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Abstract

Background: Mass migrations are among the most striking examples of animal movement in the natural world. Such
migrations are major drivers of ecosystem processes and strongly influence the survival and fecundity of individuals.
For migratory animals, a formidable challenge is to find their way over long distances and through complex, dynamic
environments. However, recent theoretical and empirical work suggests that by traveling in groups, individuals are able
to overcome these challenges and increase their ability to navigate. Here we use models to explore the implications
of collective navigation on migratory, and population, dynamics, for both breeding migrations (to-and-fro migrations
between distinct, fixed, end-points) and feeding migrations (loop migrations that track favorable conditions).

Results: We show that while collective navigation does improve a population’s ability to migrate accurately, it can
lead to Allee effects, causing the sudden collapse of populations if numbers fall below a critical threshold. In some
scenarios, hysteresis prevents the migration from recovering even after the cause of the collapse has been removed.
In collectively navigating populations that are locally adapted to specific breeding sites, a slight increase in mortality
can cause a collapse of genetic population structure, rather than population size, making it more difficult to detect
and prevent.

Conclusions: Despite the large interest in collective behavior and its ubiquity in many migratory species, there is a
notable lack of studies considering the implications of social navigation on the ecological dynamics of migratory
species. Here we highlight the potential for a previously overlooked Allee effect in socially migrating species that may
be important for conservation and management of such species.

Keywords: Collective navigation, Migration, Population collapse, Dispersal, Local adaptation, Anadromous fish,
Migratory ungulates, Migratory birds, Migratory marine fish

Background
Across the globe animals make long-distance migrations
to access the resources needed for survival and repro-
duction. Migration allows organisms to take advantage of
ephemeral resources, avoid harsh conditions, minimize
predation, and rear their offspring in suitable environ-
ments. To fuel long distance travel, migratory species are
major resource consumers, while their energy stores also
make them attractive prey items, thus they are impor-
tant at multiple levels in food webs. At the broadest scale,
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migrations shape ecosystems by altering trophic interac-
tions, generate fluxes of limiting nutrients, and determine
connectivity between local populations and communities,
both by linking community dynamics across space, and by
structuring population genetic patterns [1–4].
Many animal migrations involve impressive feats of nav-

igation. For example, Pacific salmon are able to find their
way over thousands of kilometers to their precise natal
site, while the blue wildebeest tracks shallow and noisy
environmental gradients to follow favorable feeding con-
ditions. To navigate along migratory routes animals are
thought to employ celestial and geomagnetic cues, envi-
ronmental and resource gradients (temperature, salinity,
odor etc.) as well as land marks (see [5] for a review).
Recent theoretical [6–9] and empirical [10–16] work sug-
gests that by traveling in groups animals may increase
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their ability to find their way. Indeed across many taxa,
migrations are undertaken by large social groups [17] and
in some species migratory distance is positively correlated
with group size [18].
There are three general ways in which migratory ani-

mals might benefit from collective navigation. First, by
spanning a larger spatial scale, groups are thought to act
as distributed sensory arrays [19]. In this scenario taxis
emerges at the group level from a combination of social
and environmental interactions, even when individuals
have weak or no gradient sensing ability [6, 10]. Second,
by flocking or schooling, groups average out directional
preferences of the constituent individuals. This averag-
ing over many independent estimates, known as themany
wrongs principle, tends to prune out errant guesses, and
if there is no overall bias, to hone in on the correct direc-
tion for large group sizes [7, 20–23]. Finally, traveling as a
group allows for social learning [12, 24–29] and collective
memory [8] of migratory routes.
Empirical evidence suggests animals do benefit from

these mechanisms in nature: anadromous salmon migrate
back to their home streams more accurately in years of
greater abundance [11, 30]; flocks of pigeons can home
more accurately than individuals [13, 16]; schools of
pelagic marine larvae can orient more accurately than
individuals [14]; migratory vultures born nearer to dense
migration corridors are more likely to successfully navi-
gate [31]; and movement data from individual wildebeests
suggest that these ungulatesmove along gradients thought
to be too shallow to be measured by an individual [32].
Here we explore the potential impact of collective nav-

igation on the population, and movement, dynamics of
migratory species. In recent decades there has been much
focus on the idea that ecological systems undergo abrupt
transitions between alternate stable states [33–35]. Sev-
eral models have been proposed to further investigate this
phenomenon, including multi-species models of commu-
nity dynamics [36], two species models of predator-prey
or host-parasite interactions [37], and single species mod-
els exhibiting strong Allee effects [38]. Common to all
these models is the presence of bistability or multistabil-
ity in the underlying dynamical system. Rapid transitions
between attractors may occur due to a parameter change
causing a bifurcation in the deterministic system [39], or
through stochastic fluctuations causing the system to flip
from one state to another [40].
For single species models, there is bistability when the

population displays a strong Allee effect. Fundamentally
this occurs when the growth rate of the population is neg-
ative below a critical threshold. Various mechanisms may
lead to Allee effects and ecological models have revealed
that mate finding [41], cooperative breeding [42] and the
use of social information during habitat selection [43] are
potential drivers of these effects. In this work we propose

that collective navigation is a further, unexplored mecha-
nism that can cause migratory populations to collapse. If
migrants improve the accuracy of their movement deci-
sions as a result of collective behavior then fragmentation
or reduction of populations could impact migration abil-
ity. Further, if large populations are sustained by successful
migrations, a reduction in navigational accuracy would
cause additional reduction of population size. Through
a model-based analysis of two common forms of migra-
tion we reveal that these processes result in a positive
feedback mechanism that may cause abrupt changes in
abundance ormovement patterns of collectivelymigrating
species.

Methods
We define migration as the cyclic relocation of individ-
uals over a larger spatial scale than normal ranging or
station-keeping movements, with individual trajectories
characterised by increased persistence in heading and a
suppression of responses to local stimuli [44, 45]. We
consider two generalized types of migrations within this
definition: i) breeding migrations, in which individuals
travel to discrete fixed end-points to reproduce, typical
of anadromous fish and many species of migratory birds;
and ii) feeding migrations, characterized by continual
motion that tracks regions of favorable conditions, com-
mon in marine fish and terrestrial mammals, particularly
ungulates.
In this section we describe the three models we have

developed of collective migration. The first model consid-
ers a breeding migration of semelparous organisms. The
second model extends this breeding migration model to a
metapopulation distributed over breeding sites. The final
model captures feeding migrations involving continuous
movement that tracks a resource field. In all models we
assume females determine the dynamics (males are not
limiting) and do not explicitly consider separate sexes.
Definitions of all model parameters and their units are
shown in Table 1.

Breeding migrations
Many organisms migrate back to fixed, discrete natal sites
to breed. This behavior is common across many taxa
including fish, birds, mammals and insects [17]. Anadro-
mous salmon provide an archetypal example; after spend-
ing years feeding in the rich marine environment these
fish travel vast distances up rivers, often returning to the
precise point at which they were born [46, 47]. Strong
local adaptation to certain conditions means that failing
to navigate back to that specific site can result in a sig-
nificant reduction in fitness [48–50]. Similarly, migratory
birds travel annually from southern wintering grounds to
discrete sites in temperate or Arctic regions to breed [51].
Empirical evidence suggests that by traveling in groups
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Table 1 Parameter values used for simulations

Symbol Description Units
Value

Breeding single site Breeding multi site Feeding

δ Growth rate of resource 1/time 0.1 0.1 –

Rmax Carrying capacity of resource #R 1 1 –

α Uptake rate of resource by consumer #R/(#N·time) 5 × 10−5 5 × 10−5 –

bm Maximum birth rate Unitless 5 5 –

D Half-max consumption/birth rate level of R #R 0.5 0.5 –

τ Maturation time Time 1 1 –

p Plasticity relative to environmental heterogeneity Probability – 0 ≤ p ≤ 1 –

ao Individual homing accuracy Probability 0 ≤ ao ≤ 1 0 0

C Half-max accuracy level of N #N 1000 1000 2.5

h Additional mortality due to harvesting or migration impedance Probability 0 ≤ h ≤ 1 0 ≤ h ≤ 1 0 ≤ h ≤ r

r Maximum growth rate of migratory consumer 1/time – – 0.01

Kmax Peak carrying capacity #N – – 10

Ko Background carrying capacity #N – – 1

σ Width of wave of favorable conditions Distance – – 1

vK Speed of wave of favorable conditions Distance/time – – 0.1

vm Maximum speed of migratory consumers Distance/time – – 0.17

animals on breeding migrations might home more accu-
rately to their natal site [11, 12, 14, 31].
The following two models describe the dynamics of a

population reliant on breeding migrations. These models
are inspired by the life history of anadromous salmonids.
Due to collective navigation, individuals navigate more
accurately to their natal site when at higher densities. We
begin by considering the dynamics of a single breeding
population where an error in navigation results in zero
fecundity. We then extend this model to a metapopulation
of m discrete breeding sites and relax the zero fecundity
assumption for straying individuals by introducing a local
adaptation parameter.

Model 1: Breedingmigrationwith single natal site
We consider a population of semelparous organisms,
which, as juveniles, migrate from a natal site to a feeding
site and then as adults return to their natal site to breed
and then perish. Consumer population size is denoted
N. We assume that the resource density, R, on the feed-
ing grounds follows semi-chemostat growth in absence of
grazing (this assumes constant resource productivity with
turnover rate δ, and maximum resource density Rmax).
Feeding by consumers is assumed to follow a monotoni-
cally increasing, but saturating, function of the resource
abundance (type II functional response), resulting in the
resource dynamics being defined as follows:

dR
dt

= δ(Rmax − R) − αN
(

R
D + R

)
, (1)

where α scales the uptake rate of the resource by the
consumer. Similarly, the per capita fecundity of the con-
sumers, b, is proportional to their uptake rate of the
resource,

b(R) = bm
(

R
D + R

)
, (2)

where bm is the maximum fecundity and D is a parame-
ter controlling the non-linearity of the term in parentheses
(commonly called the half-saturation coefficient). With
this formulation of consumer fecundity, we reflect the
assumption that resource density on the feeding grounds
determines a component of survival and reproductive
capacity. At the same time, we explicitly assume that the
system is open, since the component of the life cycle tak-
ing place off the feeding grounds is not incorporated in
terms of a resource interaction. We include an additional
mortality term, h, reflecting mortality occurring before or
during the adult migration, due to harvesting or blockage
of the migration route. Finally, to account for collective
navigation, we suppose that the fraction of individuals
successfully completing the migration, a, is an increasing
function of U, the number of individuals attempting the
migration and who also survive the additional mortality,

a(U) = a0 + (1 − a0)
(

U
C + U

)
. (3)

Here a0 gives the accuracy of a lone traveler and C
parametrizes how swiftly accuracy increases with abun-
dance. We assume that accuracy is a monotonically
increasing function that begins at a0 and saturates at 1.
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This functional form of Eq. (3) matches the general trend
found in empirical studies of salmon homing as a function
of run density [11, 30], however we stress that our results
are not dependent on the exact form of this equation.
On the breeding grounds, each adult gives birth to b(R)

(Eq. (2)) juveniles and then dies. The dynamics of the
migratory population in continuous time are given by

dN
dt

= b(R)a(U)U − 1
τ
N , (4)

whereU = (1−h) 1
τ
N (the number of individuals attempt-

ing the migration and surviving the additional mortality,
h) and τ is the characteristic time to maturation (note
h ≤ 1, τ ≥ 1).

Model 2: Breedingmigrationwithmultiple natal sites
We extend the model formulation by considering the pos-
sibility of multiple natal sites. Now individuals failing to
successfully navigate to their natal site end up at some
other site. We assume that due to local adaptation individ-
uals straying from the site to which they are adapted will
have reduced fitness (given by decreasing the fecundity by
a factor p, where 0 ≤ p ≤ 1) with respect to their hom-
ing conspecifics. (Note that the factor p could also include
the probability of not reaching any site at all.) If we assume
symmetry between the natal sites, we need only consider
two populations, the number of locally adapted, homing
individuals, Nh, and the number of non-locally adapted
individuals (be they strayers or individuals homing to a
natal site to which their parent was not adapted), Ns, at a
given site. Form natal sites the dynamics of the migratory
population are given by
dNh
dt

= b(R)(1 − h)
{
a(U)

1
τ
Nh + 1

m
(1 − a(U))

1
τ
Ns

}
− 1

τ
Nh (5)

dNs
dt

= pb(R)(1 − h)
{
a(U)

1
τ
Ns + m − 1

m
(1 − a(U))

1
τ

(Nh + Ns)

}
− 1

τ
Ns ,

(6)

where the total number of individuals attempting migra-
tion, and surviving mortality at a single site is now U =
(1−h) 1

τ
(Nh+Ns). If the number of sites is large (m >> 1)

we may neglect the offspring of strayers that return back
to the site for which they are adapted by chance and the
equations simplify to,

dNh
dt

= b(R)(1 − h)
1
τ

{
a(U)Nh

}
− 1

τ
Nh (7)

dNs
dt

= pb(R)(1−h)
1
τ

{
Ns+(1−a(U))Nh

}
− 1

τ
Ns. (8)

Resources on the feeding grounds are again given by

dR
dt

= δ(Rmax − R) − α(Nh + Ns)
R

D + R
. (9)

Feeding migrations
Feeding migrations are characterized by the tracking of
favorable conditions for foraging. When resources vary
periodically according to seasonal climate, these migra-
tions tend to be cyclic loops [52] and this form of
migration appears to be the dominant form of terrestrial
migration [53] as well as being common in marine envi-
ronments [54]. On land, responding to spatial or temporal
cues that indicate (or predict) resource quality can keep
animals in prime feeding conditions while leading them
on an annual loop migration. Wildebeest of the Serengeti
provide a classic example, traveling an annual 650 km
loop while tracking regions of grass height, greenness and
new growth [55–57]. Gazelles also seemingly following
gradients of grass quality [58], but inmore stochastic envi-
ronments, make nomadic style movements rather than
following a specific annual path [59, 60].
In this section, we model the dynamics of a population

migrating to track a variable resource on an annual time-
scale. We note that depending on the nature of the indi-
vidual behavior and response to environmental cues, the
movements may either be migration (involving the inhi-
bition of responses to local resources [57]) or more prop-
erly considered long-range foraging movements (direct
response to a moving resource [52]). While inspired by
the annual loop around the Serengeti made by wildebeest,
our model assumes only that animals respond to a cue
that indicates where favorable regions will be, and hence
can apply equally to any migration or nomadic move-
ment where individuals track resource gradients more
effectively at higher densities.

Model 3: Feedingmigrations
We consider a patch of good conditions (rain, vegetation,
water temperature, etc.) traveling with constant speed, vK ,
in an annual loop. Because this patch travels in a loop,
we restrict our spatial model to one dimension with peri-
odic boundary conditions. The conditions, as a function
of time and space, are given by

K(θ , t) = (Kmax − Ko)e
−φ(θ ,t)2

2σ2 + Ko, (10)

where φ(θ , t) is the distance between a given position,
θ , and the location of the center of the patch, vK t. More
precisely,

φ(θ , t) = min
{
mod[ (θ − vK t), L]
L − mod[ (θ − vK t), L] ,

(11)

with L being the length of the loop (see Fig. 1 for an illus-
tration). Note, that this rather cumbersome expression
for φ simply imposes the periodic boundary conditions.
We assume the resource responds to these conditions and
the consumer on a fast time scale so we can neglect the
resource dynamics and thus have the conditions set the
local carrying capacity for the migratory consumer.
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Fig. 1 Feeding migration model schematic (Model 3). Space is
restricted to a 1 dimonsional loop (black dashed line). The green curve
shows the time-varying carrying capacity at all points in this space
(Eq. 10). A patch of favorable conditions translates steadily through
space with speed vK . The location and height of the blue bar indicate
the location (X) and size (N) of the migratory population, respectively.
The population tracks the patch with a speed, dXdt , that is dependent
on the local strength of the resource gradient and the size of the
population (Eq. 13). The z-axis applies to both carrying capacity (green
curve) and population size (height of blue bar) and is thus in units of
number of animals. See Additional files 2, 3, and 4 (Animation 1–3) for
animations of the simulation

In this environment we consider a group of consumers
having population size N and location X. The size of
the group follows logistic growth based on the current
resource conditions at its location, along with some addi-
tional mortality, h, (e.g. due to harvesting or blockage of
the migration route),

dN
dt

= rN
(
1 − N

K(X, t)

)
− hN . (12)

The group attempts to track the patch of favorable con-
ditions by moving in the direction of the local gradient of
the resource field (Eq. (10)). We assume that the speed at
which the group travels up the gradient in K is propor-
tional to the strength of that gradient at their location and
the group’s size-dependent ability to follow this gradient,
which is again given by Eq. (3). Thus the movement of the
group follows

dX
dt

= vm
〈
∂K(θ , t)

∂θ

〉∣∣∣∣
θ=X

a(N) (13)

where vm is the maximum speed, a(N) is the group’s
ability to respond to the gradient (Eq. (3)) and the <>

denote that the gradient field is normalized by the max-
imum value of the field, and is thus unitless. (Note that
this model can be mapped to a two-dimensional system
where the patch of favorable conditions follows an arbi-
trary (nomadic) path, and X is the distance from the group
to the center of the resource patch.)

At equilibrium, the population size will be constant(
dN
dt = 0

)
and the speed of the migration will match the

speed of the resource patch
(
dX
dt = vK

)
. Imposing these

conditions onto Eqs. (12) & (13) leads to the following,
stationary, system of equations

N̄ = K(X̄, 0)
(
1 − h

r

)
(14)

N̄ =

(
vK − aovm

〈
dK
dθ

〉∣∣∣
X̄,0

)
C

vm
〈
dK
dθ

〉∣∣∣
X̄,0

− vK
, (15)

which we solve numerically (Fig. 5).

Numerical methods
Numerical analysis in this paper was performed using
Matlab (version R2013a). We used the MatCont pack-
age, version 5.4, [61] to perform the bifurcation analyses
presented in Figs. 2d & 3d and to find the limits of the
oscillatory solutions in Figs. 2a, b & 3a. The equilibrium
solutions to differential equations in all other figures were
obtained using the Matlab differential equation solver
ode45().

Results
Results for Model 1: Breeding migration with single natal
site
We find the equilibrium states of the model by numeri-
cally simulating Eqs. (1) & (4). (See Table 1 for full param-
eter definition and values used.) Additionally we modify
Eq. (4), replacing the collective accuracy term, a(U), by
the individual accuracy, ao, to model the same system
without collective effects.
Collective navigation allows populations to exist for

ranges of parameter space where populations of individu-
als navigating independently are not viable (Fig. 2, zone i).
Further, populations using collective navigation are always
greater in size than populations navigating individually
(Fig. 2, zones i & ii) unless both are equal to zero (Fig. 2,
zones iii & iv).
When individuals navigate independently (grey curves)

the equilibrium population size declines continuously
with increasing values of additional mortality, h, following

N̄ = a0bm(1−h)
δ

α

(
Rmax − D

a0bm(1 − h) − 1

)
. (16)

For low values of h, the population with collective
navigation also exhibits monotonously declining popu-
lation size with increasing mortality (Fig. 2a–c). High
levels of mortality preclude persistence in both mod-
els. However, in the case where we include collective
accuracy in the population dynamics, we find an inter-
mediate region of mortality levels where the population
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Fig. 2 Collapse of breeding migration (Model 1). Panels a–c show stationary solutions for N̄ from Eqs. (1) & (4) as a function of mortality, for
individual accuracies of ao = 0.0, 0.4 and 0.8 respectively. Results including collective navigation (a(U) as in Eq. (3)) are blue while those with
independent navigation (a(U) = ao) are grey. The shaded blue regions depict an unstable limit cycle, inside of which the dynamics are locally
attracted to the stable equilibrium within, while globally (and in response to extreme perturbations) the system collapses to the stable equilibrium
where the population is extinct. Vertical lines correspond to the boundaries (bifurcation points) in panel d. Note in panel a the grey curve is not
visible because it is equal to zero for all h. Panel d traces the branching point (solid line – Eq. (17)), Hopf point (dotted line) and limit point (dashed line)
through h-ao space. Faint horizontal lines correspond to the cross-sections depicted in panels a–c. The qualitatively distinct states of the system in
the different parameter regions are: i) Group navigation is bistable [high Nh | Nh extinct], solo navigation is not possible; ii) Both group and solo
navigation are possible, group navigating population densities are higher; iii & iv) Neither group nor solo migration can persist

dynamics are characterized by the occurrence of alterna-
tive stable states (bistability), reflecting an Allee effect.
Close to the persistence boundary, small changes in the
level of additional mortality, h, can invoke drastic, and
discontinuous, changes in the population state. In addi-
tion to a limit point bifurcation (also known as a fold or
saddle-node bifurcation), which connects the two non-
zero equilibrium branches, the system exhibits a sub-
critical Hopf bifurcation, demarcating a critical mortality
level, hc, beyond which the stable, non-zero equilibrium
is unstable and the system collapses to the stable zero-
equilibrium. The population can also collapse even if h <

hc in the case of an external perturbation that brings the

population size outside of the basin of attraction of the sta-
ble, positive equilibrium existing within the unstable limit
cycle (shaded blue region, but also see Additional file 1:
Figure S2), or below the unstable equilibrium (dashed blue
line in Fig. 2a–c and Additional file 1).
Due to the bistability, a collapse as a result of, for

example, over-harvesting, cannot simply be reversed by
lowering the mortality level. Since the extinct-state is
stable, the population size, N, must be brought above
the unstable equilibrium (dashed blue line) or within the
boundary of attraction of the stable, positive equilibrium
exisisting within the unstable limit cycle (blue shaded
region and Additional file 1: Figure S2). This hysteresis is
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Fig. 3 Collapse of population size and structure in multi-site breeding migration (Model 2). Panels a–c show equilibrium population size from
Eqs. (7)–(9) as a function of mortality, for relative fitness of non-locally adapted individuals of p = 0.2, 0.5 and 0.7 respectively. Locally adapted
populations (Nh) are blue while those for non-locally adapted populations (Ns) are red. See Fig. 2 legend for details. Panel d traces the branching
points (solid lines), Hopf points (dotted lines) and limit points (dashed lines) through h-p space. The black and grey solid lines correspond to branching
points for Nh and Ns respectively. The qualitatively distinct equilibrium states are: i) Bistable [high Nh , low Ns | both extinct]; ii) Bistable [high Nh , low
Ns | Nh extinct, Ns present]; iii) Bistable∗ [Both Nh and Ns present | Nh extinct, Ns present (∗Not stable to invasion by the Nh type, however once out of
the system it could take evolutionary time to recover them, so it may be stable on short time-scales.)]; iv) Nh extinct, Ns present; v & vi) Both extinct

present whenever the collectively navigating population is
viable but the independently navigating population is not
(Fig. 2d, zone i). A threshold value of individual accuracy,
ac, below which an individual strategy is not viable and
a collective strategy is vulnerable to collapse, defines the
upper boundary to this region (solid line in Fig. 2d) and is
given by,

ac = D/Rmax + 1
bm(1 − h)

. (17)

The extent of this bistability region depends on the level
of individual accuracy, ao (Fig. 2d).
In Fig. 2 we show the different regions in parameter

space with qualitatively distinct dynamics: we plot the

equilibrium size of the population, N̄ , as a function of
additional mortality, h in panels A–C, while panel D traces
the branching (solid line), Hopf (dotted line) and limit
(dashed line) points through h-ao space. See Additional
file 1 for N-R phase portraits, depicting the basins of
attraction, and the dynamics, around these fixed points.

Results for model 2: Breeding migration with multiple
natal sites
At a general level, the model including multiple breed-
ing sites shows qualitatively similar dynamics in response
to varying the mortality level as the single-site model:
When increasing h starting from low values, the popu-
lation exhibits a stable equilibrium with monotonically
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decreasing numbers, whereas at high mortality persis-
tence is precluded (Fig. 3a–c). Again, intermediate h-
values give rise to a range of bistability. However, there is
a greater diversity to the types of bistability, due to the two
types of individuals (those locally adapted to the breeding
site and those not). As in the single site model the entire
population can collapse, but here we can also observe
crashes in local adaptation, without necessarily a collapse
in population size.
The parameter boundaries delineating regions with

qualitatively different equilibrium dynamics are depen-
dent upon h as well as p (Fig. 3d). When the amount of
local adaptation is high (p � 0.3, i.e. strays have 30 %
the fecundity of homing individuals) the patterns for the
homing population (blue curves) are qualitatively similar
to the single site solution shown in Fig. 2a (along with a
small population of Ns). For p values between zero and
the intersection of the Hopf and limit points (i.e. the inter-
section of the dotted and dashed lines in Fig. 3d), we
observe a complete crash of the population beyond the
Hopf bifurcation, as in the single site model (Fig. 3a).
For values of p where the limit point (dashed line) sep-

arates zones ii and iv, raising mortality above the limit
point causes a discontinuity in, and complete collapse of,
the equilibrium level of locally adapted types. However,
the non-locally adapted population does not crash to zero
under these conditions (Fig. 3b). There is a hysteresis
effect such that once the locally adapted population is lost,
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Nh+Ns
, (solid blue curve) and the fraction of the

population which is returning to their natal site (dashed blue curve) as
a function of additional mortality. Parameters are as in Fig. 3c. For
modest levels of local adaptation (here p = 0.7) the population size
declines nearly linearly as a function of additional mortality. However,
the locally adapted fraction of the population crashes dramatically,
and non-linearly, at a level of h for which the homing rate is still high
and the population size seems robust
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Fig. 5 Collapse of feeding migration (Model 3). Numeric solutions for
N̄ given the dynamics described in Eqs. (12) & (13). For low levels of
additional mortality (x-axis) the system is bistable, exhibiting either a
large population migrating at speed vK (blue curve) or a small,
stationary population which relies on the background resource level,
Ko , with an occasional pulse when the favorable patch passes by (red
curve). A limit point defines the critical level of h above which the
migratory population cannot exist

the non-locally adapted dominated system is stable and
the locally adapted type cannot invade. Zone iii has simi-
lar properties, except here the equilibrium with N̄h = 0 is
not mathematically stable. Nevertheless, because it might
take evolutionary time for locally adapted types to emerge,
this state may be considered ecologically stable. At these
levels of p the boundary between zones iii and iv does
not mark a collapse in population size, but one of popu-
lation genetic structure (Figs. 3c & 4). We note that this
collapse in local adaptation could easily be missed if pop-
ulation managers were observing total population size or
even rates of straying and dispersal (Fig. 4).
Finally, at very low levels of local adaptation (p � 0.9)

the non-locally adapted phenotype dominates the system
and the dynamics of N̄s would be qualitatively similar to
the solo-navigation dynamics (i.e. grey curve in Fig. 2c)
while N̄h would be zero.
In Fig. 3a–c we plot the equilibrium numbers of locally

adapted, N̄h, and non-locally adapted, N̄s, individuals at
a single site. Panel D traces the bifurcation points of the
system, in particular, the fold, Hopf and branching points
through h − p space. There are six distinct zones (i-vi)
and five qualitatively distinct fixed-p cross sections with
dynamics as described above.

Results for Model 3: Feeding migration
In Fig. 5 we plot the equilibrium population size, N̄ , from
the solution to Eqs. (14) & (15).When additional mortality
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is low and population size is high (blue curve) the pop-
ulation migrates at speed vK , tracking the traveling wave
of good conditions (Eq. (10)). As mortality increases, the
group’s size decreases, along with its ability to track the
gradient, until it reaches a critical point, hc. At this point
the population becomes too small to effectively track,
and keep pace with, the patch of good conditions; it is
left behind and collapses. The system exhibits hystere-
sis in both population size and migratory state, so once
the collapse has occurred, lowering the mortality to pre-
collapse levels is insufficient for the population to recover
its size or ability to migrate. The non-migratory solution
(red curve) is approximately N̄ =

(
1 − h

r

)
Ko. We note

that both the ‘migratory’ and ‘non-migratory’ populations
follow the same movement rule (climb the resource gradi-
ent with speed given by Eq. (13)), but only the migratory
population is large enough to be able to keep pace with the
patch of favorable conditions.

Discussion
This study focuses on the population dynamics of species
that utilize collective navigation during their migrations.
Theory and experimental evidence suggest that social
interactions may help animals traveling in groups to find
their way when navigating through challenging environ-
ments, and that these effects should increase for larger
groups [6, 7, 10–16, 20–23, 62, 63]. The potential effects,
from these individual-level mechanisms, at the popula-
tion or community level are, however, not well studied or
described. With the current study we offer insight into
the ecological dynamics that may result from individu-
als in migratory populations traveling in groups. Rather
than using individual-based models and assuming specific
interaction rules, we bestow individuals in ODE popu-
lation models with generic group-level benefits, based
on empirical studies of collective behavior. We use these
models to investigate to what extent group level bene-
fits affect the possible population-level dynamics of social
species. We find that while collective behavior can pos-
itively affect migratory populations, it can also result in
non-linear effects and sudden collapses under broad envi-
ronmental conditions.
The types of migrations we have studied here repre-

sent two of the most prevalent types of migrations: travel
to specific breeding sites, and movement to track regions
of favorable conditions. Our models were based stylisti-
cally on the movement ecology of salmon (Models 1 & 2)
and wildebeests (Model 3); however, they should apply
in a generic sense to a wide array of taxa. Moreover,
the specific choice of population model, outfitted with a
collective accuracy term, should not qualitatively change
our results. This is because our results are a product of
the feedback between migratory ability and population

density, rather than a feature of any system-specific biol-
ogy. For example, one could modify our model of breeding
migrations, in which individuals travel one way to discrete
fixed end-points to breed, to fit many species of migra-
tory birds, by adding another equivalent movement stage
reflecting the navigational challenges on their return jour-
ney back to the feeding grounds. Alternately, one could
assume that our navigational accuracy term, a(U), applies,
as is, to the round trip to the feeding grounds and then
back to the breeding grounds and simply remove the
assumption of semelparity.
Migratory populations may face a multitude of exter-

nal perturbations to their survival. In our models we have
accounted for such processes by implementing a generic
mortality term, h. This term represents effects such as
additional mortality due to harvesting, the introduction of
new diseases or predators, or climate change. It could also
represent impedances to migration such as dams, roads,
buildings or reduction of migration corridors, which in
addition to causing mortality, may restrict the ability, or
tendency, of animals to move.
We have focused on collective navigation as the main

group benefit during migrations, and include this benefit
as amonotonic increase in accuracy (breedingmigrations)
or resource tracking ability (feeding migrations) as a func-
tion of population size (Eq. (3)). One could, in principle,
recast the a(U) term as a general benefit of collective
behavior, such as an increase in probability to properly
time a migration [64–66] or survive predation en route, or
a boost in efficiency due to aerodynamic benefits [67] or
by collectively navigating a more efficient route [12].
We implicitly assume that greater population density

results in larger typical group sizes. This is supported by
empirical [68] and theoretical [9, 69] results that suggest
that this is the case for social species. For simplicity, in the
breeding migration model we assume that the population
is limited by resources on the feeding grounds. Though
not shown, we confirmed numerically that assuming that
the limiting resource is on the breeding grounds does
not change our results. Also for simplicity, in the feeding
migrations we assume that the group tracks only a single
favorable region, does so indefinitely and breeds contin-
uously along the way. We stress that a population needs
only to be limited by a dynamic resource field for a por-
tion of their life-cycle (or the season) for this model to
qualitatively apply.
Populations of migratory schooling fishes, including

striped bass, capelin, herring, sardine, anchovy and cod,
subject to intense fishing pressure have collapsed and
may be slow to recover (see [70] and references therein).
Though there are other explanations for such collapses
[71], this is consistent with the Allee effect predicted
by our models. Similarly, caribou herds have ceased to
migrate after population declines and only started again



Berdahl et al. Movement Ecology  (2016) 4:18 Page 10 of 12

once the population recovered [72]. Associations between
numbers of migrants and migration distance have been
observed in wildebeest [73] and there are many historical
examples of migration collapse for both the blue and black
wildebeest [74], however little is known about the exact
nature of these events.
More subtly, our multi-site model (Model 2) suggests

that there may be critical levels of additional mortal-
ity at which local adaptation and population genetic
structure collapses (Fig. 4). Our model did not explic-
itly consider interbreeding between locally adapted and
non-locally adapted types, which could further erode local
adaptation at a site, so the collapse we observe should
perhaps be considered an upper bound on local adapta-
tion. Feedbacks between local adaptation and dispersal
may strengthen such a collapse [75]. This may be par-
ticularly relevant when we consider anadromous salmon,
which do home more accurately in years of greater
density [11, 30] and are locally adapted to their natal
streams [48–50], however, they do not appear to suffer
Allee effects when looking at population size [76, 77].
Though it might not be observable to stockmanagers with
their eye on population enumeration and straying rates,
this sudden shift in percentage of locally adapted fish
could erode portfolio effects [78] which play an important
role in stabilizing populations on larger scales [79].

Conclusions
The models we develop in this paper show that if animals
rely on collective navigation, we expect their population
dynamics to exhibit Allee effects that introduce a criti-
cal population size below which the population collapses.
We observe this in models of breeding as well as of
feeding migrations. Regarding breeding migrations, when
animals use collective navigation to find the breeding site
for which they are locally adapted, population genetic
structure can collapse without the total population size
showing obvious signs of decline. In our model of feed-
ing migrations, population collapse is accompanied by a
cessation of migration, and there are two alternative sta-
ble states of the population: high density and migratory,
or low density and sedentary. Analogous to the evolution-
ary results of [9], both the breeding and feeding models
exhibit hysteresis, meaning that if a population’s size,
genetic structure, or migratory state collapses due to a
perturbation, simply removing that perturbation is not
enough to recover the population’s previous state.
The results from our study highlight ecological and con-

servation implications of collective behavior. We point to
the need for more in-depth studies testing the predic-
tions from these models and in particular for looking into
the mechanisms underlying such large-scale processes.
Looking to the future, advances in automated video track-
ing and technologies such as unmanned aerial vehicles

are going to yield better data to understand how animals
interact with one other and with cues in the environ-
ment, especially during migrations. As noted by several
authors, there remains a disconnect between mechanism-
focused studies of (collective) behavior and ecosystem
dynamics [80, 81]. We hope this work serves as a further
step in linking group-level processes to ecosystem-level
functioning.

Additional files

Additional file 1: Appendix A. R-N phase diagrams for single site
breeding migration model. (PDF 203 kb)

Additional file 2: Animation 1. Low mortality, large starting population.
Movie depicting simulation of the feeding migration model (Model 3 –
Eqs. (10)–(13)). The dynamic green curve shows the carrying capacity at all
points in the 1D space. The location and height of the red bar indicate the
location and size of the migratory population, respectively. In this scenario,
low mortality levels h allow persistence of a large population, though
somewhat smaller than the carrying capacity, which ‘keeps up’ with the
moving patch of good conditions. (AVI 194,979 kb)

Additional file 3: Animation 2. Low mortality, small starting population.
Curves and symbols as in animation i. This scenario has the same
conditions (low mortality as in animation i), however the initial population
size is low and as a result the population is not able to keep track of the
patch and grow. The traveling wave of the good patch still coincides with
the location of the population at regular intervals, but the slight increase in
population size is insufficient to regain the capacity for efficient migration
of the group. Together with animation i this represents the bistability
found in the model (left side of Fig. 5 of the main text). (AVI 286,114 kb)

Additional file 4: Animation 3. High mortality, large starting population.
Curves and symbols as in animation i. In this scenario the high mortality
suppresses the population size so severely that the group is unable to
maintain its migration successfully and stagnates, despite starting with a
large population. This scenario corresponds to the right side of Fig. 5 of the
main text. (AVI 317,661 KB)
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