities. Given a graph G and a partition C with ¢ com-
munities, let V,, € V be the set of nodes in a community
plp = 1,2,...,1) and V, = V — V, be the set of nodes
that are not in p. The KKM and the RC values of C can be
calculated as

LV, Y,
KkMzz(N—t)—ZM 3)

p=1 |VP|

L(Vp. Vp)
RC = 4
2"y @
p=1 r

where L(Vj, Vp) = 3, ey, Aj and L(Vp,Vp) =

Zvievp,y,eVpAU are the sum of internal and external link

strengths of nodes in V), respectively, and “| - |” denotes the
size of a set. Through (3) and (4), we can see that a small KKM
value indicates that the communities in C have high intra-link
densities, while a small RC value indicates that the commu-
nities in C have low inter-link densities. Therefore, through
using (3) and (4) as the objectives, the community detection
problem can be formulized as an MOP that seeks minimization
on both objectives.

C. MOEA/D

The main focus of this paper is to propose a new
representation scheme for MOEAs to solve the overlapping
community problems and address the limitations of the
existing approaches. Therefore, based on the proposed rep-
resentation scheme, different MOEAs could be adopted to
implement MCMOEA, such as MOEA based on decom-
position (MOEA/D) [30], non-dominated sorting genetic
algorithm II (NSGA-II) [31], strength Pareto EA 1II [32],
and MOEA with double-level archives (MOEA_DLA) [33].
However, to facilitate illustration, one of the most widely
used MOEAs with relatively low computational complexity,
i.e., MOEA/D [19], [26], [27], is chosen as the representa-
tive in the following section for illustrating the structure of
MCMOEA. The implementation details of MCMOEA with
the frameworks of other MOEAs are provided in Section V-D.
Therefore, in this section, only the procedure of MOEA/D is
reviewed.

As a decomposition-based method, MOEA/D [30] decom-
poses an MOP into several scalar optimization subproblems
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A

Fig. 1. Simple illustration of MOEA/D.

and optimizes them simultaneously. Each individual in the
population of MOEA/D is associated with a subproblem and
assigned an n-dimensional weight vector A = (A1, A2, ..., Ay),
where n is the number of objective functions. Based on the
distance between the weight vectors, the neighborhood rela-
tionships among subproblems are determined. Considering
the fact that neighboring subproblems should have similar
optimal solutions, each individual is optimized using only the
information of its neighbors.

Fig. 1 exemplifies the idea of MOEA/D using an MOP
with two objectives. In Fig. 1, the yellow curve represents
the Pareto front (PF). Dots in different colors represent indi-
viduals in different generations and red arrows indicate the
evolutionary direction. The population evolution in MOEA/D
consists of three steps. First, six individuals, each of which
is associated with a subproblem, are initialized and assigned
different weight vectors Ay, Az, ..., Aq. Second, the neigh-
borhood of each subproblem is determined according to the
distance between the weight vectors. For example, suppos-
ing that the neighborhood size is 3, individuals 3 and 5
are selected as the neighbors of individual 4. Third, each
individual is optimized based on the information of its neigh-
bors, e.g., individual 4 is updated based on individuals 3-5. For
more detailed descriptions of MOEA/D, please refer to [30].

III. MAXIMAL-CLIQUE GRAPH

In this section, the definition and the construction method of
the maximal-clique graph are introduced. As the basic unit of
the maximal-clique graph, the concept of the maximal clique
is given at first. Given a graph, a clique is a complete subgraph
in which every two nodes are adjacent [34]. k-clique means the
size of the clique is k. A maximal clique is a special clique
which cannot be extended by adding any other nodes [34].
Take Fig. 2 as an example. Nodes vs, ve, and v; compose a
3-clique, but it is not a maximal clique as it can be extended
to a 4-clique by adding node vg.

A recent study revealed that a community is typically
composed of several cliques which share many common
nodes [12]. Therefore, as one type of cliques, maximal
cliques can be viewed as the essential unit of a community.
Additionally, a node or an edge in a graph may belong to
multiple maximal cliques. For example in Fig. 2, node v3 is
shared by maximal cliques @, @, and @, and the edge between
vs and vg is shared by maximal cliques @ and @. Using
maximal cliques to represent communities thus facilitates
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Fig. 2. Examples of maximal cliques. Nodes vy, v, and v3 constitute
maximal clique @; nodes v3, v4, and vs constitute maximal clique @;
nodes v3, vs, and vg constitute maximal clique ®; nodes vs, vg, v7, and vg
constitute maximal clique @.

revelation of the overlapping structure. In order to detect
communities from the perspective of maximal cliques, this
paper proposes to convert the original graph G = (V,E)
into a maximal-clique graph G° = (V¢ E€), where V¢ =
{v{,v5, ..., vy} is named as cligue nodes and E° =
(v, VDIV, v, € V€ and m # n} is named as clique edges
or clique links, respectively. The conversion method contains
three steps: 1) determining the clique nodes; 2) measuring
the link strength between clique nodes; and 3) determining
the clique edges based on the distribution of link strength.
Detailed implementation of these three steps is described in the
following parts and the corresponding flowchart is presented
in Fig. S1 in the supplementary material.

A. Determining Clique Nodes of Maximal-Clique Graph

Determining clique nodes is the first step to build
a maximal-clique graph. In this paper, a set of maximal cliques
in the original graph G are adopted as clique nodes of the
corresponding maximal-clique graph G¢. Since each maximal
clique is one of the largest cliques the nodes in G belong
to, this paper transforms the determination process of clique
nodes into finding all the largest clique(s) that each node in G
belongs to, and designs the corresponding method as shown
in Algorithm 1.

In Algorithm 1, the clique nodes are determined in descend-
ing order according to their clique sizes. Since the nodes with
higher degrees are more likely to constitute larger maximal
cliques, the determination process first calculates the degree
of each node in G and sorts the nodes in descending order of
their degrees (lines 2—4). Suppose that the number of nodes
of G is N and the largest node degree is kmax, then the size of
cliques in G is not larger than (kmax + 1). With k descending
from (kmax+1) to 1, the determination process searches for the
k-clique(s) of each node. As every two nodes in a clique are
adjacent, the degrees of all nodes in a k-clique must be larger
than (k — 1). Additionally, since only the largest clique(s) for
each node are interested, the searching process stops seek-
ing smaller cliques for a node if it has been assigned to the
larger ones. Therefore, the determination process only searches
for k-clique(s) of a node when the following three conditions
are satisfied: 1) the node degree is not smaller than (k — 1)
(lines 7-9); 2) the node has not been assigned to any cliques
(lines 10-12); and 3) at least (k — 1) adjacent nodes have
a degree no smaller than (k — 1) (lines 13-16). If all these
conditions are satisfied, the determination process transforms
the problem of finding all the k-clique(s) that contain this node
to that of searching for the (k — 1)-clique(s) constituted by

Algorithm 1 Determining the Clique Nodes of G¢

Input: Original graph G = (V, E);
Output: Set of clique nodes V¢;

1: V€« ¢;
2: Calculate the degree k(v;) of each node v; € V;
3: kmax < maxy,ev k(vi);
4: Sort the nodes in descending order of the degree;
5: for k = kmax + 1 to 1 do
6: for each node v; € V do
7: if k(vj)) <k—1
8: no more k-cliques exist and goto Outer loop (Line 22);
9: end if
10: if v; has been assigned to one clique node
11: goto Inner loop (Line 20);
12: end if
13: Neigh(vi) < {vj|(vj is adjacent to v; and k(vj) > k — 1};
14: if |[Neigh(v;)| < k—1
15: v; cannot constitute k-cliques and goto Inner loop (Line 20);
16: end if
17: if the nodes in Neigh(v;) can constitute g (k — 1)-cliques (¢ > 1)
18: VE «— VEU {v;, ((k — 1) — clique)}U, ..., U{v;, ((k — 1) —
clique)q};
19: end if
20: Inner loop;
21: end for
22: Outer loop;
23: end for
Original Graph Nodes of Maximal-Clique Graph
9
7 8
3
@1 - (b)
5 4 5
6
()RS - (©
Maximal-Clique Graph Link Strength
Fig. 3. TIllustration of constructing the maximal-clique graph G¢ from the

original graph G. (a) Original graph G contains 9 nodes and 14 edges.
(b) Clique nodes of G¢ contains one 4-clique and three 3-cliques. (c¢) Link
strength between different clique nodes is calculated and given beside each
line. (d) wgyy is set to the averaged link strength of the graph in (c) and the
final maximal-clique graph is determined.

its neighbors (line 17). Then all the discovered k-cliques are
added to the set of clique nodes (lines 18 and 19).

Figs. 3(a) and (b) exemplify the above determination process
of clique nodes. Fig. 3(a) shows the original graph with
9 nodes and 14 edges. The corresponding clique nodes are
given in Fig. 3(b), including one 4-clique and three 3-cliques.
As can be seen, each node of the original graph is assigned
to at least one clique node (i.e., maximal clique) of the cor-
responding maximal-clique graph. For example, nodes v7, vg,
and vg belong to clique node v§, while nodes v4 and vs belong
to both clique nodes v§ and 5.

B. Measuring Link Strength Between Cliques Nodes

Basic observations on a graph indicate that the link
strength between two cliques depends on the ratios of
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2 1 5

2 5 3 2 6
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Fig. 4. Examples of (a) overlapping nodes, (b) overlapping edges,
and (c) joint edges.

overlapping nodes, overlapping edges, and joint edges. Given
two cliques, an overlapping node is a common node of both
cliques, an overlapping edge is a common edge of both cliques,
and a joint edge is an edge that connects a node in one
clique with a node in the other. Taking two 3-cliques as an
example in Fig. 4, node v3 in Fig. 4(a) is an overlapping
node, the edge between nodes v, and vz in Fig. 4(b) is an
overlapping edge, and the edge between nodes v3 and v4 in
Fig. 4(c) is a joint edge. Since each clique node in a maximal-
clique graph is a clique, the link strength between two clique
nodes can be evaluated in the same way as evaluating the link
strength between two cliques. Given two clique nodes v, and
Vi (m # n), the ratios of overlapping nodes, overlapping edges,
and joint edges are calculated as

N(vi N v5)

Con (V6 C) = .
on (Vin: V1) N(v) + N(v5) — N(ve, %) )
L e (e ) Aif
Vj,Vje
; C _C X C_ e A
Eje(vfn, V;«;) _ Zv,e(vmzvn),v,‘e/(z; ve ) Aij -
V[,Vje

where N(v¢)) and N(v$) return the number of original nodes
in clique nodes v, and V5, respectively, and N(v§, Nv¢) returns
the number of original nodes in the intersection between clique
nodes v¢, and v¢. A is the adjacent matrix of the original graph
and A; = 1, if (v;,v)) € E; otherwise, A;; = 0. Based on
Lon, Loe, and Lje, the link strength L(vy,, v;,) between v, and
V¢, can be defined as a weighted sum of these three components

L(an, VZ) = aﬁon(vfn, vf,) + ﬁﬁoe(vfn, Vf;) + yﬁje(vﬁl, vﬁ) (8)

where «, 8, y € [0, 1] are the weights that control the impact
of overlapping nodes, overlapping edges, and joint edges on
the link strength, respectively. Note that « + 8+ y = 1. In
this paper, for simplicity, all the weights are set to 1/3, namely,
we consider that these three parts have equal contributions to
the link strength between two clique nodes. Explicitly, we can
derive that L(v§,, v¢,) is within [0, 1), and only if there are no
overlapping nodes, overlapping edges, and joint edges between
v, and vo, L(vi,,v) = 0.

In Fig. 3(c), the nonzero link strength between the
clique nodes in Fig. 3(b) is given. Taking the link between
clique nodes v{ and v5 as an example, there are two
overlapping nodes and one overlapping edge, but no joint
edges. The total number of original nodes in clique nodes v{
and v§ is 5. The number of original edges in G is 14. Hence,
on = 2/5,4oe = 1/14, and ¢je = 0, and the link strength
between v{ and v§ is L(V{, v5) = 1/3(2/5+ 1/14 +0).

367

C. Determining Clique Edges of Maximal-Clique Graph

According to the previous two steps, the clique nodes and
the link strength between them are obtained. Some links are
strong, while the others are weak or even close to zero. If
all the links with nonzero strength are admitted as clique
edges, the following two problems may occur when detect-
ing communities. First, the computational cost increases due
to the large number of clique edges. Second, noise usually
exists in a complex system, and thus weak links can interrupt
the detection of community structure. In order to avoid the
above problems, a threshold wy,, is operated on the clique
edges to counteract the influence of noise and lower the
complexity. A link is admitted as a clique edge only if its
strength is beyond w,r. The setting of w,, will be discussed
in Section V-B.

After determining clique edges, the original graph G is con-
verted into a maximal-clique graph G¢. The link strength is
considered as the weight of the corresponding edge. Take
Fig. 3(d) as an example. With wy, set as the average link
strength, only two links in Fig. 3(c) are admitted as clique
edges, resulting in a maximal-clique graph with four clique
nodes and two clique edges.

IV. MCMOEA

This section details the implementation of the proposed
MCMOEA, including the representation scheme, evolutionary
operators, and the overall procedure.

A. Representation Scheme

How to represent solutions in EAs has a great influence
on the design of evolutionary operators and the algorithmic
efficiency. As stated in Section I, the existing representation
schemes, either prototype-based or node-based, have certain
limitations when applied to the overlapping community detec-
tion. To address these limitations, this paper proposes a new
representation approach based on the introduced maximal-
clique graph, namely, clique-based representation. In the
proposed representation, each gene of an individual is an inte-
ger that represents the community label of the corresponding
clique node of the maximal-clique graph. Thus, every clique
node can only be assigned to a unique community, which
is similar to the separate community detection. However, as
the maximal-clique graph has the property that clique nodes
are allowed to share the same original nodes, the overlapping
nodes shared by different clique nodes can actually be assigned
to multiple communities. Taking Fig. 5 as an example, node
v4 is shared by both clique nodes vi and v§ [Fig. 5(b)].
Since v{ is assigned to community “1” and v§ is assigned
to community “2” [Fig. 5(c)], node v4 belongs to both com-
munities “1” and “2” [Fig. 5(d)]. The detailed population
initialization is described as follows.

Let I; = (gi1, 82, - - - » gim) be the ith individual in the pop-
ulation of MCMOEA, where g;; is the jth gene of I;(j =
1,2,...,M,i=1,2,..., PS, M is the number of clique nodes
of the maximal-clique graph and PS is the size of population).
The initialization of I; is conducted by using a local algorithm
in [16] to form a locally optimal partition of clique nodes.
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(b) Maximal-Clique Graph (¢) Clique-based Representation
I ¥ (\4: Clique Node 1 | 2 3
D L %) | onginalNode [ 1 [ 23 [4]4]5[6[7]5]0
: 4 3 [ 3

8

(a) Original Graph g
9 o) Community 3
7 3 9 -L?

; i ‘ Community | ; T

» ene

¥ (d) Partition

Community 2

Fig. 5. Example for the clique-based representation. (a) Original graph G.
(b) Corresponding maximal-clique graph G¢ is constructed based on G and
each node in G is allowed to be assigned to multiple clique nodes of G¢, e.g.,
node v4 belongs to both clique nodes vf and vg. (c) Proposed clique-based
representation is adopted to assign each clique node an integer to represent the
community label this node belongs to. For example, the community label of
clique node vf is 1, indicating that v? belongs to community “1.” (d) Partition
of the original graph G is directly determined based on the individual.

In detail, the algorithm builds the partition C as follows. First,
the M clique nodes are randomly permuted and C is initial-
ized as an empty set. Then, following the permutation order,
each unassigned clique node v, is assigned to the first com-
munity whose cohesiveness can be improved by including v5,,.
If v§, cannot improve the cohesiveness of any existing com-
munities, a new community that only contains V¢, is added
to C. Considering that the maximal-clique graph is a weighted
graph, the cohesiveness of a community ¢ is measured as
in [17]

o Win (C)
" Win(©) + Wou(c)

where Wiy(c) and Wy (c) are the total weights of internal
edges and external edges of ¢, respectively. Based on the
obtained partition C, the individual I; can be initialized by
setting each gene g;, as the community label of v¢, in C.

The proposed clique-based representation scheme has three
features. First, instead of using the original nodes, the pro-
posed approach uses clique nodes (i.e., maximal cliques) as
the basic unit of the representation. Since overlap is an intrin-
sic property of clique nodes in the maximal-clique graph,
clique-based representation enables MOEAs to handle the
overlapping community detection problem in a way similar
to that of the separated community detection. Second, the
clique-based representation does not require decoding individ-
uals in the population evolution process, which largely lowers
the computational complexity of MOEAs for overlapping
community detection when compared with the indirect node-
based approach. Third, the clique-based representation scheme
has no limitations on the shape of communities and needs
no prior community information, making it superior to the
prototype-based representation scheme.

F(c) €))

B. Evolutionary Operators

Evolutionary operators, including crossover and mutation,
are the most important components of EAs, which significantly
influence the population diversity and the convergence speed.
Hence, it is crucial to select appropriate evolutionary operators

for the algorithm. In this paper, to fit the proposed clique-
based representation scheme, we adopt the one-way crossover
operator [9] and design a new mutation operator based on the
maximal-clique graph.

1) Crossover: In many classic EAs, the crossover operator
generates offspring by randomly exchanging genes of two
parental individuals [24], [35]. However, such an idea of the
crossover is not suitable for the proposed clique-based rep-
resentation since community labels in different individuals
are not compatible. Take the two individuals A and B in
Fig. 6(a) as an example. According to the clique-based repre-
sentation scheme, both individuals indicate that clique nodes
vf, vj, and vg belong to the same community, but the commu-
nity label is “0” in individual A but “1” in individual B. In
this case, randomly exchanging genes between the two indi-
viduals can easily break the promising community structure
formed by v{, v§, and vg. Therefore, this paper employs the
one-way crossover operator introduced in [9]. The one-way
crossover randomly selects two parental individuals from the
population, with one set as the source (denoted as I;), and
the other set as the destination (denoted as I;). Then a clique
node is randomly selected as the crossover seed e. Let [ be the
community label of e in I and k be the set of clique nodes
in I that have the same community label as /. An offspring
I, is generated by modifying I so that all the clique nodes
in k are relabeled as [. By doing so, the offspring can merge
the community structures of both parents. Using the two indi-
viduals in Fig. 6(a) as parents, Fig. 6(b) shows an example
of offspring generation utilizing the above one-way crossover,
given that 1§ is selected as the crossover seed (i.e., e = v{ and
[ = 0). For each individual, the crossover operator is executed
with a predefined possibility p,.

2) Mutation: A new mutation operator is proposed in this
paper to fit the clique-based representation. The essential
idea is to improve the communities with low cohesiveness by
including clique nodes that have strong connections with them.
In detail, for each individual ; in the population, the mutation
operator first calculates the cohesiveness of each community
in I; according to (9). Then an M-dimensional vector r; is
generated, in which each element r; is a random number
uniformly distributed in [0, 1]. r;; is compared with the cohe-
siveness of the community cg; that the clique node v]‘f belongs
to. If ry; is larger than F(cg;), a clique node v{ adjacent to
v]? is randomly selected through the roulette wheel selection.
The larger the weight on the clique edge (vf, vi), the higher
the probability that v, will be selected. The mutation operator
then changes the community label of vj‘f (i.e., gj) to that of
vi (i.e., gix). By doing so, each community in I;, especially
the one with low cohesiveness, is given a chance to adjust its
structure, which leads to a possible improvement in the overall
fitness.

C. Overall Procedure of MCMOEA

Following the framework of MOEA/D [30], MCMOEA is
implemented using the clique-based representation scheme
and the evolutionary operators described above. As MOEA/D,
MCMOEA needs to decompose the problem of overlapping
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Fig. 6. Simple illustration of the one-way crossover operator. (a) Parental
individuals. (b) Offspring.

community detection into several scalar optimization sub-
problems. Considering that the shape of PF is unknown and
the weighted sum approach only works well for concave
PF, Tchebycheff approach [27] is used in MCMOEA for
decomposition. Let kl, 12, ..., APS be a set of evenly spread
weight_ vectors, where A/ = ()\i,ké) (Ai,ké e [0, 1], and
M +A5 = 1) and PS is the size of population (i.e., the number
of subproblems). Based on the maximal-clique graph and two
objective functions defined in (3) and (4), a subproblem can
be formulated as

minimize gte(xl)\i, z*)
= max {1} |[KKM(x) — 2}

JARCE) — |} (10)

where x is a solution to the problem, z* = (z}, z3) is the refer-
ence point, i.e., the best values found so far for the KKM and
RC, respectively, and i = 1,2,..., PS. MCMOEA approxi-
mates the PF by minimizing the PS scalar subproblems defined
above using a population with PS individuals.

As shown in Algorithm 2, MCMOEA contains three steps:
1) construction of the maximal-clique graph; 2) initialization;
and 3) population evolution. In the first step, the maximal-
clique graph G¢ is constructed from the original graph G using
the method introduced in Section III. In the second step, the
population with PS individuals is initialized according to the
clique-based representation scheme proposed in Section IV-A.
PS weight vectors A1, Ap, ..., Apg are assigned to the PS indi-
viduals Iy, 1>, ..., Ips, respectively. Then, the neighborhood
B(i) of each weight vector is determined by Euclidean distance.
The reference point z* is initialized by the KKM and RC values
of I and the set of non-dominated solutions, NS, is initialized
as an empty set. In the third step, the population is evolved
through the evolution operators described in Section IV-B.
A new individual z is generated by performing crossover
and/or mutation on each existing individual I;. After evalu-
ating z with the two objective functions (i.e., KKM and RC),
the reference point, the neighborhood of I;, and the set of NS
are updated accordingly.

The computational complexity of MCMOEA can also be
analyzed from the above three steps. Suppose that there are
N nodes in the original graph G, M clique nodes in the
corresponding maximal-clique graph G¢, and the maximum
node degree in G is kmax. In the first step, the computa-
tional complexities of determining the clique nodes, mea-
suring the link strength, and determining the clique edges
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Algorithm 2 MCMOEA

Input:
* G = (V, E): the original graph;
* genmax: the maximum number of generations;
* PS: the size of population;
sl s A2, ALS: a uniform spread of PS weight vectors;
* T: the size of the neighborhood of each weight vector;
Output:
* NS: the set of non-dominated solutions.
1. Construction of the Maximal-clique Graph G¢:
1) Determine the set of clique nodes V¢;
2) Measure the link strength between clique nodes;
3) Determine the set of clique edges E€ based on the link strength.
2. Initialization:
4) Initialize the population P = {I, I, ..., Ipg}, where each individual
I; = (g1, 82, &3, - - - » &im) represents the current solution to the i-th

subproblem;
5) Initialize the neighborhood of each weight vector. For each i =
1,2,...,PS, set B(i) = {i],ip,...,ir}, where A'l A2, .., AT are

the T closest weight vectors to A' in the Euclidean space;
6) Initialize z* as (KKM(I1), RC(I1));
7) Initialize NS as an empty set.
3. Population Evolution :
8) for g =1 to genmax
9) fori=1to PS

10) Generate a random number r; from U(0,1);
11) if ri < pe
12) Randomly choose another individual from B(i) and generate

an offspring x by conducting the one-way crossover on this
individual and I;;

13) else

14) Set x as I;;

15) end if

16) Generate an M-dimensional random vector r; from uM 0, 1);
17) forj=1toM

18) if rj > F(Cgij)

19) Generate a new individual z by mutating x;

20) end if

21) end for

22) if KKM(z) < 2}, set zj as KKM(z);

23) if RC(z) < zﬁ, set z§ as RC(z);

24) for each individual Ij € B()

25) if g"(Lj|A',z%) > g'“(z|A!, z%), replace I; with z;

26) end for

27) Remove from NS all the solutions that are dominated by z;
28) Add z to NS if no solutions in NS can dominate z;

29) end for

30) end for

U(0,1): the normalized uniform distribution.

are O(N x kfnax), O(M?), and O(M), respectively. Hence, the
computational complexity of the first step is O(max{N x
k?mx, M?}). In the second step, the computational complexity
is bounded by the operation of population initialization which
takes O(M? x PS). In the third step, the time complexity of
crossover and mutation operators is related to M and can be
realized in linear time, namely, O(M). The other operations can
be finished in constant time. Therefore, the time complexity
of the third step is bounded by O(M x PS x gen,,,,) (PS is the
size of population and genpmax is the maximum number of gen-
erations). To sum up, the overall computational complexity of
MCMOEA is O(max{Nxk3 ., M> x PS, M x PS x gen, .. }). It

should be noted that M is usually smaller than or equal to N.

V. EXPERIMENTS AND DISCUSSION

In this section, a series of experiments are designed based on
synthetic and real-world networks to validate the performance



370 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 21, NO. 3, JUNE 2017

TABLE I
PARAMETER SETTINGS OF SYNTHETIC NETWORKS

Part Experiments H 0. N Other Parameters
1 Investigation of Wy, {0.1, 0.5} {0.1N, 0.5N} {2, 8} 10°
2 Investigation of gNMI and Q,, {0.1,0.3, 0.5} {0.1N, 0.3N, 0.5N} {2,4,6,8} 10°
3 Investigation of the | 1. Solution Quality | {0.1,0.3,0.5} {0.1N, 0.3N, 0.5N} {2,4,6,8} 10°
different MOEASs 2. Speed 0.1 0.1N 2 {10%, 5x10°}
The performance of MCMOEA on syn- {0.1,0.2,0.3, 3 _ _
thetic networks with different u 0.4,0.5} {0.1N, 0.5N} 2.8 10 ]; 7220’1]('?“1 50,
1=2, =1,
TheAperfonnance ngCMOEA on syn- (0.1,0.5) {0.1N, 0.2N, 0.3N, 2,8} 10° N=10% cp = 20, s = 50
thetic networks with different O, 0.4N, 0.5N} B 3 - -
4 The performance of MCMOEA on syn- {2,3,4,5,6 3 N= 5X410 + €min = 30, Cnax = 70
thetic networks with different 0, {0.1,0.5} {0.1N, 0.5N} 7,8} 10 N'=10% Cmin =40, cmux = 100
The performance of MCMOEA on syn- N 3 ne
thetic networks with different V {0.1,0.5} {0.IN, 0.5N} 12,8} {10°, 5x10°, 10%
. 1. Solution Quality {0.1,0.3, 0.5} {0.1N, 0.3N, 0.5N} (2,4, 6,8} 10°
5 | Comparison 2. Speed 0.1 0.IN 2 (10%, 5%10%, 10%}

of the proposed MCMOEA. First, the generation model of
synthetic networks and evaluation indexes in use are intro-
duced. Second, the influences of the parameter wy,, evalua-
tion indexes and MOEA frameworks on the performance of
MCMOEA are experimentally tested. Third, the performance
of MCMOEA is evaluated on synthetic networks with differ-
ent characteristics and compared with other five representative
algorithms. Finally, MCMOEA is applied to four real-world
networks and the benefit of using a multiobjective framework
to detect overlapping communities is illustrated.

In all experiments, the parameters of MCMOEA are
set as follows. PS and gen,,, are set as 100 and 50,
respectively [27]. The crossover probability is set as a rela-
tively high value, 0.7, to increase the population diversity [27].
The neighborhood size T is set as 20 according to the sug-
gestion of MOEA/D [30]. All the experiments are carried
out on computers with Intel Core 15-3470 (3.20 GHz) CPU,
16 GB RAM, and Ubuntu 12.04 LTS 64-bit operating system.

A. Synthetic Networks and Evaluation Indexes

In this paper, the Lancichinetti—-Fortunato—Radicchi (LFR)
model [36] is adopted to produce synthetic networks.
A synthetic network under LFR can be described as
LFR(N, k, kmax, T1, T2, Cmin» Cmax»> #s On, Op). N is the num-
ber of nodes. k and kny,x are the average node degree and the
maximum node degree, respectively. t; and 1, are the expo-
nents of the power law distributions that the node degrees
and the community sizes, respectively follow. cpin and cmax
are the minimum and the maximum size of each community.
n € [0,1] is a mixing parameter that controls the average
ratio of the external links to the total links of each node. If
w = 0, all the edges in the network are intraconnections. If
w =1, all the edges are interconnections. Therefore, a larger
wu indicates a more ambiguous community structure. O, and
O,, are two parameters specially defined for controlling the
overlapping rate of communities in the network. O, is the
number of overlapping nodes, evaluating overlapping density
among communities. Similar to u, the higher the value of O,,
the more ambiguous the community structure is. O,,, namely,
overlapping membership, is the number of communities to
which each overlapping node belongs. The difficulty of the
detection problem increases with the rise of Oy,.

Once the above parameters are determined, a synthetic
network can be generated from the LFR model using the
method in [36]. In this paper, the settings of LFR parame-
ters follow the suggestions in [27] and [37]. k, kmax, T1, and
7, are fixed at 20, 50, 2, and 1, respectively. N is set at three
levels: 1000, 5000, and 10000. (cmin, cmax) 18 set as (20, 50),
(30, 70), and (40, 100) at different levels of N, respectively,
since the community size generally slightly increases with the
scale of the network. p varies from 0.1 to 0.5, O, varies from
0.1N to 0.5N, and O,, varies from 2 to 8. In each experi-
ment, a set of networks with different settings of N, u, O,
and O,, is considered, which is summarized in Table I. The
effectiveness and efficiency of MCMOEA can thus be studied
at different levels of network scale, community ambiguity, and
overlapping rate.

As a multiobjective algorithm, MCMOEA yields a set of
non-dominated solutions, none of which is superior to the
other on both objectives of KKM and RC. In order to facilitate
comparison with algorithms that treat overlapping community
detection as a single-objective problem, an evaluation index is
needed to select one solution from the set of non-dominated
solutions. In this paper, the generalized normalized mutual
information (gNMI) [16] and the modularity (Qoy) [38] are
adopted as the evaluation criteria. The first index, gNMI, eval-
uates the similarity between the true partition and the detected
one, which is only suitable when the true community struc-
ture is already known. The second index, Q,,, measures the
difference between the fraction of edges within the given com-
munities and the expected fraction if edges are distributed at
random. Obviously, Q,, can be used without knowing the true
community structure. Therefore, gNMI can only be used in the
experiments on synthetic networks, while Q,, can be used on
both synthetic and real-world networks. Both gNMI and Q,,
range from O to 1. The higher values of the gNMI and Q,,
are, the better the quality of a solution will be.

B. Investigation of the Parameter wyy

As stated in Section III-C, wy,, is a threshold of link strength
for determining clique edges of the maximal-clique graph.
Only links with strength beyond wy,, will be admitted as
clique edges. The setting of wy,, thus has a direct control over
the distribution of clique edges. It may also have an indirect
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yet significant influence on the algorithmic performance since
MCMOEA operates on the maximal-clique graph. To study
the effect of wy, and find its appropriate setting, the per-
formance of MCMOEA using different wy,, iS compared on
eight synthetic networks. For detailed settings of the synthetic
networks, please refer to part 1 of Table I. On each net-
work, MCMOEA is tested with wy, rising from 0 to 30wqyg,
where w,ye is the average link strength of clique nodes in the
maximal-clique graph. For each value of wy,, MCMOEA is
run for 30 independent times and the average gNMI value
is reported for comparison. Fig. S2 in the supplementary
material, plots the average gNMI as a function of W /Wayg.

From Fig. S2 in the supplementary material, it can be
observed that in most cases the MCMOEA with extreme wny
values performs the worst, €.g., wir = 0 or Wy = 30Wayg.
This observation is not surprising. If wy, is too small, a large
number of links between clique nodes are kept as clique
edges, which interferes community detection as the noise
between communities increases. On the opposite, if wy is too
large, most links between clique nodes are filtered out, which
causes possible loss of useful information for revealing the
actual community structure. Besides the above observation,
it is also noticed that the curves in Fig. S2 in the supple-
mentary material, have consistent shapes. That is, the average
gNMI value rises from wy = 0, reaches the top at about
Wihr = Wavg, Temains steady for a small interval, and then
drops until wgpy = 30wayg. Such a phenomena suggests that
Wihr = Wayg 18 a generally good setting no matter what kind
of network it is. Hence, the wy, is always set to wyyg in the
following experiments.

Comparing the curves in Fig. S2 in the supplementary mate-
rial, it can also be summarized that the decreasing trend after
the turning point becomes less steep as , O, or Oy, increases.
As stated in Section V-A, larger values of w, O,, and O,,
indicate a more ambiguous community structure and a higher
overlapping rate. In this case, a larger wy,, is preferred for fil-
tering out more links so that the community structure becomes
clearer.

C. Investigation of gNMI and Q,,

Since gNMI and Q,,, are both evaluation indexes suitable for
synthetic networks, an experiment is designed here to inves-
tigate the differences between the partitions chosen by gNMI
and Q,,. To make a comprehensive test, i, O, and O,, are all
set to different levels, which are {0.1, 0.3, 0.5}, {0.1N, 0.3N,
0.5N}, and {2, 4, 6, 8}, respectively. N is set to 1000. The
detailed parameter settings of the synthetic networks are listed
in part 2 of Table I. On each network, MCMOEA is run for
30 independent times. For each run, the best gNMI value and
the corresponding Q,, (gNMI_Q,,) value, as well as the best
Qo value and the corresponding gNMI (Q,,,_gNMI) value are
recorded. The average results of each index over 30 runs are
reported in Fig. S3 and Table SI in the supplementary material.
From Fig. S3 in the supplementary material, it can be observed
that the difference between the best gNMI and Q,,_gNMI, or
between the best Q,, and gNMI_Q,, is slight, indicating the
solutions chosen by gNMI and Q,, are similar.

Additionally, to make a further comparison, this paper also
examines the cumulative distributions of community sizes
of partitions chosen by gNMI and Q,, and compares them
with the known ground truth. The results are presented in
Figs. S4-S6 in the supplementary material. As can be seen,
compared to Q,,, the cumulative distribution curves of gNMI
are closer to those of the true partitions on almost all net-
works, implying that gNMI may be slightly more suitable
as the evaluation index for synthetic networks. Therefore,
in the following experiments, gNMI is used as the crite-
rion on synthetic networks and Q,, is used on real-world
networks.

D. Comparisons of MCMOEAs Based on
Different MOEAs

As stated in Section II-C, different kinds of MOEAs are
applicable for the proposed MCMOEA [39]-[43]. Therefore,
in this section, except MOEA/D, other state-of-the-art MOEAs
are adopted to implement MCMOEA for investigating the per-
formance of MCMOEA based on different MOEAs. Among
the existing MOEAs, NSGA-II [31] is a classical domination-
based MOEA, which has been widely used in many fields
and shown excellent performance. MOEA_DLA [33] is a new
MOEA, which achieves a competitive performance by tak-
ing advantages of both MOEA/D and NSGA-II. Therefore,
this paper chooses NSGA-II and MOEA_DLA as the rep-
resentatives of MOEAs to implement MCMOEA and com-
pares their performance with MOEA/D-based MCMOEA. The
implementation details of MCMOEA using NSGA-II and
MOEA_DLA as the MOEA frameworks are, respectively,
provided in Algorithms S1 and S2 in the supplementary
material.

The parameter settings of the synthetic networks are listed
in part 3.1 of Table I. To make a comprehensive compar-
ison, u, O,, and O, are all set to different levels, which
are {0.1, 0.3, 0.5}, {0.1N, 0.3N, 0.5N}, and {2, 4, 6, 8},
respectively, and N is set to 1000. For the sake of fair-
ness, parameters of the three MCMOEAs are set to the
same values, i.e., PS = 100, genmax = 50, and p. = 0.7.
On each network, each MCMOEA is run for 30 indepen-
dent times and the average gNMI is reported in Table SII
in the supplementary material. Additionally, the computa-
tional speed of three MCMOEAs is also compared on several
networks with different scales. The corresponding network
information is listed in part 3.2 of Table I. The compari-
son results are reported in Table SIII in the supplementary
material.

From Tables SII and SIII (in the supplementary material),
we can see that, MOEA_DLA-based MCMOEA shows the
best performance on partition accuracy, and MOEA/D-based
MCMOEA consumes the least computational time. Overall,
it can be observed that the differences among these three
MCMOEASs on both partition quality and computational speed
are slight. Therefore, in the following experiments, the one
with the least time, i.e., MOEA/D-based MCMOEA is used
as the representative to further validate the performance of
MCMOEA.
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E. Experiments on Synthetic Networks

In this section, based on the synthetic networks, two exper-
iments are designed to test the effectiveness and efficiency of
MCMOEA. The first experiment makes a comprehensive anal-
ysis of how MCMOEA performs on networks with different
properties, including community ambiguity (u), overlapping
rate (O, and O,,), and network scale (N). The second experi-
ment compares the performance of MCMOEA with other five
representative algorithms.

1) Performance of MCMOEA on Synthetic Networks: To
well observe how the performance of MCMOEA varies on
networks with the change of either i, O, O,,, or N separately,
the method of controlling variables is adopted here. That is to
say, when investigating one parameter, the other ones are held
constant. Therefore, this experiment is divided into four parts.

1) Verifying the performance of MCMOEA on networks

with different x and constant O,, O,,, and N.
2) Verifying the performance of MCMOEA on networks
with different O, and constant u, O,,, and N.
3) Verifying the performance of MCMOEA on networks
with different O,, and constant w, O, and N.
4) Veritying the performance of MCMOEA on networks
with different N and constant u, O,, and O,,.
In each part, to give a comprehensive result, the fixed parame-
ters except N are all set to two values, which are the minimum
and maximum of their feasible ranges, respectively. As for N,
considering the computational cost, it is always set to 1000 in
the first three parts. The detailed parameters setting of the
synthetic networks is presented in part 4 of Table I. For each
network, 30 independent runs of MCMOEA are conducted and
the average gNMI is used as result.

First, the performance of MCMOEA on networks with dif-
ferent u is investigated. O,, O,,, and N are set to {0.1N,
0.5N}, {2, 8}, and 1000, respectively. Through increasing
w from 0.1 to 0.5 with the step of 0.1, the performance
of MCMOEA is evaluated on each network and the results
are shown in Fig. S7 in the supplementary material. As
can be seen, all curves in Fig. S7 in the supplementary
material, present similar tendency that the performance of
MCMOEA naturally decreases with the increase of ., because
a higher value of u indicates a more ambiguous community
structure.

Second, the performance of MCMOEA on networks
with different O, is evaluated. u, O,,, and N are set to
{0.1, 0.5}, {2, 8}, and 1000, respectively. The performance
of MCMOEA is displayed in Fig. S8 in the supplementary
material with O, increasing from 0.1N to 0.5N with the
step of 0.1N. Obviously, we can see that with O, increasing,
MCMOEA performs worse and worse. This is not surprising
because a larger O, implies a higher overlapping density, and
such a high overlapping density usually blurs the boundary of
the communities and increases the challenge to the community
detection.

Third, the performance of MCMOEA on networks with
different O,, is tested. u, O, and N are set to {0.1, 0.5},
{0.1N, 0.5N}, and 1000, respectively. O, varies from
2 to 8 with the interval 1. The results are presented in
Fig. S9 in the supplementary material. As can be seen, the

performance of MCMOEA decreases with the increase of O,,.
The fundamental reason is that, with the increase of O,,, it
becomes harder and harder to successfully detect all the com-
munities that each overlapping node belongs to, resulting in
a lower partition accuracy.

Finally, we evaluate how the performance of
MCMOEA changes on networks with the increase of
N. u, Oy, and O, are set to {0.1, 0.5}, {0.IN, 0.5N}, and
{2, 8}, respectively. N increases from 1000 to 5000 and
10000. The results are shown in Fig. S10 in the supple-
mentary material. As can be seen, when u, O,, and O
are all small, MCMOEA shows similar performance on
networks with different N, such as u = 0.1, O, = 0.1N,
and O,, = 2. However, when the value of © [observing
Figs. S10(a)-(d) in the supplementary material, separately]
becomes large, the performance of MCMOEA decreases
with the increase of N. The similar conclusions can also
be obtained on O, [comparing Fig. S10(a) with (c) or
Fig. S10(b) with (d) in the supplementary material] and O,,
[comparing Fig. S10(a) with (b) or Fig. S10(c) with (d) in
the supplementary material]. The fundamental reason of these
phenomena lies in insufficient population diversity for the
large scale networks. As we know, a larger N usually means
a longer length of the individual and more communities.
Meanwhile, with the increase of u (O, or O,,), the number of
communities also increases. However, for the same population
size and evolutionary generation of MCMOEA, the increases
of the individual length and the number of communities
inevitably result in a decrease of population diversity, leading
to a decrease in the quality of the final solutions.

In conclusion, we can obtain that MCMOEA works well on
synthetic networks with different combinations of u, O, O,
and N. For example, in Fig. S7 in the supplementary material,
when O,,, O,,, and N are set to 0.1N, 2, and 1000, the value
of gNMI is always larger than 0.85, even when p increases to
0.5. In Fig. S8 in the supplementary material, when u = 0.1,
O, = 2, and N = 1000, the value of gNMI is larger than
0.8 even increasing O, to 0.5N. Likewise, as can be seen in
Fig. S9 in the supplementary material, the value of gNMI is
also larger than 0.8 even O,, increases to 8 with u = 0.1,
O, = 0.1N, and N = 1000. Additionally, even though all the
parameters are set to the maximum of their feasible ranges,
ie, u=0.5, 0, =0.5N, O, =8, and N = 10000, the value
of gNMI is still larger than 0.5 as shown in Fig. S10 in the
supplementary material.

2) Comparisons With Other Representative Algorithms:
In this section, the performance of MCMOEA is com-
pared with other five algorithms: 1) clique percolation
method (CPM) [12]; 2) link clustering [13]; 3) speaker-
listener-based information propagation algorithm (SLPA) [18];
4) MOEA based on the signed similarity for detecting
communities from social networks (MEAs_SN) [27]; and
5) improved multiobjective quantum-behaved particle swarm
optimization (IMOQPSO) [28]. The five algorithms are
selected for comparison as they are either state-of-the-art
methods for overlapping community detection or relevant
to MCMOEA in some sense. In detail, CPM [12] first
introduced the conception of the clique into the field of
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Fig. 7. Comparison results of gNMI values between MCMOEA and other
five representative algorithms. (a) © = 0.1, O, = 0.1N, O, = {2,4,6, 8},
and N = 1000. (b) u = 0.3, Oy, = 0.IN, Oy, = {2,4, 6,8}, and N = 1000.
() u =05, 0y =0.IN, Oy, = {2,4,6,8}, and N = 1000. (d) u = 0.1,
O, = 03N, Oy = {2,4,6,8}, and N = 1000. (e) u = 0.3, 0, = 0.3N,
Om =1{2,4,6,8}, and N = 1000. (f) u = 0.5, 0, = 0.3N, O,y = {2, 4,6, 8},
and N = 1000. (g) u = 0.1, Oy = 0.5N, Oy, = {2, 4,6, 8}, and N = 1000.
(h) w = 0.3, Op = 0.5N, Oy = {2,4,6,8}, and N = 1000. (i) n = 0.5,
Oy =0.5N, Oy =1{2,4,6, 8}, and N = 1000.

community detection. Link clustering [13] is featured by using
links instead of nodes to discover community structures. As
for SLPA [18], a previous review [37] claimed that it is
a competitive method for overlapping community detection.
MEAs_SN [27] and IMOQPSO [28], [44]-[47] are two rep-
resentatives of MOEAs applicable to overlapping community
detection. For each algorithm in comparison, the code is pro-
vided by its authors. CPM, link clustering, and SLPA are
implemented with C++, MEAs_SN with C, and IMOQPSO
with MATLAB. The tunable parameters of each algorithm are
set as the suggestion of the corresponding paper.

The parameter settings of the synthetic networks used in
this section are listed in part 5.1 of Table I. In this experiment,
the networks are all with 1000 nodes. u, O,, and O,, are set to
{0.1, 0.3, 0.5}, {0.IN, 0.3N, 0.5N}, and {2, 4, 6, 8}, respec-
tively, which are the minimum, the median and the maximum
of their feasible ranges, to represent the networks with
different properties. Hence, these algorithms are compared
on totally 3 x 3 x 4 = 36 networks with different levels of
community ambiguity and overlapping rate. By doing so, it is
expected that the comparison can be comprehensive and thor-
ough. For the sake of fairness, on each network, the algorithms
with adjustable control parameters (i.e., CPM, link clustering,
and SLPA) report their best results among different parameter
settings, and the results of nondeterministic algorithms
(i.e., SLPA, MEAs_SN, IMOQPSO, and MCMOEA) are
averaged over 30 independent runs. The comparison results
of gNMI among these algorithms are presented in Fig. 7
and Table SIV in the supplementary material. Additionally,
in order to provide insight into the behaviors of different
algorithms, this paper also examines the cumulative distri-
bution of community sizes of each algorithm and compares
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it with the known ground truth on each network. The results
are shown in Figs. S11-S13 in the supplementary material.

From Fig. 7, three observations can be obtained. First, as
expected, the performance of all the algorithms decreases
as either of the three network parameters (u, O,, or O)
increases. Second, MCMOEA and MEAs_SN substantially
outperform CPM, link clustering, and IMOQPSO on all the
total 36 networks. Comparing with SLPA, MCMOEA and
MEAs_SN achieve similar performance when u, Oy, and O,,
are all small. However, with either of the three parameters
(u, Oy, or Oyp,) increases, the performance of SLPA decreases
dramatically and becomes much worse than MCMOEA
and MEAs_SN. Third, when compared MCMOEA with
MEAs_SN, MCMOEA performs better than, or at least as well
as MEAs_SN on all networks. Moreover, MCMOEA is more
robust to the variations of O, and O,,. Take the first column
of Fig. 7 as an example [i.e., Figs. 7(a), (d), and (g)]. With u
and Oy, fixed and O, rising from 0.1N to 0.5N, the change of
gNMI for MCMOEA is smaller than that of MEAs_SN. Take
Fig. 7(d) as another example. With p and O, fixed and O,,
rising from 2 to 8, the performance of MCMOEA degrades
more gently than that of MEAs_SN. From Figs. S11-S13 in
the supplementary material, it can be observed that when g,
0,, and Oy, are all small, the cumulative distributions of com-
munity sizes of CPM, SLPA, MEAs_SN, and MCMOEA are
similar and close to the true community size structures. With
the increase of either u, Oy, or Oy, all curves gradually devi-
ate from the known ground truth. However, compared to other
algorithms, the curves of MCMOEA are closer to those of the
true partitions on almost all networks.

Although MCMOEA shows great superiority in gNMI to
other algorithms, recent studies [48]-[50] pointed out that
gNMI may have the selection bias problem that tends to
choose solutions with more communities. That is to say, a par-
tition with a higher number of communities is more likely to
obtain a larger gNMI value. To avoid this possible unfairness
caused by gNMI, another evaluation index, called scaled nor-
malized mutual information (FNMI) [49], is also adopted to
evaluate the performance of all algorithms in comparison. As
an adjustment of gNMI, FNMI [49] can overcome the defect
of gNMI to some extent by punishing partitions that have
a number of communities either too higher or too lower than
the true number. Similar to gNMI, FNMI is in the range of [0,
1] and a larger FNMI represents a better partition. The com-
parison results of FNMI among all algorithms are presented
in Fig. S14 and Table SV in the supplementary material. From
Fig. S14 in the supplementary material, it can be observed that
the comparison results of FNMI are roughly similar to those
of gNMI. For example, the performance of CPM, link cluster-
ing and IMOQPSO are much worse than those of MCMOEA
and MEAs_SN on all networks. SLPA has the similar perfor-
mance to MCMOEA and MEAs_SN when u, O, and O,, are
all small. However, with the increase of either w, Oy, or Oy, its
performance dramatically decreases and becomes much worse
than MCMOEA and MEAs_SN. The only difference lies in
the relationship between the performance of MEAs_SN and
MCMOEA. When measured by gNMI, MCMOEA performs
better than, or at least similar to MEAs_ SN on almost all
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TABLE 1T
COMPUTATIONAL TIME OF MCMOEA AND MEAs_SN

Time(s) _ . _
Algorithm N=1000 N=5000 N=10000
MCMOEA 23.30 1122.97 7974.53
MEAs SN 140.77 12056.93 102073.90

networks as shown in Fig. 7. However, when measured by
FNMI, MCMOEA shows worse performance than MEAs_SN
on networks with a larger u. To uncover the fundamental
reason of such difference, this paper examines both com-
munity information of partitions obtained by MCMOEA and
MEAs_SN, including the number of communities (c,), the
minimum community size (cpip), and the maximum commu-
nity size (cmax), and then compares them with the known
ground truth. As shown in Table SVI in the supplementary
material, it can be noticed that when p is large, cmax of
MEAs_SN is much larger than that of both MCMOEA and
the true partition, indicating MEAs_SN tends to merge small
communities into a large one on the networks with a high
value of w. As a result, the obtained ¢, is decreased and its
difference with the true number of the communities is short-
ened. In this case, the punishment of FNMI for the partition
is alleviated, and thus MEAs_SN obtains a high FNMI value.

Based on the above results, we can see that only MEAs_SN
can be comparable with the proposed MCMOEA on parti-
tion accuracy. However, as stated in Section I, the indirect
representation scheme adopted in MEAs_SN leads to a high
computational complexity as O(N”> x PS x gen,,.) [27].
Nevertheless, the developed MCMOEA only costs O(max{N x
k2o M? x PS, M x PS x geny,}), which is determined by
three parts, i.e., the determination process of clique nodes
of the maximal-clique graph, population initialization, and
evolutionary operators. Here, N is the number of nodes of
the original graph, kmax is the maximum node degree of the
original graph, and M is the number of clique nodes of the
corresponding maximal-clique graph. PS is the size of popula-
tion and genmax 1s the maximum number of generations. Since
M is usually smaller than or equal to N, both O(M? x PS) and
O(M x PS x gen,,,,) are much less than O(N? x PS x gen,,).
Thus, O(N xk3.,.) is the key differentiator between MEAs_SN
and MCMOEA. According to the analysis of pseudo code
of Algorithm 1, it can be obtained that O(N x kfnax) is the
worst case complexity of the clique nodes determination pro-
cess. Additionally, in most large real-world networks, kmax
is generally kept at 10?, which is much smaller than N and
does not largely increase with the rise of N.! Therefore, the
computational complexity of MCMOEA is much lower than
that of MEAs_SN. Moreover, the larger the network is, the
more obvious superiority of MCMOEA to MEAs_SN will be.
To further validate the above analysis, an experiment is con-
ducted here to compare the actual run time between these
two algorithms on several synthetic networks with different
scales. The detailed network information is listed in part 5.2 of
Table I. On each network, MCMOEA and MEAs_SN are,
respectively, run for 30 independent times with equal compu-
tational budget (PS = 100 and genmax = 50) and the average

1 snap.stanford.edu/data/.

TABLE III
INFORMATION OF TWO LARGE REAL-WORLD NETWORKS

Network N E dave
Word Association 10617 63785 12.02
Scientific Collaborators 31163 120029 7.70

computational time is shown in Table II for comparison. As
can be seen, the computational time of MCMOEA is always
much less than that of MEAs_SN when N increases from
1000 to 10,000 and the advantage of MCMOEA enlarges with
the increase of N. These experimental results are consistent
with the theoretical analysis of the computational complexity,
which demonstrates the proposed clique-based representation
is beneficial for reducing the computational cost of MOEAs
for overlapping community detection. All the above observa-
tions indicate that MCMOEA is a competitive and promising
method for overlapping community detection.

F. Experiments on Real-World Networks

For further validation, MCMOEA is applied to detect the
community structures of four real-world networks, including
two small networks and two large networks. The two small
networks are about word association [13], each baring one of
the following two overlapping community structures: 1) two
communities share multiple nodes and 2) one node belongs
to several communities. The two large networks are about
word association [51] and scientific collaborators [52]. The
word association network was created by the University of
South Florida and University of Kansas, which adopted words
as stimulus and asked participants to write the first word that
came into mind. The scientific collaborator network describes
coauthorships between scientists that post preprints on the
condensed matter E-print archive. Information about the two
large real-world networks is presented in Table III. Since the
actual community structures of these real-world networks are
unknown, Q,, is adopted as the evaluation index. Additionally,
the distributions of community sizes (nodes per community)
and overlapping membership (communities per node) in large
real-world networks are often found to follow power laws
approximately [12]. Hence, for the two large networks, the
cumulative distributions of community sizes and overlapping
membership are also presented.

Fig. 8 shows an example of the partitions found by
MCMOEA for the two small networks. In Fig. 8(a), the parti-
tion divides the network into two communities, one of which
is related to “juice” and the other is related to “mixture”.
“blend” and “blender” are detected as the overlapping nodes
of the two communities. Such a rational partition shows that
MCMOEA can deal with the situation when two communities
have multiple overlapping nodes. In Fig. 8(b), the network
is partitioned into four communities, each of which repre-
sents one meaning of the word “brush”. “Brush” is detected as
the overlapping node of the four communities. Such a parti-
tion indicates that MCMOEA can also capture the community
structure where one node belongs to several communities.

As for the word association network, the partition found by
MCMOEA achieves a Q,, of 0.15. Figs. 9(a) and (b) present the
cumulative distributions of community sizes and overlapping
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Fig. 8. Two simple examples of the word association network. Circles in
different colors represent different communities, except yellow ones, which are
overlapping nodes between different communities. (a) MCMOEA successfully
captures the community structure that two communities share multiple nodes
(Qoy = 0.34). (b) MCMOEA successfully captures the community structure
that one node belongs to multiple communities (Qy, = 0.38).
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Fig. 9. Analysis of the partition found by MCMOEA for the word
association network (Qqy = 0.15). (a) Cumulative distribution of commu-
nity sizes. (b) Cumulative distribution of overlapping membership of nodes.
(c) Communities containing the word “vacation”. (d) Communities containing
the word “bright”.

membership obtained from the partition, respectively. As can
be observed, both of them are close to the power law distribu-
tion. Besides, since the nodes in the word association network
are plain English words, the rationality of the partition can be
evaluated based on the meanings of the communities. Using
“vacation” and “bright” as examples, Figs. 9(c) and (d) draw
the communities that the two words belong to, respectively. As
shown in Fig. 9(c), “vacation” belongs to two communities,
one of which contains tourist destinations, such as “Island”
and “Hawaii,” while the other contains things and actions that
one may take during a vacation. Fig. 9(d) shows that the word
“bright” is involved in four communities, i.e., “color,” “light,”
“intelligence,” and “emotion,” each of which represents one
meaning of “bright”. Besides “bright”, MCMOEA also success-
fully detects other overlapping nodes between the communities
of “color” and “light,” i.e., “pale,” “yellow,” and “gray.” All
the above indicates that MCMOEA is able to find a reasonable
partition for the word association network.

For the scientific collaborators network, the partition found
by MCMOEA achieves a Q,, of 0.48. Figs. 10(a) and (b)
show the cumulative distributions of community sizes and
overlapping membership, respectively. As can be seen, both of
the cumulative distributions approximately follow the power
law distribution. The above results indicate that MCMOEA can
find a rational partition for the large real-world networks.
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Fig. 10. Analysis of the partition found by MCMOEA for the scientific
collaborators network (Qp, = 0.48). (a) Cumulative distribution of community
sizes. (b) Cumulative distribution of overlapping membership of nodes.
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Fig. 11. Example of the hierarchical structure behind the non-dominated solu-
tions obtained by MCMOEA. Nodes in different communities are color coded
and the yellow ones are overlapping nodes between different communities.
(a) Set of non-dominated solutions. (b) Partition corresponding to solution 1
(Qoy = 0.46). (c) Partition corresponding to solution 2 (Q,y = 0.43).
(d) Partition corresponding to solution 3 (Q,, = 0.38).

G. Benefit of Using Multiobjective Framework

As a multiobjective algorithm, MCMOEA generates a set
of non-dominated solutions, each of which corresponds
to a partition of the given network. Previous studies
claimed that the non-dominated solutions have a hierarchical
structure [24], [27] and thus, can reveal the community struc-
ture of the given network on different levels. To validate such
a benefit, MCMOEA is applied to a small hierarchical word
association network. The five non-dominated solutions found
by MCMOEA are presented in Fig. 11(a). Figs. 11(b)—(d)
are the visualization of the partitions corresponding to three
non-dominated solutions, which are labeled as 1, 2, and 3,
respectively. As shown in Fig. 11(b), solution 1 partitions the
network into two communities, namely, “shape” and ‘“earth.”
Fig. 11(c) shows that solution 2 further divides the commu-
nity “earth” in solution 1 into two new communities “land”
and “outer-space.” Solution 3 continues to divide the commu-
nity “outer-space” in solution 2 into two new communities
“human” and “planets,” as shown in Fig. 11(d). It can be con-
cluded that the community structure becomes more and more
concrete from solutions 1-3. All the three solutions are ratio-
nal partitions, but they reveal the community structure of the
network on different levels. The above example confirms that
MCMOEA can provide hierarchical partitions of the given net-
work and thus allows users to explore the network on different
levels.
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VI. CONCLUSION

This paper proposes a novel MCMOEA, for overlapping
community detection. In MCMOEA, we introduce the
maximal-clique graph by using a set of maximal cliques as
nodes and the links among maximal cliques as edges. Then
based on the maximal-clique graph, a clique-based repre-
sentation scheme is proposed. Since two maximal cliques
are allowed to share the same nodes of the original graph,
overlap is an intrinsic property of the nodes of the maximal-
clique graph, which exactly characterizes the overlapping
communities. Attributing to this property, the new repre-
sentation scheme allows MOEAs to handle the overlapping
community detection problem in a way similar to that of
the separated community detection, such that the optimiza-
tion problem is simplified. As a result, MCMOEA could
detect overlapping community structure with higher parti-
tion accuracy and lower computational cost when compared
with the existing algorithms. Experiments on synthetic and
real-world networks show the effectiveness and efficiency
of MCMOEA. Comparisons with other five representative
algorithms also confirm that MCMOEA is competitive and
promising.

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabdsi, “Internet: Diameter of the
world-wide Web,” Nature, vol. 401, no. 6749, pp. 130-131, Sep. 1999.

[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-
tionships of the Internet topology,” in Proc. Comput. Commun. Rev.,
Cambridge, MA, USA, 1999, pp. 251-262.

[3] M. E. J. Newman, “The structure of scientific collaboration networks,”
Proc. Nat. Acad. Sci. USA, vol. 98, no. 2, pp. 404—409, 2001.

[4] A. C. Gavin et al., “Functional organization of the yeast proteome by
systematic analysis of protein complexes,” Nature, vol. 415, no. 6868,
pp. 141-147, 2002.

[5] H. Q. Dinh et al., “An effective method for evolving reaction networks
in synthetic biochemical systems,” IEEE Trans. Evol. Comput., vol. 19,
no. 3, pp. 374-386, Jun. 2015.

[6] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821-7826, 2002.

[71 M. E. J. Newman, “Fast algorithm for detecting community structure in
networks,” Phys. Rev. E., vol. 69, no. 6, Jun. 2004, Art. no. 066133.

[8] M. E. J. Newman, “Finding community structure in networks using
the eigenvectors of matrices,” Phys. Rev. E., vol. 74, no. 3, Sep. 2006,
Art. no. 036104.

[9] M. Tasgin, A. Herdagdelen, and H. Bingol, “Community detection
in complex networks using genetic algorithms,” in Proc. Eur. Conf.
Complex Syst., Apr. 2006.

[10] FE. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks,” Proc. Nat. Acad.
Sci. USA., vol. 101, no. 9, pp. 2658-2663, 2004.

[11] M. E. J. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Phys. Rev. E., vol. 69, no. 2, Feb. 2004,
Art. no. 026113.

[12] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the
overlapping community structure of complex networks in nature and
society,” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

[13] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, no. 7307,
pp. 761-764, Aug. 2010.

[14] S. Kelley, M. Goldberg, M. Magdon-Ismail, K. Mertsalov, and
A. Wallace, “Defining and discovering communities in social networks,”
in Handbook of Optimization in Complex Networks. New York, NY,
USA: Springer, 2012, pp. 139-168.

[15] F. Reid, A. McDaid, and N. Hurley, “Partitioning breaks communi-
ties,” in Mining Social Networks and Security Informatics. Dordrecht,
The Netherlands: Springer, 2013, pp. 79-105.

[16] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the
overlapping and hierarchical community structure in complex networks,”
New J. Phys., vol. 11, no. 3, 2009, Art. no. 033015.

[17] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-Ismail,
and N. Preston, “Finding communities by clustering a graph into
overlapping subgraphs,” in Proc. IADIS AC, vol. 5. 2005, pp. 97-104.

[18] J. Xie, B. K. Szymanski, and X. Liu, “SLPA: Uncovering overlapping
communities in social networks via a speaker-listener interaction
dynamic process,” in Proc. [EEE [1Ith Int. Conf. Data Min.
Workshops (ICDMW), Vancouver, BC, Canada, 2011, pp. 344-349.

[19] M. Gong, Q. Cai, X. Chen, and L. Ma, “Complex network cluster-
ing by multiobjective discrete particle swarm optimization based on
decomposition,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 82-97,
Feb. 2014.

[20] C. Pizzuti, “GA-Net: A genetic algorithm for community detection in
social networks,” in Proc. Parallel Problem Solving Nat., Dortmund,
Germany, 2008, pp. 1081-1090.

[21] M. Gong, B. Fu, L. Jiao, and H. Du, “Memetic algorithm for commu-
nity detection in networks,” Phys. Rev. E., vol. 84, no. 5, Nov. 2011,
Art. no. 056101.

[22] A. Lancichinetti and S. Fortunato, “Community detection algorithms:
A comparative analysis,” Phys. Rev. E., vol. 80, no. 5, Nov. 2009,
Art. no. 056117.

[23] A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical structure and
the prediction of missing links in networks,” Nature, vol. 453, no. 7191,
pp. 98-101, 2008.

[24] C. Pizzuti, “A multiobjective genetic algorithm to find communities
in complex networks,” IEEE Trans. Evol. Comput., vol. 16, no. 3,
pp. 418-430, Jun. 2012.

[25] C. Shi, Z. Yan, Y. Cai, and B. Wu, “Multi-objective community detection
in complex networks,” Appl. Soft Comput., vol. 12, no. 2, pp. 850-859,
Feb. 2012.

[26] M. Gong, L. Ma, Q. Zhang, and L. Jiao, “Community detection in
networks by using multiobjective evolutionary algorithm with decom-
position,” Phys. A., vol. 391, no. 15, pp. 40504060, Aug. 2012.

[27] C. Liu, J. Liu, and Z. Jiang, “A multiobjective evolutionary algorithm
based on similarity for community detection from signed social net-
works,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2274-2287, Dec. 2014.

[28] Y. Li, Y. Wang, J. Chen, L. Jiao, and R. Shang, “Overlapping commu-
nity detection through an improved multi-objective quantum-behaved
particle swarm optimization,” J. Heuristics, vol. 21, no. 4, pp. 549-575,
Aug. 2015.

[29] L. Angelini, S. Boccaletti, D. Marinazzo, M. Pellicoro, and
S. Stramaglia, “Identification of network modules by optimization of
ratio association,” Chaos, vol. 17, no. 2, 2007, Art. no. 023114.

[30] Q.Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712731, Dec. 2007.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

[32] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
in Proc. Evol. Methods Design Optim. Control, Athens, Greece, 2001,
pp. 95-100.

[33] N. Chen et al., “An evolutionary algorithm with double-level archives
for multiobjective optimization,” IEEE Trans. Cybern., vol. 45, no. 9,
pp. 1851-1863, Sep. 2015.

[34] P.R.J. Ostergard, “A fast algorithm for the maximum clique problem,”
Discrete Appl. Math., vol. 120, nos. 1-3, pp. 197-207, Aug. 2002.

[35] D. E. Goldberg and R. Lingle, “Alleles, loci, and the traveling sales-
man problem,” in Proc. Ist Int. Conf. Genet. Algorithm. Appl., vol. 154.
Pittsburgh, PA, USA, 1985, pp. 154-159.

[36] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities,” Phys. Rev. E., vol. 80, no. 1, 2009, Art. no. 016118.

[37] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community detec-
tion in networks: The state-of-the-art and comparative study,” ACM
Comput. Surveys, vol. 45, no. 4, 2013, Art. no. 43.

[38] H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping and
hierarchical community structure in networks,” Phys. A., vol. 388, no. 8,
pp- 1706-1712, Apr. 2009.

[39] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition-based evolu-
tionary algorithm for many objective optimization,” IEEE Trans. Evol.
Comput., vol. 19, no. 3, pp. 445-460, Jun. 2015.

[40] J. Branke, S. Greco, R. Stownski, and P. Zielniewicz, “Learning value
functions in interactive evolutionary multiobjective optimization,” [EEE
Trans. Evol. Comput., vol. 19, no. 1, pp. 88-102, Feb. 2015.

[41] J. E. Fieldsend and R. M. Everson, “The rolling tide evolutionary
algorithm: A multiobjective optimizer for noisy optimization problems,”
IEEE Trans. Evol. Comput., vol. 19, no. 1, pp. 103—117, Feb. 2015.

[42] Q. Yang et al., “Adaptive multimodal continuous ant colony optimiza-
tion,” IEEE Trans. Evol. Comput., in press, 2016.

[43] Q. Yang et al., “Multimodal estimation of distribution algorithms,” IEEE
Trans. Cybern., in press, 2016.

[44] L. Jiao, Y. Li, M. Gong, and X. Zhang, “Quantum-inspired immune
clonal algorithm for global optimization,” IEEE Trans. Syst, Man,
Cybern. B, Cybern., vol. 38, no. 5, pp. 1234-1253, Oct. 2008.

[45] Y. Li, L. Jiao, R. Shang, and R. Stolkin, “Dynamic-context coopera-
tive quantum-behaved particle swarm optimization based on multilevel
thresholding applied to medical image segmentation,” Inf. Sci., vol. 294,
pp. 408—422, Feb. 2015.



WEN et al.: MCMOEA FOR OVERLAPPING COMMUNITY DETECTION

[46] W.-N. Chen et al., “A novel set-based particle swarm optimization
method for discrete optimization problems,” IEEE Trans. Evol. Comput.,
vol. 14, no. 2, pp. 278-300, Apr. 2010.

W.-N. Chen et al., “Particle swarm optimization with an aging leader and
challengers,” IEEE Trans. Evol. Comput., vol. 17, no. 2, pp. 241-258,
Apr. 2013.

S. Romano, J. Bailey, X. V. Nguyen, and K. Verspoor, “Standardized
mutual information for clustering comparisons: One step further in
adjustment for chance,” in Proc. 31st Int. Conf. Mach. Learn. JMLR
W&CP, vol. 32. Beijing, China, 2014, pp. 1143-1151.

A. Amelio and C. Pizzuti, “Is normalized mutual information a fair mea-
sure for comparing community detection methods?” in Proc. IEEE. Conf.
Adv. Social Netw. Anal. Min., Paris, France, 2015, pp. 1584-1585.

N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correc-
tion for chance,” J. Mach. Learn. Res., vol. 11, no. 10, pp. 2837-2854,
2010.

D. L. Nelson, C. L. McEvoy, and T. A. Schreiber, “The University
of South Florida free association, rhyme, and word fragment norms,”
Behav. Res. Methods Instrum. Comput., vol. 36, no. 3, pp. 402-407,
Aug. 2004.

S. Warner, “E-prints and the open archives initiative,” Library Hi Tech,
vol. 21, no. 2, pp. 151-158, 2003.

[47]

[48]

[49]

[50]

[51]

[52]

Xuyun Wen (S’14) received the M.S. degree from
Beijing Normal University, Beijing, China, in 2014.
She is currently pursuing the Ph.D. degree at
Sun Yat-sen University, Guangzhou, China.

She is also a Research Assistant with the
School of Computer Science and Engineering,
South China University of Technology, Guangzhou.
Her current research interests include evolutionary
algorithms and their applications on real-world
problems.

Wei-Neng Chen (S’07-M’12) received the
Bachelor’s and Ph.D. degrees from Sun Yat-sen
University, Guangzhou, China, in 2006 and 2012,
respectively.

He is currently a Professor with the School
of Computer Science and Engineering, South
China University of Technology, Guangzhou. He
has published over 50 papers in international
journals and conferences. His current research
interests include swarm intelligence algorithms and
their applications on cloud computing, operations
research, and software engineering.

Dr. Chen was a recipient of the IEEE Computational Intelligence Society
Outstanding Dissertation Award in 2016 for his doctoral thesis and the
National Science Fund for Excellent Young Scholars in 2016.

Ying Lin (M’12) received the Ph.D. degree in
computer applied technology from Sun Yat-sen
University, Guangzhou, China, in 2012.

She is currently an Assistant Professor with the
Department of Psychology, Sun Yat-sen University.
Her current research interests include computational
intelligence and its applications in network analysis
and cognitive diagnosis.

Tianlong Gu received the M.Eng. degree from
Xidian University, Xi’an, China, in 1987, and the
Ph.D. degree from Zhejiang University, Hangzhou,
China, in 1996.

From 1998 to 2002, he was a Research Fellow
with the School of Electrical and Computer
Engineering, Curtin University of Technology, Perth,
WA, Australia, and a Post-Doctoral Fellow with
the School of Engineering, Murdoch University,
Perth. He is currently a Professor with the School
of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin, China. His current research
interests include formal methods, data and knowledge engineering, software
engineering, and information security protocol.

377

Huaxiang Zhang received the Ph.D. degree from
Shanghai Jiaotong University, Shanghai, China,
in 2004.

He is currently a Professor with the School
of Information Science and Engineering, Shandong
Normal University, Jinan, China, where he was
an Associate Professor with the Department of
Computer Science from 2004 to 2005. He has
authored over 100 journal and conference papers and
has been granted eight invention patents. His current
research interests include machine learning, pattern
recognition, evolutionary computation, and Web information processing.

Yun Li (S’87-M’90) received the B.S. degree in
radio electronics science from Sichuan University,
Chengdu, China, in 1984, the M.Eng. degree in elec-
troni engineering from the University of Electronic
Science and Technology of China (UESTC),
Chengdu, in 1987, and the Ph.D. degree in par-
allel processing for control engineering from the
University of Strathclyde, Glasgow, U.K., in 1990.
Currently, he is a Professor in the School of
T~ Computer Science and Network Security, Dongguan
~ University of Technology, Dongguan, China. Before
that, he was a Professor in the School of Engineering, University of Glasgow,
Glasgow, U.K. From 1989 to 1990, he was with U.K. National Engineering
Laboratory and Industrial Systems and Control Ltd., Glasgow. He joined
the University of Glasgow as a Lecturer in 1991, served as the two-year
Founding Director of the University of Glasgow Singapore, Singapore, from
2011 to 2013, and was an Interim/Founding Director of the University’s first
joint programme in China in 2013, with the University of Electronic Science
and Technology (UESTC), Chengdu, China. He established Evolutionary
Computation workgroups for the IEEE Control System Society and European
Network of Excellence in Evolutionary Computing (EvoNet) in 1998 and
served on the Management Board of EvoNet from 2000 to 2005. He has
been a Visiting Professor with Kumamoto University, Kumamoto, Japan,
UESTC, and Sun Yat-sen University, Guangzhou, China. He has supervised
over 20 Ph.D. students and has over 200 publications.
Prof. Li is a Chartered Engineer in the U.K.

Yilong Yin received the Ph.D. degree from Jilin
University, Changchun, China, in 2000.

He is the Director of the Machine Learning and
Applications Group and a Professor with Shandong
University, Jinan, China. From 2000 to 2002, he
was a Post-Doctoral Fellow with the Department
of Electronic Science and Engineering, Nanjing
University, Nanjing, China. His current research
interests include machine learning, data mining,
computational medicine, and biometrics.

Jun Zhang (M’02-SM’08) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Professor with the South
China University of Technology, Guangzhou, China.
His current research interests include computational
intelligence, cloud computing, wireless sensor net-
works, operations research, and power electronic
circuits. He has authored seven research books and
book chapters, and over 50 IEEE TRANSACTIONS
papers in the above areas.

Prof. Zhang was a recipient of the National Science Fund for Distinguished
Young Scholars in 2011 and the First-Grade Award in Natural Science
Research from the Ministry of Education, China, in 2009. He was also
appointed as the Changjiang Chair Professor in 2013. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
and the IEEE TRANSACTIONS ON CYBERNETICS. He is the Founding
and the Current Chair of the IEEE Guangzhou Subsection, the IEEE
Beijing (Guangzhou) Section Computational Intelligence Society Chapters,
and the ACM Guangzhou Chapter.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


