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We numerically study the quantum walk search algorithm of Shenvi, Kempe and Whaley

[PRA 67 052307] and the factors which affect its efficiency in finding an individual state

from an unsorted set. Previous work has focused purely on the effects of the

dimensionality of the dataset to be searched. Here, we consider the effects of

interpolating between dimensions, connectivity of the dataset, and the possibility of

disorder in the underlying substrate: all these factors affect the efficiency of the search

algorithm. We show that, as well as the strong dependence on the spatial dimension of

the structure to be searched, there are also secondary dependencies on the connectivity

and symmetry of the lattice, with greater connectivity providing a more efficient

algorithm. In addition, we also show that the algorithm can tolerate a non-trivial level of

disorder in the underlying substrate.

1. Introduction

Searching is undoubtedly one of the most basic problems in computer science and com-

putational physics. In this context, searching is not just restricted to a physical database

but could also be searching through a state space for an entry which fulfills a specific

clause such as the constraint satisfiability problem (k-SAT). The classical complexity of

such a task scales linearly with the size of the dataset, N , to be searched. Intuitively, it is

easy to see this must be the case as every item must be checked in turn until the specific

item is found. On average, half the items will have to be checked before the correct one

is located. This leads to the best classical scaling which can be achieved, O(N).

One of the most important quantum algorithms discovered thus far is the searching

algorithm of Grover [Grover 1996]. Grover showed that an item could be found from a set

of N in a time quadratically faster than the classical case, O(
√
N). Grover’s algorithm

has been shown to be both optimal and also one of the few quantum algorithms which

is provably faster than any possible classical algorithm [Bernstein et al. 1997].

† Current address: School of Physics, Heriot-Watt Univeristy, Edinburgh, EH14 4AS, United Kingdom
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Work D = 2 D = 3 D = 4 D ≥ 5

AA03 (2003) O(
√
N log3/2 N) O(

√
N) O(

√
N) O(

√
N)

CG03 (2003) O(N) O(N5/6) O(
√
N logN) O(

√
N)

CG04 (2004) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

AKR04 (2004) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Tulsi (2008) O(
√
N logN) - - -

Magniez et al. (2008) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Patel et al. (2010) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Table 1. Summary of runtimes of quantum search algorithms in various

dimensions.

Several years after the introduction of this algorithm, Shenvi, Kempe and Whaley

[Shenvi Kempe and Whaley 2003] gave a quantum search algorithm based instead on the

discrete time quantum walk, which was first introduced with algorithmic applications in

mind by Aharonov et al. [Aharonov et al. 2001] and Ambainis et al. [Ambainis et al. 2001].

This quantum walk approach to the search problem is able to match the quadratic speed

up of Grover’s algorithm. The quantum walk search algorithm has been studied in de-

tail and many improvements have been made since its introduction. In fact, due to the

many uses of searching in algorithms, the quantum walk search algorithm has become a

standard tool in developing new quantum algorithms [Santha 2008]. The quantum walk

has also recently been shown to be universal for quantum computation and hence a com-

putational primitive [Childs 2009, Lovett et al. 2010, Underwood and Feder 2010], again

showing it is a powerful tool.

In [Shenvi Kempe and Whaley 2003], the items of the dataset are laid out as the ver-

tices of an undirected graph, specifically a hypercube of dimension ⌈log2N⌉, on which the

quantum walk can be solved analytically [Moore and Russell 2002]. Other recent work

by Potoček et al. [Potoček et al. 2009] has improved the original algorithm by adding an

additional coin dimension, allowing the probability of the marked state to approach unity

after just one run of the algorithm. This brings the running time of the quantum walk

search algorithm very close to the optimal for searching an unsorted dataset, π/4
√
N .

Zalka [Zalka 1999] has previously shown that, for a probability of finding the marked

state to be one, this is the best that can be achieved.

However, the hypercube studied in [Shenvi Kempe and Whaley 2003] is a highly con-

nected but non-physical structure. In order to make the algorithm more physical, the

study of the search algorithm on lower dimensional structures was started by Benioff

[Benioff 2002]. He considered the additional cost of the time it would take a robot searcher

to move between different spatially separated data points on d-dimensional lattices, stat-

ing that in two spatial dimensions, D, no speedup was apparent. Subsequently, Aaronson

and Ambainis (AA03) [Aaronson and Ambainis 2003] introduced an algorithm based on

a divide and conquer approach, contradicting this claim with a run time of O(
√
N) in

dimensions D ≥ 3 and O(
√
N log3/2N) when D = 2.

Around the same time as this work, Childs and Goldstone (CG03) [Childs and Goldstone 2004]

gave another algorithm, this time based on the continuous time quantum walk, first in-

troduced by Farhi and Gutmann [Farhi and Gutmann 1998]. They showed a runtime of
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O(N) for D = 2, O(N5/6) for D = 3, O(
√
N logN) for D = 4 and O(

√
N) for D ≥ 5.

This algorithm is not as efficient as the one introduced in [Aaronson and Ambainis 2003],

but does represent the first quantum walk search algorithm defined in continuous time.

Shortly after this work, Ambainis, Kempe and Rivosh (AKR04)[Ambainis Kempe and Rivosh 2005]

gave a discrete time quantum walk search algorithm, improving on the original work

of Shenvi, Kempe and Whaley [Shenvi Kempe and Whaley 2003] by using an additional

log 2d qubits of extra memory. Childs and Goldstone (CG04) [Childs and Goldstone 2004]

later improved their continuous time algorithm by using the Dirac Hamiltonian and hence

an additional degree of freedom which can be thought of as adding a coin to the contin-

uous time quantum walk. This approach was able to match that of the discrete time quan-

tum walk search algorithm of Ambainis, Kempe and Rivosh [Ambainis Kempe and Rivosh 2005].

These results are summarised in table 1. Up to this point, it remained an important open

question as to whether the full quadratic speedup could be achieved in two spatial di-

mensions.

It took several years for any further improvements to be found in two spatial dimen-

sions. Tulsi [Tulsi 2008] then managed to improve the run time for D = 2 by a
√
logN

factor to O(
√
N logN) using a modified version of the algorithm with ancilla qubits. In

the previous cases, the probability of the marked state scaled logarithmically with the

size of the data set, O(1/ log2N). In his work, Tulsi is able to control this probability

using the ancilla qubits to give a constant scaling of the probability at the marked state,

O(1), thus removing the need for the
√
logN amplitude amplification steps. During the

years prior to the work by Tulsi, several advances were made in establishing a theory of

quantum walk search algorithms. This was pioneered by Szegedy [Szegedy 2004] who was

able to introduce a method to quantise classical Markov chains (classical random walks on

graphs) based on the previous work of Ambainis [Ambainis 2004]. This framework is sim-

ilar to other work by Ambainis, Kempe and Rivosh [Ambainis Kempe and Rivosh 2005]

and both have been used to develop algorithms which give complexity gains compared

to the basic Grover search [Magniez Santha and Szegedy 2005, Magniez and Nayak 2005,

Buhrman and Spalek 2004]. Building on all these approaches, Magniez et al. [Magniez et al. 2007]

developed a quantum walk search algorithm for any quantum walk based on a reversible,

ergodic (a stationary distribution can be found) classical Markov chain. This extends

previous work as the algorithm is applicable to a much larger class of Markov chains.

It also combines previous ideas into one coherent theory of quantum walk search algo-

rithms. Following this work, Magniez et al. [Magniez et al. 2009] gave a similar theory

for the hitting times of quantum walks. They prove that, given a reversible, ergodic

classical random walk, the hitting time of the equivalent quantum walk is quadratically

faster than the classical case. In addition, they actually prove this speedup is tight for a

large class of these quantum walks where the unitary operation is a reflection. It is well

known that the hitting time of a classical random walk on a 2D lattice is O(N logN).

Therefore, the equivalent quantum walk hitting time would be O(
√
N logN) which then

matches the run time of Tulsi [Tulsi 2008]. Magniez et al. [Magniez et al. 2009] also show

they can find the probability of the marked state in a constant fashion, thus extending

the result of Tulsi [Tulsi 2008] to the larger class of quantum walks which are based on

reversible, ergodic Markov chains. In fact, this result has recently been tightened further
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by Krovi et al. [Krovi et al. 2010], showing that the classical Markov chain, which forms

the basis of the quantum walk, need only be reversible. These results tend to indicate

that it is unlikely the additional
√
logN factor in the run time of the algorithm in two

spatial dimensions can be removed. Other recent work shows similar results, including

Marquezino et al. [Marquezino Portugal and Abal 2010] who show the mixing time of a

quantum walk on a two dimensional toroidal lattice is also O(
√
N logN). Additionally, a

different approach to the searching problem, using the staggered lattice fermion formal-

ism, has been put forward by Patel et al. [Patel and Rahaman 2010, Patel et al. 2010] to

give the same run time. In related work, Hein and Tanner [Hein and Tanner 2010] give

a detailed analysis of the search algorithm on d-dimensional lattices in terms of the level

dynamics near an avoided crossing. They find the same additional
√
logN factor in the

run time of the algorithm in two spatial dimensions. They also give analytical expres-

sions for the prefactors to the basic scaling of both the time to find the marked state and

also the maximum probability the marked state reaches. All of these results lend further

weight that the two dimensional case is the critical dimension and it is unlikely that the

full quadratic speedup is possible.

Almost all previous studies of the quantum walk search algorithm have focused on the

dependence the algorithm has on the spatial dimension of the structure being searched.

Little has been done to explore other factors which may affect the runtime and hence the

efficiency of the algorithm. This is due to the connectivity or lack of symmetry within

interesting structures making them hard to analyse analytically. However, Abal et al.

[Abal et al. 2010] have shown analytically that the complexity of the search algorithm

on the hexagonal lattice is O(
√
N logN), matching the search on the Cartesian lattice in

[Ambainis 2003] but with a differing prefactor to the scaling of the algorithm. In addition,

highly symmetric graphs such as the complete graph were studied by Reitzner et al.

[Reitzner et al. 2009] showing the additional connectivity does not allow the search to

beat the optimal lower bound of O(
√
N). The hitting time on the complete graph has also

been studied recently by Santos and Portugal [Santos and Portugal 2009], proving this is

also O(
√
N). Finally, the constant prefactors to the O(

√
N) scaling on the hypercube and

d-dimensional lattices have been determined analytically in work by Hein and Tanner

[Hein and Tanner 2009, Hein and Tanner 2010].

In this work, we investigate numerically the factors which affect the efficiency of the

search algorithm in terms of the prefactors to the scaling of both the maximum prob-

ability of the marked state and also the time to find this maximum probability. After

describing the discrete time quantum walk and how it can easily be modified to become

a search algorithm in the next section, we move on to investigate how the quantum walk

search algorithm is affected by the dimensionality of the underlying substrate, sec. 3. We

introduce a simple form of tunnelling to allow us to interpolate between structures of dif-

fering spatial dimension. In sec. 4, we move on to study how varying the connectivity of

regular structures impacts the prefactors to the scaling of the algorithm. This also uses the

same form of tunnelling and extends previous work by Lovett et al. [Lovett et al. 2011].

The final factor we investigate, sec. 5, is disorder in the underlying substrate. We model

this using percolation lattices in both two and three dimensions to establish how much, if
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any, disorder the search algorithm can tolerate whilst still maintaining a quantum speed

up. Finally, we conclude with a discussion of our findings in sec. 6.

2. The quantum walk search algorithm

2.1. Discrete time quantum walk on the infinite line

A discrete time quantum walk on the line is defined in direct analogy with a classical

random walk. In the quantum case, the walker is replaced by a quantum particle carrying

a two state quantum system for the coin. In order to maintain quantum dynamics, which

must be reversible, the ‘coin toss’ is effected by a unitary operator. We denote the basis

states for the quantum walk as an ordered pair of labels in a ‘ket’ |x, c〉, where x is the

position and c ∈ {0, 1} is the state of the coin. The walker is started at the origin with

an internal coin state of 0. At each timestep we act on the quantum walker with a coin

operator followed by a conditional shift operator.

The simplest coin operator is the HadamardH , defined by its action on the basis states

as

H |x, 0〉 = 1√
2
(|x, 0〉+ |x, 1〉)

H |x, 1〉 = 1√
2
(|x, 0〉 − |x, 1〉), (1)

and the shift operation S acts on the basis states thus

S|x, 0〉 = |x− 1, 0〉
S|x, 1〉 = |x+ 1, 1〉. (2)

The coin operator splits the walker into a superposition of coin states and the conditional

shift operator then moves the walker to the correct position based on the coin state. The

first three steps of a discrete time quantum walk starting from the origin, in coin state

0, are

(SH)3|0, 0〉 = (SH)2S
1√
2
(|0, 0〉 + |0, 1〉)

= (SH)2
1√
2
(| − 1, 0〉 + |1, 1〉)

= (SH)S
1

2
(| − 1, 0〉 + | − 1, 1〉 + |1, 0〉 − |1, 1〉)

= SH
1

2
(| − 2, 0〉 + |0, 1〉 + |0, 0〉 − |2, 1〉)

= S
1√
8
(| − 2, 0〉 + | − 2, 1〉 + |0, 0〉 − |0, 1〉 + |0, 0〉 + |0, 1〉

− |2, 0〉 + |2, 1〉)

=
1√
8
(| − 3, 0〉 + | − 1, 1〉 + 2| − 1, 0〉 − |1, 0〉 + |3, 1〉). (3)

As the walk progresses, quantum interference occurs whenever there is more than one

possible path of t steps to the position. This can be both constructive and destructive,
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Fig. 1. Classical (crosses) and quantum (solid lines) probability distributions for walks

on a line after 100 timesteps. Only even positions are shown since odd positions are

zero. The classical walk is averaged over 50,000 iterations of the random walk. A skewed

quantum walk is shown with an initial state of |0, 0〉 along with a symmetric quantum

walk with an initial state of either
√
0.15|0, 0〉+

√
0.85|0, 1〉 or 1/

√
2(|0, 0〉+ i|0, 1〉).

as shown in eq. (3), which causes some probabilities to be amplified or decreased at each

timestep. This leads to the different behaviour compared to its classical counterpart:

spreading at a rate proportional to t, quadratically faster than the classical random walk.

In addition, the centre part of the distribution, in the interval [−t/
√
2, t/

√
2], is fairly

uniform. This is the opposite of the classical random walk which has an exponential drop

in probability after just a few standard deviations from the origin. These properties of the

quantum walk on the line were obtained by both Ambainis et al. [Ambainis et al. 2001]

and Nayak and Vishwanath [Nayak and Vishwanath 2000].

As the walker can now be in a superposition of positions on the line, we obtain a

probability distribution of the quantum walker after one run of the entire walk. Obviously,

this is due to the fact the coin operator is now deterministic. However, if we were to

measure the coin after the required number of timesteps, we would get a random output

as in the classical case. We show both the classical and quantum probability distributions

after 100 steps in fig. 1. If the walk is imperfect and some decoherence is allowed, we

can see the gradual change from the quantum case back to classical. Kendon et al.

[Kendon and Tregenna 2003] investigated this in detail showing that as the decoherence

in the system grows, the spread of the walk gradually changes from the quantum walk

shown above back to the classical binomial distribution. In the interim, we see a gradual

change with an almost ‘top-hat’ distribution being found which is useful for random

sampling. For a review of the effects of decoherence in quantum walks, see Kendon

[Kendon 2007].
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Fig. 2. Dynamics of the quantum walk on a two dimensional Cartesian lattice using the

Grover coin, eq. (5). LHS: Maximum spreading obtained using the initial state in

eq. (7). RHS: Localisation obtained using the initial state in eq. (6). Note the different

scales.

2.2. Discrete time quantum walk in higher dimensions

We can see that the quantum walk exhibits interesting and very different behaviour to the

classical walk even on the line. However, many interesting problems in computer science

are defined in higher dimensions. In order to define the walk in these higher dimensional,

we require a new coin operator, of dimension d, in order to span the entire coin state space

of the walker [Moore and Russell 2002, Mackay et al. 2002, Kendon 2003, Kempe 2003].

This can be any unitary operator of the required dimension. Clearly many different

possibilities exist but we only mention the most common operator here - the Grover

coin,

G(d) =







2
d . . . 2

d
...

. . .
...

2
d . . . 2

d






− Id, (4)

where d is the degree of the vertex and Id is the identity operator of the same dimension.

The Grover coin is symmetric but only balanced, i.e. it treats all directions in the same

way - up to a phase factor, for the cases where d = 2 and d = 4. In the case of d = 3

and all higher dimensions, the coin treats one edge differently to the remaining d − 1.

In addition to the coin operator, the conditional shift operator must also be modified.

In the case of the line, it is easy to define as there are only two possible directions the

walker can move in. In higher dimensions, the walker can move in any one of d directions.

Kendon [Kendon 2003] treats this problem rigorously, but the most important thing is

to maintain a consistent labelling approach for each of the edges.

The dynamics of the walk on higher dimensional structures has been studied briefly by

Mackay et al. [Mackay et al. 2002] and then in more detail by Tregenna et al. [Tregenna et al. 2003].

They numerically studied the spreading of the quantum walk with varying coin operators

and initial states. Tregenna et al. found that the initial state of the walker on the lattice

had a large impact on the spreading of the walker. Depending on the initial state, the

walker can spread anywhere from a minimum possible spread to a maximum possible

spreading (as defined in [Tregenna et al. 2003] by the second moment). Using the Grover
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coin on a two dimensional Cartesian lattice, d = 4,

G(4) =
1

2









−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1









, (5)

most of the initial states, including the symmetric initial state,

|ψ〉sym =
1

2
(|0, L〉+ i|0, R〉+ |0, D〉+ i|0, U〉) , (6)

where L,R,D,U are the four directions the walker is able to move on the lattice, give a

minimal spreading with the walker localising around the origin with high probability as

seen in fig. 2. However, one specific state,

|ψ〉max =
1

2
(|0, L〉 − |0, R〉+ |0, D〉 − |0, U〉) , (7)

gives a maximal spreading, again shown in fig. 2. Inui et al. [Inui Konishi and Konno 2004]

proved this localisation analytically for two dimensional lattices. In addition to these re-

sults, some analytical results have been shown for d-dimensional lattices. Grimmett et

al. [Grimmett Janson and Scudo 2004] proved that in the limit n→ ∞, Xn/n converges

weakly where Xn is the position at time n in the case of the infinite line. Gottlieb et al.

[Gottlieb 2005] later extended this result to show convergence on d-dimensional lattices.

2.3. The discrete time quantum walk search algorithm

We now describe how Shenvi, Kempe and Whaley [Shenvi Kempe and Whaley 2003]

were able to modify the quantum walk into a search algorithm. In their work, they

analysed the search algorithm on a hypercube. Here, we show how the quantum walk

search algorithm is applied to a 2D Cartesian lattice. The data points we wish to search

are laid out as the vertices of an undirected graph. The edges then represent the specific

connections between data points. At the edges of the lattice we impose periodic boundary

conditions, in effect turning the graph into a torus. Our aim is to find one data item,

a specific vertex, out of the set of data to be searched. We start the walker in an equal

superposition of all the possible sites in the lattice, and the coin in an equal superposition

of all directions,

|ψ〉 = 1√
dN

N
∑

x=1

d
∑

c=1

|x, c〉, (8)

where d is the degree of the vertices in the graph and N is the total number of vertices.

If we let the walker evolve in a natural fashion, using the Grover coin eq. (4), we would

find a flat distribution identical to the starting state at any point in time. This uniform

distribution is an eigenstate of the Grover coin operator. We need to use a different coin

operator for the marked state in order to introduce a bias into the walk. It is optimal to

invert the phase of the G(4) coin operator from eq. (5), as shown in [Lovett et al. 2011],
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Fig. 3. Probability distribution of a discrete time quantum walk search on 400

vertices arranged in a 20× 20 square with periodic boundary conditions, evolved

for 0, 10, 20 and 32 timesteps. The marked vertex is at position 190.

giving

G(4)
m =

1

2









1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1









. (9)

Figure 3 shows how the distribution of the walker evolves with time for a 20×20 lattice, i.e.

N = 400.We see that using a different coin creates a defect in the walk and the probability

coalesces on the marked state over time. As the walk progresses, the probability at the

marked state cannot keep increasing without limit. In fact, we see in fig. 4 that the

probability at the marked state has periodic behaviour with the first peak occuring at

roughly t = (π/2)
√
N ≃ 32, with maximum probability for N = 400 of around 0.23. This

can be increased as close to 1 as desired by standard amplification techniques (repeating

the search a few times). We see that subsequent peaks occur at other integer multiples

of this initial time, t = n(π/2)
√
N where n = 2, 3, 4......

As we have now shown how the quantum walk can be turned into a search algorithm,

we are interested in how quickly the quantum walker finds the marked state. That is, we

want to know when the probability of the walker being present at the marked state is

at a maximum. As this probability is periodic and we want the algorithm to be efficient,

the subsequent peaks are not of interest: we want to know when the first peak occurs.

Although it would be ideal to measure the walker at the precise timing of the maximum

in the first peak, this is not strictly necessary. In fact, as can be seen in fig. 4, the peaks

are quite broad, so even if an error occurs in when to measure, it only means a somewhat

lower probability of finding the marked state, this is only a constant extra overhead on

the amplification. For example, if the state of the walker was measured at half the optimal
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Fig. 4. Probability of the marked state over 200 timesteps on a 20× 20 grid with

periodic boundary conditions. The marked vertex is at position 190.

number of timesteps (t = (π/4)
√
N ≃ 16), the probability of the walker being measured

in the marked state is roughly half that of the maximum possible (p ≈ 0.1).

In later sections, we discuss the algorithmic efficiency of the search algorithm on various

graph structures. It is important we define here what factors of efficiency we are interested

in. As we are looking to find a specific item from a set of many, we must consider how

likely it is the walker coalesces at the marked state. The maximum probability of the

walker at the marked state, i.e. the maximum value of the first peak, varies with the

size of the dataset (for the 2D Cartesian lattice). In this case, the theoretical value of

O(1/ log2N) from Ambainis [Ambainis 2003] is numerically confirmed in our results in

fig. 5 with a small prefactor of just over 2. The second factor we are interested in is the

number of timesteps it takes to reach this maximum probability. The scaling of the time

to find the marked state with the size of the dataset, N , for the 2D Cartesian lattice is

shown in fig. 6. We see a scaling of O(
√
N) here, also with a prefactor of 2.

In order to compare our results in later chapters to previous work, we must consider

the total algorithmic complexity of the quantum walk search algorithm. In the case of

the 2D Cartesian lattice, the maximum probability scales as O(1/ log2N). Hence, we

must use amplitude amplification techniques to increase this to a constant value. This

has previously been shown to take O(
√
logN) time steps [Brassard 2002]. This makes

the total algorithmic complexity O(
√
N logN) for the 2D lattice, in agreement with

the recent results of Tulsi [Tulsi 2008] and Magniez et al. [Magniez et al. 2009]. These

scalings are not the same for all graph structures. In particular, on a cubic lattice, the

maximum probability scales as a constant value O(1). As such, only a constant number of

amplification steps are needed to bring the probability to ≈ 1, thus the total algorithmic

complexity is just O(
√
N).

3. Dimensionality

In this section, we investigate how the spatial dimension of the database arrangement

affects the searching algorithm. We already know, as noted in sec. 2, that the basic



The quantum walk search algorithm: Factors affecting efficiency 11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Vertices (N)

M
ax

im
um

 p
ro

ba
bi

lit
y 

of
 m

ar
ke

d 
st

at
e

 

 

2D Cartesian lattice
2.173/log

2
 N

Fig. 5. Maximum of the first peak in the probability of being at the marked state for

different sized data sets, using the optimal marked state coin in eq. (9) on a 2D lattice

of size
√
N ×

√
N , plotted against N (crosses). Also shown is the closest fit to our data,

2.173/ log2N (dashes).
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Fig. 6. Time step at which the first peak in the probability of being at the marked

state occurs for different sized data sets, using the optimal marked state coin in

eq. (9), plotted against
√
N . Also shown is the closest fit to our data, 2

√
N .

scaling of the algorithm is heavily dependent upon the spatial dimension of the structure

in question. Both the scaling of the maximum probability of the marked state and the

time to find this probability alter for structures of differing spatial dimension. We are

interested here in how this basic scaling changes when the spatial dimension is altered.

We investigate this in two ways: firstly by introducing a simple form of tunnelling, which

allows us to interpolate between structures of varying spatial dimension, and secondly

by using lattices of varying height (1D-2D) and depth (2D-3D).
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Fig. 7. Basic unit of the structure we use to interpolate between the two dimensional

Cartesian and the three dimensional cubic lattices. The solid lines represent the fixed,

normal edges whereas the dashed lines represent the edges we set to be tunnelling.

3.1. Tunnelling operator

We now describe a modified coin operator we will use in the search algorithm to gradually

vary the connectivity of the structures studied. We introduce a simple form of tunnelling

to allow us to gradually vary the substrate to be walked upon from one form to another.

A simple example is changing a set of 2D Cartesian lattices into a cubic lattice by

introducing connecting links between the lattices, see fig. 7. In order to achieve the

quantum walk dynamics we require, we must use a different coin operator. The only

condition on this operator is that it must be unitary. As such, we ‘design’ a new coin

operator which incorporates a single tunnelling parameter, c, which will allow us to vary

the strength of specific tunnelling edges. We define d to be the degree of the vertex

in question as used previously in the Grover coin, eq. (4), and t to be the number of

tunnelling edges. For a d-dimensional vertex, the first (d−t) edges in our labelling scheme

are normal and the last t edges are tunnelling. In fig. 7, the solid edges are normal, fixed

edges creating a 2D lattice and the dashed edges are tunnelling edges which convert the

2D lattices to a cubic one. The general matrix for the desired coin operator would be as

follows:

Td,t =













































a b b . . . b c c c . . . c

b a b . . . b c c c . . . c

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

b b b . . . a c c c . . . c

c c c . . . c e f f . . . f

c c c . . . c f e f . . . f

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

c c c . . . c f f f . . . e













































(10)

where the blocks of “abbb...” are d − t square and the blocks of “efff...” are t square.

We want to be able to rewrite this in terms of just one tunnelling parameter, c, which

represents the coupling between the normal and tunnelling edges. As the dynamics of
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the walk must be reversible, we must ensure that the coin produced is unitary. As such,

(Td,t) (Td,t)
†
= Id, (11)

must hold, where (Td,t)
†
is the hermitian conjugate of the general matrix. We can solve

the five equations which are formed as a consequence in terms of just the degree of the

lattice, d, the number of tunnelling edges, t and the tunnelling parameter, c, giving

a = b− 1, (12)

b =
1 +

√

1− (d− t)tc2

d− t
, (13)

e = f − 1, (14)

and

f =
1−

√

1− (d− t)tc2

t
. (15)

This operator allows us to vary the ‘strength’ of certain edges in the structure we wish

to walk on. It holds for any degree of vertex but the number of tunnelling edges must be

at most half the degree, i.e. t ≤ d/2. By using vertices of degree six with two tunnelling

edges, we have a set of basic 2D Cartesian lattices gradually becoming a cubic lattice as

in fig. 7. In this case, setting c = 0 we obtain

T6,2 =
1

2



















−1 1 1 1 0 0

1 −1 1 1 0 0

1 1 −1 1 0 0

1 1 1 −1 0 0

0 0 0 0 −2 0

0 0 0 0 0 −2



















, (16)

and setting c = 2/d = 1/3 gives

T6,2 =
1

3



















−2 1 1 1 1 1

1 −2 1 1 1 1

1 1 −2 1 1 1

1 1 1 −2 1 1

1 1 1 1 −2 1

1 1 1 1 1 −2



















. (17)

These choices of c represent the extremes of the operator when the structure would be

either a basic 2D Cartesian lattice, eq. (16), or a cubic lattice, eq. (17). Any other values

of c where 0 ≤ c ≤ 2/d would give varying strengths of tunnelling across the tunnelling

edges.

3.2. Interpolating between the 2D and 3D lattices using the tunnelling operator

Using the tunnelling operator introduced above, we numerically study how the algorithm

is affected by the change in spatial dimension. We use the operator to interpolate between

a Cartesian lattice (2D) and a cubic lattice (3D). In this case, we interpolate between
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a set of 2D Cartesian lattices and a fully connected cubic lattices by using vertices of

degree six with two tunnelling edges, with the correct connectivity, fig. 7.

Although we do not show the results here, we also performed the same investigation

between the 1D line and the 2D lattice, finding a quantitatively similar result. The

results in this case were more difficult to analyse due to the search algorithm failing as

the structure approached a line.

The search algorithm we use is the same as in the original work by Shenvi, Kempe

and Whaley [Shenvi Kempe and Whaley 2003], with a small change to the initial state.

Although we must still start the walker in a uniform superposition over all vertices, the

distribution over the edges must be altered slightly to account for the strength of the

tunnelling edges. In other words, we must distribute the state over the edges with a

weighting to match the tunnelling strength as follows

(d− t)α + tpα =
1√
N
, (18)

where p is the tunnelling probability, α is the state on each edge and N is the number

of vertices. The tunnelling probability is just the tunnelling parameter, c, rescaled to lie

between 0 and 2/d. In this way, the tunnelling probability matches the proportion of the

initial state which is placed on the tunnelling edges. This initial state gives a probability

distribution, where there is no marked state, which is periodic over two timesteps as

can easily be checked. Although this is not stationary as in the case of the basic non-

tunnelling lattices, the fact that it returns to the same state after only two timesteps

means it will give rise to the same dynamics.

We ran the algorithm on a 3D cubic lattice where the edges which link the ‘slices’ of 2D

lattices together are tunnelling. We show the a basic unit in fig. 7. The solid lines are the

fixed, normal edges and the dashed lines are tunnelling edges. This structure allows us to

gradually change the strength of the edges which make the structure three dimensional,

hence interpolating between the 2D Cartesian lattice and the 3D cubic lattice.

The maximum probability of the marked state, shown in fig. 8, changes from the

1/ log2N scaling in the 2D case to the constant O(1) scaling as soon as the additional

edges even have a small weighting attached to them. At low tunnelling strengths, we see

the probability dropping initially before gradually recovering towards a constant value for

higher lattice sizes. At these higher sizes, it is easy to see that the scaling is constant for

any tunnelling strength with just varying prefactors. Figure 9 shows how this prefactor

to the scaling of the maximum probability of the marked state changes as we increase

the tunnelling probability. The sharp drop at the low tunnelling probabilities is most

probably due to the fact the scaling hasn’t reached the constant value as we can only

simulate up to a fixed lattice size.

In addition, we note here that when the probability of tunnelling is zero, the scaling

does not match that of the basic 2D lattice. At p = 0, the structure is in effect a collection

of 2D lattices which are unlinked. The initial state is still spread across all these individual

lattices and due to the connectivity of the structure, only the amplitude in one of the

lattices (that with the marked state present) is able to coalesce on the marked state. As

such, the scaling is just reduced by a constant factor as can be seen in fig. 8.
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Fig. 8. Plot to show how the maximum probability of the marked state varies with both

the size of the lattice and the tunnelling strength as a two dimensional lattice is

gradually changed into a three dimensional Cartesian lattice.
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Fig. 9. Plot to show how the prefactor to the scaling of the maximum probability of the

marked state, obtained from the data in fig. 8, varies with the tunnelling strength as a

two dimensional Cartesian lattice is gradually changed into a three dimensional lattice.

The time to find the marked state follows a similar behaviour. We firstly show, fig. 10,

how the scaling of the time to find the marked state varies with both the size of the lattice

and the tunnelling strength. The basic scaling of the time to find the marked state is

the same in both two and three dimensions, O(
√
N). We see that, in general, the time

to find the marked state (the prefactor to the basic scaling) decreases as the tunnelling

strength increases, thus making the algorithm more efficient. We show a plot of how

this prefactor varies with the tunnelling strength in fig. 11. We do note that at the very

low tunnelling probabilities, p <≈ 0.3, the scaling of the time to find the marked state

does not follow the same behaviour. This is due to the fact that the probability at the

marked state has not yet reached a constant value, as mentioned previously. If we were

able to run the algorithm on much larger sized lattices, we should find the probability
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Fig. 10. Plot to show how the time to find the marked state varies with both the size of

the lattice and the tunnelling strength as a two dimensional lattice is gradually changed

into a three dimensional Cartesian lattice.
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Fig. 11. Plot to show how the prefactor to the scaling of the time to find the marked

state, obtained from the data in fig. 10, varies with the tunnelling strength as a two

dimensional lattice is gradually changed into a three dimensional Cartesian lattice.

of the marked state stabilising and thus the time to find the marked state matching the

quadratic speedup in scaling. We show the expected trend to the scaling of the prefactors

to the time to find the marked state in fig. 11.

3.3. Interpolating between the 2D and 3D lattices by varying the depth

In this section, we discuss lattices of varying depth to give a different avenue of investiga-

tion of the dependence on spatial dimension. At low depths, a 3D lattice can be viewed

in effect as a 2D lattice. We are interested in how the scaling of the probability of the

marked state and the time to find it changes as the lattice depth is gradually increased,

eventually becoming a fully symmetric 3D lattice. As with the results of the tunnelling

operator, we also investigated this interpolation between the 1D line and the 2D lattice
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Fig. 12. Maximum probability of the marked state as the depth of the 3D lattice is

increased from one layer to a perfect cube of 30x30x30 sites (solid line). Maximum

probability of the marked state for cubic lattices of varying size is shown for

comparison (dashed line).

showing a quantitatively similar behaviour. Again, due to the algorithm failing as the

structure approaches the line, it is much clearer to see the behaviour in the 2D-3D case.

We firstly show how the maximum probability of the marked state varies for a fixed

width and height of lattice (30x30), while varying the depth. Figure 12 shows how this

probability varies, along with the equivalent scaling for the fully cubic 3D lattice, showing

the scaling matches at roughly l = 15, where l is the depth of the lattice.

We then fixed the depth of the lattice and altered the width and height of the lattice

(with a fixed number of vertices) for each run of the search algorithm. Figure 13 shows

how the maximum probability of the marked state varies for differing depths of the

lattice. We again see a gradual change in scaling from the basic 2D logarithmic scaling to

the constant scaling of the cubic lattice. This is in contrast to the almost instantaneous

change in scaling we see when interpolating using the tunnelling operator.

The basic scaling of the time to find the marked state is unaffected by the change in

the depth of the lattice. The prefactor to this scaling though does decrease as we increase

the depth, changing from that of the basic 2D lattice to almost match that of the cubic

lattice for even lattices of modest depth.

4. Connectivity

We now investigate how important the connectivity of the database arrangement is for the

searching algorithm. As previously discussed, the basic scaling of the algorithm is heavily

dependent upon the spatial dimension of the structure in question. Here, we numerically

study how the connectivity, in a specific spatial dimension, affects the prefactors to this

scaling. Although it is unlikely that the runtime of the search algorithm on a 2D Cartesian

lattice can be reduced to the optimal O(
√
N), it may be possible to reduce any constant

overhead associated with the run time.

We use the tunnelling coin operator introduced in the previous section which allows
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Fig. 13. Plot to show how the maximum probability of the marked state varies as a two

dimensional lattice is gradually increased in depth (l) to become a three dimensional

cubic lattice. We maintain the same number of vertices in each case.
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Fig. 14. Plot to show how the time to find the marked state varies as a two dimensional

lattice is gradually increased in depth (l) to become a three dimensional cubic lattice.

We maintain the same number of vertices in each case.

us to model the search algorithm on structures where there is a probability of additional

connections existing. For example, our tunnelling operator allows us to interpolate be-

tween running the search algorithm on a hexagonal lattice, with degree d = 3, and the 2D

Cartesian lattice, d = 4. This allows us to analyse how the search algorithm is affected

by a gradual change in the degree of the underlying substrate by changing the tunnelling

strength of the additional edges. This extends the initial studies of [Lovett et al. 2011] by

considering an interpolation between lattices with fixed degree. We firstly introduce the

structures we wish to perform the search algorithm upon, before presenting our results

for both two and three dimensional structures with varying connectivity. We show that

the prefactors to the scaling of the algorithm for both the maximum probability of the
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Fig. 15. The 2D lattices we interpolate between using the tunnelling matrix. We change

gradually from a hexagonal lattice, d = 3, to a 2D Cartesian lattice with diagonals

included, d = 8. We show here just the building block of each lattice. We note that in

the case of the 2D Cartesian lattice with diagonals, there is no vertex at the central

point where the edges cross.

marked state and the time to find the marked state are dependent on the connectivity

of the underlying structure.

4.1. Two dimensional structures

Using the tunnelling matrix we have introduced, we ran the search algorithm on 2D

lattices ranging from d = 3, a hexagonal lattice, through to d = 8, a Cartesian lattice

with diagonals added as shown in fig. 15, for varying lattices sizes from 62 (36) vertices up

to 2502 (62500) vertices. As in fig. 15, we gradually changed the degree of the structure

we performed the search algorithm on. This was split into intermediate steps, firstly from

the 2D hexagonal lattice (d = 3) to the square lattice (d = 4), the square lattice to the

triangular lattice (d = 6), eventually ending at the more highly connected Cartesian

lattice with diagonals (d = 8). We spread the walker in the same fashion as eq. (18) to

ensure we distribute the state evenly based on the tunnelling strength of the edges.

We show in fig. 16 how the time to find the marked state varies with both the size

of the lattice and the connectivity. We see that as the connectivity increases, the time

to find the marked state decreases, hence the efficiency of the algorithm increases. As

the time to find the marked state scales as O(
√
N), we fit to each of the data sets in

fig. 16 to obtain the prefactor to the scaling of the time to find the marked state. Figure

17 shows how this prefactor to the scaling changes with the degree of the underlying

structure being searched. We see although there is no specific scaling here, we do note

there seems to be a symmetry effect for integer degree, though less strong than might

have been expected.

In fig. 18, we show how the maximum probability of the marked state varies with both

the size of the dataset and the connectivity of the structure. We see that, in general, as

the connectivity of the structure being searched increases, the maximum probability of

the marked state also increases. A larger prefactor to this scaling means fewer repeats of

the algorithm are required to bring the success probability close to unity. Figure 19 shows

how this prefactor to the scaling of O(1/ log2N) varies with the degree of the structure

being searched. The ‘dips’ and revivals in the scaling seem counter intuitive, but appear

to arise from the dynamics of the walk on these structures where the symmetry is partially

broken (low tunnelling strength). In order to confirm this, we briefly examined the basic

dynamics of the quantum walk while varying the tunnelling strength. We started the
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Fig. 16. Plot to show how the time to find the marked state varies with both the size of

the lattice and varying connectivity in two dimensions. It is clear that as the

connectivity of the structure increases, the time to find the marked state decreases.

Note that this is a zoomed in plot showing only larger lattices sizes, data for
√
N < 200

has been omitted to improve clarity.
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Fig. 17. Plot to show how the prefactor to the scaling, obtained from the data shown in

fig. 16, of the time to find the marked state of O(
√
N) changes with the degree of the

two dimensional structure being searched.

walker at a specific vertex in the graph, as opposed to an equal superposition, and allowed

it to propagate outwards in order to determine its dynamics. We define the spread of the

walker as

〈r〉 =
N
∑

i=1

pisi, (19)

where pi is the probability of the walker being at vertex i and si is the shortest path

distance from the position of the initial state to vertex i. Using this metric for the rate of

spreading, we explored how this was affected by the tunnelling strength. Figure 20 shows

this spreading on a 2D Cartesian lattice gradually being turned into a triangular lattice
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Fig. 18. Plot to show how the maximum probability of the marked state varies with

both the size of the lattice and varying connectivity in two dimensions. In general, as

the connectivity of the structure increases, the maximum probability of the marked

state also increases.
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Fig. 19. Plot to show how the prefactor to the scaling, obtained from the data in fig. 18,

of the maximum probability of the marked state of O(1/ log2N) changes with the

degree of the two dimensional structure being searched.

as in fig. 15. We found at low tunnelling strengths, where the symmetry breaking is most

obvious, the spread, 〈r〉, dropped. As the tunnelling strength was raised, the quantum

walk was able to recover and 〈r〉 increased back to the value of the original lattice, before

increasing further as the tunnelling strength reached its maximum value, i.e. the new

lattice. Although this is not an exhaustive study of the quantum walk dynamics when

we include tunnelling edges, this behaviour does match the results we find for the search

algorithm. While the variation of 〈r〉 does not match the scaling of the probability of

the marked state directly, the basic quantum walk dynamics do not have any reflection

effects from the edges of the structure. Due to the periodic boundary conditions imposed

in the searching algorithm, we find slightly different behaviour which relate to the extra
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Fig. 20. Plot to show how the spreading of the quantum walk, characterised by eq. (19),

changes with the degree of the two dimensional structure being searched. In this case,

we show the dynamics of the spread of the quantum walk on a two dimensional

Cartesian lattice (d = 4) being changed into a triangular lattice (d = 6)

interference effects. We found similar results for all the lattices studied in both two and

three dimensions.

Fig. 21. The 3D lattices we interpolate between using the tunnelling matrix. We change

gradually from a 3D hexagonal lattice, d = 5, through to a cubic lattice with diagonals

added on the faces, d = 14. We show here just the building block of each lattice. We

note here that vertices are only present at the eight corners of the cubic structures,

there are no vertices present where the edges cross.

4.2. Three dimensional structures

We now consider three dimensional lattices, using the tunnelling matrix to study struc-

tures ranging from d = 5, a 3D hexagonal lattice, through to d = 14, a cubic lattice with

additional diagonals added as shown in fig. 21.

We ran the search algorithm for varying lattices sizes from 33 (27) vertices up to 403

(64000) vertices. As in the two dimensional case, we did not just change the lattice from

d = 5 to d = 14 in one go. We split this into intermediary steps, fig. 21, changing firstly

from the 3D hexagonal lattice (d = 5) to the cubic lattice (d = 6), the cubic lattice to

one with diagonals added to one face (d = 10), eventually ending with a cubic lattice

with diagonals added on two faces (d = 14). We split the initial state across the vertices

and edges in the same way as in the two dimensional case.
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Fig. 22. Plot to show how the time to find the marked state varies with the size of the

lattice and varying connectivity in three dimensions. It is clear that as the connectivity

of the structure increases, the time to find the marked state decreases. Note that this is

a zoomed in plot showing large lattices sizes, data for
√
N < 200 has been omitted to

improve clarity.
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Fig. 23. Plot to show how the prefactor to the scaling, obtained from the data shown in

fig. 22, of the time to find the marked state of O(
√
N) changes with the degree of the

three dimensional structure being searched.

We show in fig. 22 how the time to find the marked state varies with both the size of

the lattice and the connectivity. It is clear that as the connectivity increases, the time

to find the marked state decreases, hence the efficiency of the algorithm increases. As

the time to find the marked state scales as O(
√
N), we fit to each of these to obtain

the prefactor to the scaling of the time to find the marked state. Figure 23 shows how

this prefactor to the scaling changes with the degree of the underlying structure being

searched.

In the three dimensional case, the maximum probability of the marked state scales

in a constant fashion, O(1). As such, this scaling does not affect the complexity of the
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Fig. 24. Plot to show how the maximum probability of the marked state varies with the

size of the lattice and varying connectivity in three dimensions. In general, as the

connectivity of the structure increases, the maximum probability of the marked state

also increases.
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Fig. 25. Plot to show how the prefactor obtained from the data in fig. 24, of the

maximum probability of the marked state changes with the degree of the three

dimensional structure being searched.

algorithm as in the two dimensional case. However, we do note that this constant value

of probability does affect how many times we must run the algorithm to ensure we have

the correct result. We show in fig. 24 that, in general, as the connectivity of the structure

being searched increases, the maximum probability of the marked state also increases.

The closer we can get this prefactor to unity, the lower the number of times we must

run the algorithm. Figure 25 shows how this prefactor to the probability of finding the

marked state varies with the degree of the structure being searched. We find the same

‘dips’ and recurrences in the scaling as in the two dimensional case which can be explained

in the same way.
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5. Substrate disorder

In the previous sections, we have only considered perfect, regular lattices with no defects.

We now consider a simple form of noise (disorder) and are interested in how this affects the

efficiency of the search algorithm. Previous work by Keating et al. [Keating et al. 2007]

has highlighted the effect of Anderson localisation in continuous time quantum walks and

also Krovi and Brun [Krovi and Brun 2006, Krovi and Brun 2006, Krovi and Brun 2007]

have shown how defects and a lack of symmetry in discrete time quantum walks can

have an impact on the spreading of the walk. Both these factors suggest that the search

algorithm will fail as soon as any level of disorder is introduced into the lattice. However,

in contrast to these results, the study of the transport properties of discrete time quantum

walks on 1D and 2D percolation lattices has recently been presented by Leung et al.

[Leung et al. 2010]. They show that the spreading of a discrete time quantum walk, on

a 2D percolation lattice, follows a fractional scaling, i.e. 〈r〉 ∝ Tα where 〈r〉 is the

spread of the quantum walk and T is the number of timesteps. This seems to be in

contradiction to the previous work in the continuous time context. In addition, Abal et

al. [Abal et al. 2009] have investigated how the quantum walk search algorithm performs

in the presence of decoherence, specifially phase errors in the coin operator. In this work,

we assume that we have a quantum computer with error correction available, and as

such are not interested in these errors. Instead, we are interested in any disorder that

could be present in an imperfect data structure. We aim to establish how much, if any,

disorder the search algorithm can tolerate or if it fails completely. In order to do this,

we use percolation lattices to allow us to vary the level of disorder in the lattice. Due to

the computational time required for averaging over many lattices, we only consider site

percolated lattices in this work, though we expect a qualitatively similar behaviour in

lattices with edge percolation.

5.1. Percolation lattices

A percolation lattice is a lattice, for example a 2D Cartesian lattice, which has vertices

(site percolation) or edges (bond percolation) randomly missing. The probability, p, of

a vertex or edge existing determines the amount of disorder present in the lattice. As

the probability increases there reaches a point, pc, where the structure changes from a

set of smaller, unconnected pieces into one larger piece which is almost all connected.

At probabilities p ≥ pc, there will, in general, be a path from one side of the lattice to

the other. We note here that this is only the case for structures with dimension two or

more. It clear that any one dimensional lattice must be fully connected in order for a

path to exist from one side of the lattice to the other, i.e. pc = 1. Figure 26 shows an

example of a 2D bond percolation lattice with varying probability of an edge existing.

A path from one side of the lattice can clearly be seen for probabilities greater than or

equal to the critical percolation probability, pc = 0.5. This percolation threshold is only

for bond percolation on a 2D square lattice. Although site and bond percolation lattices

exhibit similar behaviour, the critical percolation probability differs, for site percolation

pc = 0.5928.... [Djordjevic 1982, Gebele 1984]. Other lattices have varying critical prob-
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p = 0.25 p = 0.5

p = 1.0p = 0.75

Fig. 26. An example of a 2D bond percolation lattice with varying levels of disorder

determined by the probability of an edge existing. The critical percolation probability,

pc = 0.5, for bond percolation clearly shows a path from one side of the lattice to the

other.

abilities depending on their structure, with many efficient numerical methods developed

to calculate them [Djordjevic 1982, Gebele 1984]. We are only interested here in two

and three dimensional lattices, and we summarise the critical percolation probabilities

of these in table 2.

Table 2. Summary of critical percolation probabilities for two and three

dimensional lattices

Lattice Bond Site

2D 0.5 0.5928.....
3D 0.2488.... 0.3116.....

It is fairly obvious that at this critical percolation threshold, the properties of the lattice

change significantly. For lattices with a percolation probability below the percolation

threshold, it is clear that many of the sites in the lattice will be unreachable, whereas

above the threshold the opposite is true (though perhaps through a less direct route than

in a fully connected lattice). Due to their transport properties, percolation lattices are

widely used to model various phenomena including forest fires, disease spread and the

size and movement of oil deposits. For a good introduction to both the theory and use

of percolation lattices, see Stauffer and Aharony [Stauffer and Aharony 1992].

5.2. Search algorithm on percolation lattices

We are using the percolation lattices as a description for the database arrangement that

we wish to run the quantum walk search algorithm upon. As the disorder introduced

by using percolation lattices is random, we ran the search algorithm on many different
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percolation lattices (5000), and averaged over the results. It is obvious that at low prob-

abilities of vertices (or edges) existing, that there may be sections of the graph that the

quantum walk is unable to reach. In fact, at very low probabilities, it is likely that the

marked state will be in a small, unconnected region of the lattice where it will never be

‘found’. In these cases, this means the marked state will only ever be able to attain a

small portion of the total probability. We set the condition on the algorithm that the

probability of the marked state must reach at least twice the value of the initial super-

position in order for it to succeed. Similarly, the time to find this maximum probability

is artificially smaller than it should be if the entire lattice was connected. This is due to

the walker only having to coalesce on the marked state over a small piece of the lattice.

In order to combat this, we set the time to find the marked state as zero if the algorithm

failed. If it succeeded, we took the reciprocal of the time to find the marked state. After

averaging over many different percolation lattices, we again took the reciprocal of this

averaged time in order to give a clearer view on how the algorithm scaled with time. We

also set the probability of the marked state to be zero if the algorithm failed.

In order to run the quantum walk search algorithm on percolation lattices, we have to

deal with the fact that the lattice is not d-regular. In this setting, we cannot just add

self loops to make the lattice regular as in [Kempe 2003] as we want to know exactly

how the disorder affects the algorithm. Instead, we take the Grover coin for the degree of

the vertex in question and ‘pad’ it out with the identity operator for the edges that are

missing. For example if we have a vertex with just edge 3 missing, the operator would be

Gperc
1,2,4 =









− 1
3

2
3 0 2

3
2
3 − 1

3 0 2
3

0 0 1 0
2
3

2
3 0 − 1

3









, (20)

where Gperc
1,2,4 represents the Grover coin with edges 1, 2 and 4 present. In the case of a two

dimensional percolation lattice, there are 16 combinations of edges that can be present

/ missing. For a three dimensional percolation lattice, this increases to 64 combinations.

In order to deal with this, we maintain the labelling of the edges as previously and assign

a binary number to each edge, depending on whether an edge is present or not. The

example above, eq. (20), would therefore be 1101. This creates the 2d combinations we

require. There is then a fixed mapping between each binary number and the correct coin

for each vertex.

In addition to the coin operator changing, we must also modify the initial state to

account for the missing vertices or edges. This could be done in several ways. We try to

stick as closely to the initial state of the basic quantum walk search algorithm by just

splitting the state into an equal superposition over all the possible edges present.

5.3. Two dimensional percolation lattices

We now show our initial results for the quantum walk search algorithm on two dimen-

sional site percolation lattices. We firstly show, fig. 27, how the maximum probability

of the marked state varies with both the size of the dataset and the percolation prob-



Neil B. Lovett et al. 28

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

Vertices (N)

M
ax

im
um

 p
ro

ba
bi

lit
y 

of
 m

ar
ke

d 
st

at
e

 

 

2D lattice
p = 0.95
p = 0.9
p = 0.85
p = 0.8
p = 0.75
p = 0.7
p = 0.65
p = 0.6
p = 0.55
p = 0.5

Fig. 27. Plot to show how the maximum probability of the marked state varies with the

size of the dataset and percolation probability in two dimensions. We also show the

same plot for a fully connected two dimension lattice (dashed line).
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Fig. 28. Plot to show how the prefactor to the scaling of the maximum probability of

the marked state, from the data in fig. 27, varies with the size of the dataset and the

percolation probability for site percolation in two dimensions.

ability. We see, as we would think intuitively, that as the percolation probability drops

and the structure becomes less connected, the maximum probability of the marked state

decreases.

We note that the scaling of the maximum probability initially maintains the logarithmic

scaling of the basic 2D lattice before eventually reverting to the scaling of the line, 1/N ,

at lower percolation probabilities. In the case of site percolation, this change in scaling

seems to occur at roughly probabilities below p ≈ 0.65, not significantly higher than the

critical percolation threshold. This is expected as at the critical threshold, the structure

has in general a single path from one side to the other, effectively a 1D lattice. Our

numerical results match this behaviour, with the scaling of the probability of the marked

state matching that of the line at this point. At percolation probabilities higher than
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Fig. 29. Plot to show how the time to find the marked state varies with the size of the

dataset and the percolation probability for site percolated lattices in two dimensions.

We also show the same plot for a fully connected two dimensional lattice (dashed line).
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α = 0.5
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Fig. 30. Plot to show how the exponent, α, to the scaling of the time to find the

maximum probability of the marked state, from the data in fig. 29, varies with the size

of the dataset and the percolation probability for site percolation in two dimensions.

Also shown is α = 0.5 to indicate the lower bound of the algorithm (dashed line).

the critical threshold, we see a change in the prefactor to the scaling of the maximum

probability of the marked state. We show this prefactor to the logarithmic scaling in

fig. 28. It is easy to see that as soon as the percolation probability passes the critical

threshold, pc = 0.5928...., the scaling increases in a linear fashion. We also note here,

after investigation on a finer scale, that there is a gradual change in this prefactor scaling

around the critical percolation threshold.

The time to find the marked state follows a similar behaviour, gradually changing

from the quadratic scaling of the 2D lattice to a classical linear scaling as p reduces. We

show the time to find the marked state for site percolation in fig. 29. We see that when

p = 0.6, the scaling of the time to find the marked state is very similar to the classical
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run time, O(N). The kinks in this scaling (and the other percolation probabilities) are

just from averaging over many percolation lattices. Given more time, a higher number

could be run and thus a smoother scaling obtained. It can be seen that the time to find

the marked state seems to retain the quadratic quantum speed up, even in the presence

of a non-trivial level of disorder. As in the work of Leung et al. [Leung et al. 2010], it

seems as though the scaling of the time to find the marked state may follow a fractional

scaling from quadratic back to linear as,

T ∝ Nα, (21)

where T is the time to find the marked state and N is the size of the dataset. We follow

the analysis in [Leung et al. 2010] to establish how the scaling of the time to find the

marked state varies with the percolation probability. We show, in fig. 30, how the value

of the coefficient α varies as the level of disorder is increased.

We can see the quadratic speedup is maintained, α ≈ 0.5, for percolation probabilities

of roughly p > 0.65. Below this probability, the quantum speed up disappears gradually

to end at the classical run time when p = pc. This is for the same reason as in the scaling

of the maximum probability of the marked state, at the critical threshold the structure

is effectively a line. Below the critical threshold, the algorithm fails (the marked state is

probably in a disconnected region). We note here that the coefficient, α, is not exactly

0.5 as we expect for the quadratic speed up. This is most probably due to the fact that

percolation lattices are random in nature, and we only average over a specific number. If

we averaged over more, then we would see a more constant scaling of the coefficient at

α = 0.5, i.e. a full quadratic speed up.

5.4. Three dimensional percolation lattices

We now turn our attention to three dimensional site percolation lattices. We follow the

same analysis as in the two dimensional case. We firstly show, fig. 31, how the maximum

probability of the marked state varies as the percolation probability is decreased. We see,

as in the two dimensional case, that the basic scaling of the maximum probability matches

that of the three dimensional lattice until the percolation probability drops to roughly the

critical percolation threshold, pc = 0.3116.... We show in fig. 32, how the prefactor to this

scaling of the maximum probability varies with the percolation probability. In the same

way as the two dimensional case, we see an almost linear scaling of the prefactor once

the percolation probability has passed the critical threshold. The scaling here doesn’t

seem to be as close as in the two dimensional case. This is probably because in the case

of three dimensional percolation lattices, there are many more combinations of lattice

which can be created. Averaging over more of these lattices would most probably give a

smoother fit.

The time to find the marked state, in the three dimensional case, follows the same

behaviour as in the two dimensional percolation lattices. We show in fig. 33, how the

time to find the marked state varies with the percolation probability. We see, fig. 34, as

in the two dimensional case, that the scaling coefficient, α, gradually changes from the

quadratic speed up to the classical run time. Again, we note that the quadratic speed
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Fig. 31. Plot to show how the maximum probability of the marked state varies with the

percolation probability in three dimensions. We also show the same plot for a fully

connected three dimension lattice (dashed line).
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Fig. 32. Plot to show how the prefactor to the scaling of the maximum probability of

the marked state, from the data in fig. 31, varies with the size of the dataset and the

percolation probability for site percolation in three dimensions.

up is maintained for a non-trivial amount of disorder before gradually changing to the

classical run time at the point p = pc. We do note, as in the two dimensional case,

that the coefficient is not exactly 0.5. This can be explained in the same way as the two

dimensional percolation lattices, and averaging over more lattices should give a constant

value of the coefficient α.

6. Discussion

In this paper, we have discussed various factors which affect the efficiency of the quantum

walk search algorithm.We introduce a simple form of tunnelling which allows us to modify

the substrate we use as the database arrangement, and use this to interpolate between

structures with varying dimensionality and degree. We find that although the dependence
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Fig. 33. Plot to show how the time to find the marked state varies with the size of the

dataset and the percolation probability for site percolation lattices in three dimensions.

We also show the same plot for a fully connected three dimension lattice (dashed line).
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α = 0.5

Fig. 34. Plot to show how the exponent, α, to the scaling of the time to find the

maximum probability of the marked state, from the data in fig. 33, varies with the size

of the dataset and the percolation probability for site percolation in three dimensions.

Also shown is α = 0.5 to indicate the lower bound of the algorithm (dashed line).

on the spatial dimension of the underlying substrate is strong, it is not the only factor

which affects the efficiency of the algorithm. We also find secondary dependencies on the

connectivity and symmetry of the structure. In addition, we use percolation lattices to

model disorder in the lattice in a simple way. In this case we find, counter-intuitively,

that the algorithm is able to maintain the quantum speed up even in the presence of non

trivial levels of disorder. We now discuss our findings for each factor in turn.
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6.1. Dimensional dependence

We have shown two different ways in which we can interpolate between structures of

differing spatial dimension. Firstly, we use a tunnelling operator to vary specific edges

of a lattice enabling us to gradually change the spatial dimension of the lattice. In this

case, we find a sudden change in the scaling of the maximum probability of the marked

state as soon as there is even a very small probability of the edges existing. This seems

to indicate that the ‘strength’ of the edges in the lattice is of little importance, with the

dependence on the specific spatial dimension taking precedence. However, we find that

the prefactor to the scaling of this probability varies with the strength of the tunnelling

edges, increasing as the tunnelling strength increases. The basic scaling of the time to

find the marked state is not affected by the change in dimensionality, we note though

that the prefactor to the scaling decreases as the tunnelling strength increases, hence the

algorithm becomes more efficient.

The other case we consider is the case of lattices with varying height or depth, for

example, a 3D lattice with fixed width and height but of varying depth. Although this

structure is still strictly three dimensional, when the depth is very low and the width

(height) is large, the quantum walker will see the structure as almost a basic 2D Cartesian

lattice. Suprisingly, in this case we see a gradual change in scaling in the maximum

probability of the marked state. At low depths of the lattice, the scaling is almost the same

as the lower spatial dimensional structure gradually changing to the higher dimensional

structure scaling as the depth increases to become equal to that of the other dimensions.

This highlights the importance of full symmetry in the quantum walk search algorithm.

6.2. Connectivity

We show how the search algorithm is affected by varying connectivity in regular lattices.

We use our simple model of tunnelling to allow us to interpolate between structures such

as the square lattice (d = 4) and the triangular lattice (d = 6). With this model, we are

able to identify how the prefactors to the scaling of both the maximum probability of

the marked state and the time to find the marked state vary with the connectivity of the

structure.

The basic scaling of the time to find the marked state, O(
√
N), is not affected by

the increase in connectivity but we find the prefactor to this scaling reduces as the

connectivity of the structure being searched increases. This is due to the additional

paths the walker can take to coalesce on the marked state, thus increasing the efficiency

of the algorithm in both two and three dimensions.

The maximum probability of the marked state is also affected by the connectivity

of the underlying structure. We find that the additional connectivity does not affect

the basic scaling of O(1/ log2N) in the two dimensional case. Only moving to three

spatial dimensions allows the walker to find the marked state with a constant probability,

O(1). However, we do note that in both two and three dimensions the prefactors to this

scaling, in general, increase as the connectivity of the structure increases. Again, this

increases the efficiency of the algorithm as it may not have to be repeated so many
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times. We also find that the probability of the marked state does not increase uniformly

with the additional connectivity. We see the prefactor in the scaling drop and then recover

itself before increasing as the tunnelling strength increases. This is due to the dynamics

of the quantum walk on a structure with some broken symmetry, i.e. low tunnelling

strength between vertices. We briefly investigated the dynamics of the walk by starting

the walker in a single location and monitoring how quickly it spread outwards with

varying tunnelling strengths. This confirmed our results for the search algorithm as we

found that the spread of the quantum walk also dropped for lower tunnelling strengths

before recovering and eventually increasing at higher tunnelling probabilities. However,

this work on the spreading of the walk compared to tunnelling strength is by no means

exhaustive and it would be interesting to look more deeply into this in the future.

6.3. Substrate disorder

We studied both two and three dimensional percolation lattices as a way to model dis-

order in the quantum walk search algorithm. We are interested in how the algorithm

performs with increasing disorder. We use percolation lattices as a random substrate for

the database arrangement we wish to search.

We find, in both the two and three dimensional cases, that as the level of disorder

increases, the maximum probability of the marked state decreases. Whilst the percolation

probability is higher than the critical percolation threshold, the basic scaling of the

maximum probability of the marked state matches that of the basic lattice (in that

spatial dimension). Once the percolation probability drop to the critical threshold, this

scaling changes to that of the line, 1/N . This is expected as at this point the structure is

effectively a line. We also note the prefactor to the scaling of the maximum probability

of the marked state increases linearly once the percolation probability is greater than the

critical threshold.

The time to find the marked state follows a similar behaviour. We find that as the

disorder increases, the time to find the marked state also increases. Surprisingly though,

we note that the quadratic speed up is maintained for a non-trivial level of disorder, before

gradually reverting to the classical run time, O(N), as the disorder reaches the critical

percolation threshold. This seems to match the results of [Leung et al. 2010], which show

a fractional scaling for the spreading of the quantum walk from a maximal quantum

spreading to a classical spreading at and below the critical threshold. However, this is

in contrast to the work of Krovi and Brun [Krovi and Brun 2006, Krovi and Brun 2006,

Krovi and Brun 2007] who highlight the effect of localisation on the quantum walk when

defects are introduced into the substrate.

Both these factors indicate that the quantum walk search algorithm seems to be more

robust to the effects of disorder and symmetry than the basic spreading of the quantum

walk. This could be due to the fact that the initial state of the walker is spread across

the whole lattice. We have seen that the algorithm becomes less efficient as the disorder

increases, but at percolation probabilities greater than the critical threshold, the algo-

rithm still seems to be viable, although more amplification of the result may be required.
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